Waterloo microCOBOL

Reference Manual

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo
Computing Systems Limnited. From time-to-time enhancements o this system or
complesely new systems will become available.

A mewsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of conununicating up-
to-date information Lo the various users. Detsifs tegarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newslbeticr
Box 943,

Waterlos, Oatario, Canada

N2J 4C3

Chapter 2

Structure of a COBOL Program

2.1 Overview

COBOL (COmmon Business Oriented Language) is a computer programuming
language specifically designed for use in solving business problems. Watstloo
microCOBOL is intended to be an implementstion of part of the acoepted standard
for COBOL (ANSI X3.23-1974). For persons familiar with this COBOL standard,
the language intended 1o be supporied includes level one of the NUCLEUS,
SEQUENTIAL I-0, RELATIVE I-O snd TABLE-HANDLING modules. As
well, cartain features of level two in these modules bhave been supported. These
exira language elements include full support for the PERFORM, STRING, and
UNSTRING verbs, No support is provided for tape hardware. Some of the features
described in the manual may oot be present in specific hardware/software
environments which do pot provide adequate support for them. The chapter
describing Systern Dependencies should be consulted for the specific details which
apply 1o a panicular implementation of Watetloo micreCOBOL.

This reference manual deacribes the language supported by Waterloo
micreDOBOL. Tt is iMended to be used for reference, nor 28 8 primer or ttorial.
Warerloo microCOBOL i3 implemented on a number of different computer sysems.
Most of the mamual applies to ail implementations. The chapter about System
Dependencics deacribes features particutar to a specific system.

The following convetions are wsed in the formal descriptions of COBOL
syntax:

{n All reserved words are capitalized. When the wonds are required within the
contexy that they are used, they are algo shown in bold face.

(2) Square brackets [and] are used to mark the optional parts of the language.
In cases where a choice must be made between a oumber of elemenis, the
elemendts are shown in & vertical list enclosed by curly braces { and }.

168 Chapter 2

(4] Semicolon () and comma (,) characters are optional items in the formal
descriptions of COBOL clements. To increase the readability of thess
descriptions they have not been enclosed in square parentheses,

It should be poted that comma (,) and semicolom () characters may be used
interchangeably in the COBOL language. When used as separators, these characters
shouid be followed by a space character,

2.2 Divisions

A COBOL program is writteh a3 a number of DIVISIONS. Waterloo
microCOBOL supponts four of thage divizions:

(1) IDENTIFICATION DIVISION
(2) ENVIRONMENT DIVISION
(3) DATA DIVISION
() PROCEDURE DIVISION
The divisions must be given in the order indicated,

The IDENTIFICATION DIVISION cogtains statements which are wsed 1o
identify the program and other elements. The ENVIRONMENT DEVISION
contains sentences describing the environment in which the program is intended to
exccute. The DATA DIVISION is used to declare the data upom which the
executing program will operate. The PROCEDURE DIVISION contains sentences
which, when executed, cause specific actions to take place. These divisions are
described in detail in following chapters.

All four divisions are mandatory and so must be present in every program. Thus,
the format of & COBOL program is as follows:

IDENTIFICATION IHVISION,
« e SEMIENCES
ENYIRONMENT IMVISION,
DATA DIVISION.

.+ . . SCRlCDCes

PRGCEDURE DHVISION.

Stracture of a COBOL Program 169

The semtences in cach division are described in the following chapters. A description
of the format of a COBOL program is given in the naxt section.

2.3 Colonms im & COBOL Program
The following columins of & line in a program are significant:

column {1) This column may contain an asteriak {*} character to indicate
that the line is 2 comment line. Comment lines are ignored
during the execution of a program. Their parposs is only 1o
provide documentation for people who are looking at the
source lines of the COBOL program.

column {2-5) This aren iz called Areo A. Ceriain seniences or siaicments
must start in this ares (¢.g.. paragtaph pemes in the
PROCEDURE IMYISION).

columns {6-) This area is calied Arza B. Cemain sentences muat start in
this area (€.g.. verbs in the PROCEINVRE DIVISION).

Al COBQL, statements, gther than comments, must start in Area A o B. In general.
the majority of the statements occur in the FROCEDURE DIVISION, The rules to
follow in this division are ae follows:

{1} SECTION and PARAGRAPH names start in Area A,
(23 All pther sentences start In Area B,
If anything other than an asterisk (*) is placed in column (1), the editor supplicd with

microCOBOL will replace that character with a question murk (1) character to show
an illegal character.

2.4 COBOL NAMES

Within a OCOBOL program, a number of names can be specified. These names
are either reserved words (ie., SELECT, PROCEDURE) or are defined by the
programmer {i.¢., file names, daa names). A complete list of the reserved words in
COBOL is given as an appendix (see RESERVED WORDS),

170 Chapter 2

The names defined by the programmer must condain oaly alphabetic (A-Z, a-2),
oumery: (0-9) oc dash {-) characters, A name may not start or end with & dash {-)
character. All names must contain at least one alphabetic charsctey. Names may
include up to 30 characters.

The following are exampies of legal COBOL names:
GOOD-DATA
TRANSACTION-FILE
DATE-004
1-PARAGRAPH-CHARLIE
The following are examples of illegal user-defined names:
WRITE (reserved word)
-A {starts with-)
B- (ends with-)
403-7 (no alphabetic)

When entering 3 COBOL program using the editor supplied with microCOBOL,
the following conventions are observed.

{n lower and uppercase letiers are meated identically in names.

{2) names wil be subsequently displaved by the editor using the case of the
first letter.

Thus, the names entered as
My Variable and mYvARIABLE
are treated as being the same name. They would be displayed as

MYVARIABLE snd myvariable.

2.5 Commment Statewments

Comment statertents may be entered anywhere in a COBOL program. These
statements are ignored during the execution of the program. Their use is restricted to
increasing the readsbility of the program by permitting documentation to be placed
with the source statements. A comment statement is identified by an asterisk (*) in
the first column of 2 statement.

Stxctute of 8 COBOL Program 17

1.6 Figurative Constants

Cermin reserved wonda, called Sgurative constanes, are uged to stand for ope or
mxre repetitions of certain characters. These constanis are as follows:

] ZERO, ZEROS, ZERDES: one or more "0 characters.

» SPACE, SPACES: one of more space characters.

L HIGH-VALUE, HIGH-VALUES: one or mome of the character that has
the highest ondinal pesition in the program collating sequence.

- LOW-YALUE, LOW-VALUES: one or more of the character that has the
lowest ordinal position in the program collating sequence.

. QUOTE, QUOTES: one or mwre of the quotation () character.

- ALL literal: one or more of the string of characters comprising the litersl.
The literal most be nonnemeric o a figurative constant (in which case the
ALL keyword is redundant),

Tee singular and plural forms of a figwrative conatant are equivalent and may be
used interchangeably.

The size of a figurative constant depends upon the context in which it is used.
When the constant is associated with a specific data item {e.g., moved, compared,
VALUE IS}, the size of the constant i3 identical to that of the data item: otherwise,
the literal has a size of one character (e.g., DISPLAYing a figurative constant}).

A figurative constant may be used anywhere that a literal can be msed. When
only & sumeric literal is permitied, then only the ZERO, ZEROS or ZEROES
figurative constants are permined.

Chapter 3

IDENTIFICATION DIVISION

3.1 Overview

The IDENTIFICATION DIVISION must be the first division in a COBOL
progeam (it may be preceded by comment atatements). The statement

IDENTIFICATION DIVISION.
specifies the start of the division. The statement must start in Arca A,

The divigion is used to identify the program in a general fashion. The division
consists of a number of paragraphs. Each paragraph starts with 3 paragraph header |
a reserved word written in Area A). The remainder of the paragraph is writien in
Area B. Only the PROGRAM-ID paragraph is mandatory., The remuinder oy be
omitted from & program. When present, the paragraphs musi be given in the
following order:

MROGRAM-ID

AUTHOR

INSTALLATION

DATE-WRITTEN

DATE-COMFILED

SECURITY

Except for the PROGRAM-ID paragraph, the contents of each parngraph is limited
to a ningle line which may contain anything and is ignored. Esssntially, thase antrien

174 Chapter 3

may be considered to be documentation. The following sections describe each
paragraph.

3.2 PROGRAM-IT}

PROGRAM-TD. name.

This paragraph is wsed to give a name to the program. This name is aot used in
the Waterloo microCOBOL interpreter. The name is used ic create the name of the
object file in the Waterloo microCOBOL compiler.

This is the onty mandatory paragraph in the IDENTIFICATION DIVISION.

13 AUTHOR

[AUTHOR. [comment] |

This paragraph is intended for documentation purposes only.

3.4 INSTALLATION

[INSTALLATION. [comment] }

This paragraph is intended for documentation purposes anly.

3.5 DATE-WRITTEN

[DATE-WRITTEN. [comment]]

This peragraph is intended for docurnentation purposes oaly.

IDENTIFICATION DIVISION

3.4 DATE-COMPILED

L75

[DATE-COMPILED. { commemn]]

This paragraph is intended for decumentation purposes only.

3.7 SECURITY

{ SECURITY. [comment]]

This paragraph is intended for documentation purposes only.

Chapter 4

ENVIRONMENT DIVISION

4.1 Overview

This division js used to inform the COBOL system about the environment in
which the COBOL program is 10 be processed. The CONFIGURATION
SECTION is mandetory. In that section, only the SOURCE-COMPUTER and
ORJECT-COMPUTER pacagraphs are required. The INPUT-OUTPUT section
must be specified only if files are uaed in the program.

The first statement,
ENYIROMMENT DI¥ISION.
specifies the start of the division. The statement must siart in Area A. The sections

and paragraphs start in Arca A while the verious clases (except the SELECT
statcined) stat it Arca B.

4.2 CONFIGURATION SECTION

CONFIGURATION SECTION.

This mandatory secticn consists of & number of paragraphs to be described in the
following sectipns. Oanly the SOURCE-COMPUTER and OBJECT-
COMPUTER paragraphs arc mandatory.

178 Chapter 4

4.2.1 SOURCE-COMPUTER

SOURCE-COMPUTER. name [WITH DEBUGGING MODE).

This mandatory paragraph is intended to be used as documemtation of the
computer oo which the COBOL program is compiled (compiler) or interpreted
{(interpreter). The Waterloo microCOBOL interpreter treats the entire pacagraph as a
cOmment.

4.2.2 OBJECT-COMPUTER

OBJECT-COMPUTER. name.

{ WORDS }
[MEMORY SIZE nuiber { CHARACTERS 1)
{ MODULES 1

[LPROGRAM COLLATING SEQUENCE is name]

This mandatory paragraph is intended to be used as documentation of (he
computer oh which the COBOL program is executed. ' Waterloo miccoCOBOL meats
the paragraph as a comment.

Waterloo microCOBOL uses only the native character set of the computer on
which it is executed. The collating sequence (order of the characters) is that of the
characters defined for the system in question (sse SYSTEM DEPENDENCIES).

ENVIRONMENT DIVISION 179

4.2.3 SPECIAL-NAMES

[SFECIAL-NAMES.
[.CURRENCY SIGN IS literal]

[LDECIMAL-POINT IS COMMA]].

This paragraph is wsed to specify the ciamency-sign and decimal-point
charscters.

The crrrency symbol is a character used o PECTURE sirings. It is nomally
used o precade values of money which are to be displayed. This character is dollar-
sign {3) by defauli.

Usually the decimal-point character 15 o period (.). This character has special
significance in PICTURE strings, in combination with comma (,) characters. The
rodes of these two charactars can be reversed by specifying the DECIMAL-POINT
clause.

4.3 INPUT-OUTPUT Section

INPUT-OUTPFUT SECTION.

This optional saction is used 1o specify the namey and characteristics of fles in
the program. Each file used in the program must have SELECT clause in the FILE-
CONTROL paragraph.

180 Chapter 4

4.3.1 FILE-CONTROL

FILE-CONTROL.

{select clause}

This optional peragraph consists of & number of SELECT clanses, one per file
in the program, which are used o specify the COBOL file-same for an actual fiie.
The format of the SELECT entries are described in the following asction.

4.3.1.1 SELECT Claose

SELFECT [OPTIONAL] file-name
ASSIGN TO literal

[ORGANIZATION IS { RELATIVE })
{ SEQUENTIAL }

[; ACCESS MODE 1S { SEQUENTIAL [RELATIVE KEY IS name }
{
{ {RANDOM } , RELATIVE KEY IS name
{ {DYNAMIC }

T]

[; FILE STATUS IS name).

There must be a SELECT entry for each file used in the peogram. The "file-
pame" identifier specifics the name by which the file will be referenced elsawhers in

the program.

The OPTIONAL Leyword is used to indicats that the file need nor be present
every time the program is cxecuted; when processed as an input file, a non-existent
file is treated ns a file with no records. Thus, the AT END condition will be detected
when the first READ statement is executed for that file (see READ statemend).
When the keyword is not given, a non-existent file used as input will cause an error
message to be displayed and the execution of the program will be terminated. The
OPTIONAL keyword may only be used with input files.

ENVIRONMENT DIVISION 181

The mandatory ASSIGN clause may be wsed to specify the nctual file to be
processed by the COBOL program. The value of the litera] in the ASSIGN clamse in
niormaily used as the name of the actoal file. This name is the sctusl name of the file
for the compuier system in which the program will execute. It should be noted that
this clause may be overridden by the VALUE clause of an FID entry in the FILE
SECTION of the DATA DIVISION .

The optional ORGANIZATION clause is used to inform WATERLOO
microCOBOL whether the fils is organized with special charncteristics for relative
of sequential processing. On some systems (i.2., IBM VM/CMS) there is no special
organization and the clausc is treated as a comment, except for it effect upon the
ACCESS clause.

The optional ACCESS clsose specifies whether the file will be accassed
saquentially, randomly or both ways. When the ORGANIZATION is given as
SEQUENTIAL, the only ACCESS MODE permissible is also SEQUENTIAL
and tbe RELATIVE KRY clanse may not be specified.

When the ORGANIZATHON is given as RELATIVE the acoess mode may be
any of SEQUENTIAL, RANDOM or DYNAMIC. The last mode specifies that
both random and sequertial access may be used for the file in question. The
RELATIVE EEY clausc may be specified for SEQUENTIAL access and must be
specified for RANDOM o DYNAMIC access. When the RELATIVE KEY
clause is specified, the data item indicated by the clause receives the relative record
vumber of the record when @ READ statement is sucoessfully executed; and, the
contents of the dats item are used to estabfish the position in the fle at which a
record i to be writien using a WRITE or REWRITE staicment.

The options]l FILE STATUS clsuse is vsed to specify a two-character
alphanumeric or group data item to receive a value indicating the status of the last
imputfoutput operation for a file. The first charucter of this dats item receives the
following information immediately after an input/output operation:

"r opecation completed succeasfully

"1* AT END error detecied

¥ INVALID KEY emvor detected

"3 other input/output crror

When an INVALID KEY error (value 2) is detected the secomd character of the
FILE STATUS data item may contain the following values:

182 Chaptet 4

> record already exists

"3* no record found

ot attempt to acceas a record beyood the bowds of a file
Otherwise, the second character of the dats item will contain 07,

Two typical SELECT statements are illustrated below:

select myfile
assign to “TRANS®,

select output-file
assign to "MASTER'
organization is relative
acoess mode is random
rclative key is master-rec-numb.

The SELECT rtatements show how a sequential and a relative file, respectively,
might be referenced. The relative file is 10 be accessed in 8 RANDOM mode.

Chapter 5

DATA DIVISION

5.1 Overview

The DATA INVISTON is used 1o inform Waterloo microCOBOL about the data
used in the program. There are two sections which deal with this data: FILE
SECTION (input/output records) and WORKING-STORAGE SECTION (other
dais itlems used in the program). These COBOL SECTIONs are described in detail
in the following sections.

The first setatement in the division is

DATA DIVISION.
It must start in Arca A. Data items are all preceded by level numbers {described in
the next section). Level numbers 01 and 77 must start in Area A. All other level

numbers may be indented achitrarily. The data names following the level numbers
must start in Area B.

5.2 FILE SECTION

FILE SECTION.

This optional section is concerned with the data that applies 1o the files used in &
program. For each fils there is an FID (file description) entry specified. The FD is
used to describe the information in the file. Each FI} is immediately followed by one
o1 more record descriptions which define the format of a record read from or to be
writien to a fle.

134 Chapter 3

521 FD

FD filenams

(FD entry}

{record-description entry) . . .]
where an FD entry is described as:

[; BLOCK contains | number TO | number { RECORDS })
{CHARACTERS }

[; RECORD CONTAINS [number TO | nomber CHARACTERS |

[LABEL {RECORD IS)} {STANDARD }]
{RECORDS ARE }{OMITTED)}

[; YALUE OF literal is Fiteral

[DATA { RECORD 15 1 name, name ...]
{ RECORDS ARE }

[; CODE-SET 15 name }

An FD eatry must be present for each file used in the COBOL program. There is
one mandstory clause, LABEL, and & number of optional clauses. These clanses
may be given in any order. These clabses sre described io dedail in the following
subsactions.

A typical FI¥ cotry is shown following:
fd myfile

iabel records @e standard.
0] my-data

02 filler pic x(50).

The fle containg S0-charucter records.

DATA DIVISION 183

5.2.1.1 BLOCK CONTAINS

The optional BLOCK clause is wsed to iaform microCOBOL of the size of a
physical block in which logical records are stored. In many implementations (i.c.,
SuperPET, VM/CMS) this information is not required and so is ignored except for
synisctic cOMmectness.

The cleuse specifies the size of a physical bleck either in records or in
characters.

5.2.1.2 RECORD CONTAINS

This optional clause is never required since the size of logical records is also be
given by the record description entries following the FID. When specified, the size or
range of sizes must be the same as that of the single record, or as the range of sizes
given by those multiple records, respectively.

52.1.3 LABEL

This mandaiory clause must be present in each FID. 1t is usext to indicate whether
a special record, called a label ecord, precedes the data records in a file. Because
many specific systems (i.e., SuperPET, ¥WM/CMS) automatically bandle lubel
records, this clause is usually ignored, except for syntactic comecitness.

5.2.1.4 YALUE OF

This opticnal clause may be used to specify the system name of the fik in
question. When the value is given as a literal, its value is taken as the system name
for the file. Thus, the clavse

VALLE OF *' IS "SALES’
indicates that the system name for the file is "SALES".

When the valug is given as a data name, the value of that data item (at the time
the file is opened) is used as the systern name. It should be noked that this feature
allows the name of & file to be sstablished while the COBOL program is being
exccuted. For example, the name may be entered by & user of a program via an
ACCEPT siatcment.

186 Chaptet 3

The clause
YALUE OF ' IS FILENAME

specifies that the value of the data item "FILENAME" is to be used s the system
name for the file, when the file is opened.

5.2.1.5 DATA

This optional clavse is used ooty to document the records given immediately
following the FI) entry. If specified, the names of the records must be the same as
the 01 level record descriptions following the FD.

5.2.1.6 CODE SET

The CODE SET clause is used to specify the characier sa4 to be used for the data
in the vecords in the file, The only character set supported by microCOBOL is the
one that in normally used on the system, called NATIVE, Thus, the oaly valid form
of this clause is

CODE SET 1S NATIVE.

5.1.2 Record Descriptions

The record descriptions following an FII establish the size(s) of logical record(s)
written to or read from a file. The format of record descriptions is given in the
section dealing with data description.

DATA DIVISION 187

5.3 WORKING-STORAGE SECTION

{ WORKING-STORAGE SECTION.

{ 77 {date-description) Yoo
{ (racord-description entry) }

Data in the WORKING-STORAGE SECTION is defined using either 77 level
entries (¢lementary items) or 01 level entries (record descriptions). These entries are
described in the next section,

5.4 Data Description

This section is used to specify the data items (other than file reconds) used by the
COBOL prugram. The various entries are given in following subsections.

5.4.1 Lavel Numbers and Recwrds

Each data jtem is given a level number in order to organize elementary items as
subdivisions of group ifems. An item which is a subdivision of another item is said
to be swbordinate to all the group jtems which contain it. In general, the
specification of a larger level number indicates that the data item specified is a
subdivision of the data jtem with a kesser level number that anmediately precedes it
in the program. This may be schematically shown as follows:

0L A
0B
0 C

03 D
03 E
0 F
05 G
05 H

The group item A is subdivided into 3 items shown as B, C and F. The group item C
is subdivided inty ID amd E. The group item F is subdivided into items G and H.
Items which are not subdivided (B, I, E, G, H} arc termed elementary items. It js
imporiant to diffsrentiate between group and elementary items since different
clauses can be used 10 describe the data comained by them.

188 Chapter %
A group item with a level oumbet 01 35 called a record. When subdividing
records or group items in records, the following rles must be followed:

in All items which are used 1o subdivide & group item must have the same
level number.

{2 Level numbers used in records amst be in the range OF o 49,

Records defined in this way are used in both the WORKING-STORAGE and
FILE sections.

There are also 3 reserved level aumbers {66,77,88) wsed for special purposca.
Byiefly, these purposes are:

66 used te regroup dats items
77 used to define special elementary items
i3 used to define condition names

These items are described in detail in following subsections.

54.2 Qualification

Any data name which is nsed as 2 subdivision of a group item may be qualified
by specifying some or all of the names of group items of which it is part. Consider
the following schemanc diagram;

a1 A
02 B
0y C
M D

DATA DIVISION 189

The deta iem Db may be referenced elsewhere in the program by any of the
foliowing:

D

D OF C

D OF H
DOFCOFB

D OF A
DOF C OF A
DOF B OF A
DOFCOF B OF A

Calification must be ueed when a name occurs more than once in the same program

Consider the following example:

a1 A
02 B
0 C
02 D

BB

In the example, B cannot be used by itself since the reference would be ambiguous.
The first occurance of B must be referenced as

BOF A
and the second occurrence must be referenced by one of:
B OF &
B OF C
B OF D OF C

Every data item must be capable of being uniquely qualified.

150 ' Chapter 5

5.4.3 PICTURE String

A PICTURE string is a saquence of characters {maximum 300 which is used o
describe all elementary data items (except INDEXED}). A few cxamples of
PICTURE strings are as follows:

PICTURE Meening

999Vo0 5-digit oumber with 2 decimal places
XXXXXX G-cheracter sequence of charscters
22779 5-digit field, lending zeros suppressed on 4 digits

Uppercase letters will be used as the charscters in PICTURE strings for explanatory
purposes. Waterloo micrnCOBOL also acoepts lowercase letters in an equivalent
fashion. The general rules for PICTURE sirings are as follows:

{1 There are five categories of dats that can be described with a PICTURE
clause: alphabetic, pumeric, alphanemeric, alphanumeric edited, snd
numeric edited.

(2) To define an item as alphaberic:

a Its PICTURE churncter-siring can only <ontain the symbaols "A”,
‘B'; and
b. Its contents when representzd in standard data foemat muost be any

combination of the twenty-six (26} letters of the Roman alphabet
and the space from the COBOL character set.

Some sample alphabetic FICTURE strings are shown following:

A(20)
bbbt
a(1HBBAA

{3 To define an idem as nemeric:

a. Its PICTURE character-string can only contain the symbals "9,
‘P, '8, and V. The pumber of digit positions that can be
described by the PICTURE character-string must range from 1 1o
18 inclusive;: and

DATA DIVISION N

(4)

(5)

If unnigned, it contents when representad in sandard dats format
mugt be a combisation of the Arabic numerals '0°, "1, 27, '3°,
4,180, 6, T, 'R, and 'Y of sigped, the ilem may also contain
a'+', '-', or ather representation of an operational sign.

Some sampk numeric sirings arc as follows:

99999
9995v9
559999950
59609

To define an isem & alphanumeric:

a.

Its PICTURE character-siring is restricted i certain
combinations of the pymbals 'A’, ‘X', "9, and the jitem ix treated
as if the churacter-siring comained all X's. A FICTURE
character-string which contains all A's or all 9's does oot define an
alphanumeric item; and

Its contents when represeoted in standard data formar are
allowable characters in the computer’s character set.

Some sample alphanumeric strings are a8 folkows:

000xxx
A(10)29X(4)

To define an item as alphanumeric edited:

Iie PICTURE character-string is restricted to certain
combinations of the following symbols: ‘A°, 'X*, ‘9, 'B', "0,
aixd ’f'; and

1} The character-siring must contain at least one ‘B and at
lemst one ' X' or at least one ‘0’ (zero) and at least one "X’
or &t least one */* (stroke) and at least one "X'; aor

5 The character-string must contain at least one "0’ (zera)
and ar Jeast one 'A' or et leest one '/* (stroke) and at least
onc "A'; and

192 Chaptar 5

b. The contents when represemied in standerd dain formar are
allowable characiers in the computer’s character set.

A sample alphanumeric string is:
BAAJAAIAAB
H To define an item as nemeric edited:

a. Its PICTURE character-string is restricted to certain
combinations of the symbols 'B°, */°, 'P’, 'V, 2, 0, 9, 0,
LY OEL 4, L '"CRY, DB, and the currency symbol. The
allowable combinations are determined from the order of
precedence of symbols and the editing rules; and

L The number of digit positions that can be represented in
the PICTURE charscter-string must range from | to 18
inclusive; and

2) The character-string must conotain at least one "0F, 'B’,
?lrlf. lzf, f*i, l+l' i'l '.', J‘_i' 'CR:‘ JDBFI m‘cum}'
symbwol.

b. The contenty of the character positions of theas symbols that are
allowed 1o represent a digit in standard data format, must be one of
ihe numerals.

Some sample numeric edited strings are:

0990100

35,558 55909

e el 00

rrz, 2EZ, Z29.99
555,555, 559.99CR

(7 The size of ar elementary fem . where size means the number of character
positions occupied by the elemeotary item in standard dete formet, is
determined by the nember of allowable symbols that represant charastat
positions. An integer which & emclosed in parentheses following the
symbols A", °.', X', 9, R, 2, e, RS, N0, L T o the
cumency symbel indicates the number of consecutive occurrences of the
symbol. Note that the following symbols may appear only once in a given
MCTURE: 's’, 'v", ', ‘CR’, and 'DB’.

DATA DIVISION 193

) The functions of the rymboly wed to describe an clementary item are
explained an followa:

A

Each 'A° in the charscter-siring repressnts a character position
which can contain oaly a letier of the alphabet or a space.

Each ‘B’ in the character-string represesits i charwetes posithon into
which the space charscter will be inserted,

Each ‘P inclicates an assurmed decimal scaling poeition and is used
1o specify the location of an assumed dacimal point when the point
is mot within the number that appears in the dam item. The scaling
position character ‘P’ i not coumad in the size of the data item.
Scaling position characters are counted in delermining the
mainwm number of digit positions (18) in aumeric ediked tema
of numeric items. The scaling position character ‘P’ can sppear
only to the left or right a5 a continwous sring of ‘P's within a
PICTURE description; since the scaling pogition character ‘P’
implics an sssumed decimal poiat (to the left of ‘P's if 'P's are
lefimost PICTURE characters and to the right if ‘P's are
rightmost PICTURE characters), the assumed decimal point
gymbol 'V’ s redondant as either the leftmoet or rightmost
character within such a FICTURE description. The character 'F*
ard the insertion chacacter *." (period) cannot both occur in the
same PICTURE character-siring. If, in any operation involving
conversion of data from one form of internal representation to
another, the dsta itemn being converted is described with the
PICTURE characier ‘F’, cach digit position described by » 'P' 1y
consilered to contain the value zaro, and the size of the dats item
is considered to include the digit positions 5o described.

The letter '3’ is used in a character-mring to indicate the presence,
but peither the representation nor, necessarily, the position of an
operational sign; it must be written as the leftmaat character in the
PICTURE. The ‘S’ is not counted in determining the size (in
terms of standurd data formal charackers) of the elementary item
unkss the entry is subject f0 a SIGN clause which specifies the
opticny] SEFARATE CHARACTER phrase.

The "V’ is used in a chutacter-siring to indicate the location of the
assumed decimal point and may only appear once in & cheracter-
sring. The 'V’ does not represent » charscter position and

194

Chaprter 5

therefore is not counted in the size of the elementary item. When
the assumed decimal point is 1o the right of the rightmost symbol
in the string the 'V is redundant.

Each ‘X’ in the character-string is used to represent a charscter
position which contains any allowable character from the
computer’'s character set.

Each "Z’ in a character-string may only be used to represent the
lefimost leading numeric character positions which will be
replaced by a space character when the contents of that character
position is zero. Bach ‘2’ ig counted in the size of the item.

Each "9 in the characeer-string represents & character position
which contains a numeral and is counted in the size of the item.

Eack 0" {zero) in the character-string represents a chagacter
position into which the numeral zere will be inserted. The ' is
counted in the size of the item.

Each '/’ (stroke) in the character-string represents a character
position into which the stroke character willt be inserted. The */* is
counted in the size of the item.

Each '." (comma) in the character-string represents a character
posibion ino which the character ', will be inserted. This
character position is counted in the size of the item. The insertion
character *," must net be the last character jn the PICTURE
charactet-string,

When the character *." (period) appears in the character-string it is
an editing symbol which represents the decimal point for
alignment purposes and in addition, represents a character position
into which the character *.”7 will be inserted. The character '.* is
counled in the size of the item.

For a given program the functions of the period and comma are
exchanped if the ¢lanse DECIMAL-FOINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this exchange the
rukes for the petiod apply to the comma and the rules for the
comma apply 1o the period wherever they appear in a PICTURE
clause. The insertion character *." must not be the Iast character in
the PICTURE character-siring.

DATA DIVISION 195

(1)

{2)

+, =, CR, DB

These symbols are used g5 editing sign control symbols. When
used, they represcat the character position isto which the editing
sign control symbel will be placed. The symbols are mutually
exclusive in any one charecter-string and sach charncter uzed in
the symbol is counted in determining the size of the data isem.

Each '*' (asterisk) in the character-string represemsts a lesding
numeric character position into which an asterisk will be placed
when the contems of that position is zero. Each '* is counted in
the size of the e,

The currency symbol in the character-string represents a character

position into which a currency symbol is to be placed. The

currency symbol in & character-siring 15 represented by either the

curency sign$ of by the single charscter specified in the

CURRENCY SIGN clawse in the SPECIAL-NAMES

paragraph. The cwrrency symbel is counted in the size of the item.
”

When a value is assigned to a data item, it is said to be edired into that item. The
following rules describe this process.

There are two gencral methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement. There are
four types of insertion editing available. They are:

a.

b.

c.

d.

Simple insertion
Special insertion
Fixed insertion

Floating insertion

Thers are two types of suppression and repiacement editing:

b.

Zero suppression and replacement with spaces

Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is dependent
upon the category to which the item belongs. The following table specifies
which type of editing may be performed upon a given categery:

196

)

4

{3)

(6)

Chapter 5

CATEGORY TYPE OF EDITING

Alphabetic Simple insertion 'B" only
Nutnweric Nonc

Alphamuneric None

Alphanumeric Edited Simnple Inscction <Y, ‘B, and */"
Numeric Edited All, see rule 3 following

Flosting insertion editing and editing by zero suppreasion and replacemnent
are mutually exclusive in a PICTURE clause? Ouly one type of
replacement may be used with zeto suppression in & PICTURE clause.

Simple Insertion Editing. The '.' (comms), "B’ (space), 'O’ (zero), and '}
{sroke) are used as the insertion characiers. The innartion characters are
counted in the gize of the item and represent the position in the item into
which the character will be inserted.

Special Insertion Editing. The '.* {period) is used ax the insertion character.
In addition to being an insertion character it also represents the decimat
point for alignment purposes. The insertion character used for the actual
decimal point is counted in the size of the item. The use of the assumed
decimal point, represeanted by the symbol *V' and the sctual decimal point,
represenicd by the insertion charscter, in the same PECTURE character-
string is disallowed. The result of apecial insertion editing is the appearance
of the ingertion character in the item in the seme positton as shown in the
charactar-string.

Fixed lnsertion Edising. The currency symbol and the editing sign control
symbols, '+, "', 'CR’, ‘DB, are the insertion chamcters. Only one
cirrency symbel and only one of the editing sign contral yymbols can be
used in a given PICTURE cherscter-string. When the symbols ‘CR’ or
"DB’ are used they represent two character positions in determining the size
of the item and they must represent the rightmost charactey positions that
are: counted io the size of the itemn. The symbal "+ or -/, when used, must
be either the leftmont or rightmost charecter position to be counted in the
size of the item. The currency symbol must be the lefimost character
position to be counted in the size of the item except that it can be preceded
by either a ‘+° or a '~ symbol. Fixed insertion editing results in the
ingertion character occupying the same character position in the edited item
as it occupied in the PICTURE charscter-siring. Editing sign control
symbols produce the follewing results depending upon the value of the data
item:

DATA DIYISION 197

)

EDITING DATA DATA
SYMBOL NOMN-NEGATIVE NEGATIVE
+ + -

- apace -

CR 2 spaces CR

DB 2 spaces DB

Fioating Insertion Editing. The currency symbol and editing sign coatrol
symbols '+’ or '-* are the floating insertion characters and as such are
mutnally exclusive in a given PECTURE character-string.

Floating insertion editing is indicated in a PACTURE charscter-string by
using & string of at least two of the floating insertion characters. This sring
of floating inzsrtion characters may coptain any of the fixed insertion
symbols or have fixed insertion characters immediately to the right of this
string. These simple insertion characters are paut of the floating string.

The lefimost character of the floating insertion string represents the
lefimost fimit of the floating symbol in the dsts item. The rightmost
charartar of the floating string represents the rightmaost Limit of the floating
symbols in the data item.

The second floating character from the l¢fl represents the leftmost limit of
the numeric data thai can be stored in the data itern. Non-zerc nuimeric data
may replace gl the characters at or to the right of this limit.

In & PICTURE character-siring, there are only two ways 1o representing
flosting insertion editing. One way is to vepresent any or all of the feading
numweric character positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric character
positions in the FICTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal peint in the
PICTURE character-string, the result is that a single floating insertion
character will be placed into the character position immediately preceding
cither the decimal point or the first non-zero digit in the data represented by
the insertion symbol string, whichever is farther to the ieft in the
PICTURE character-string. The character positions preceding the
insertion character are replaced with spaces.

If all numeric cheracter positions in the PICTURE character-string are
represenied by the insertion character, the result depends upon the velue of

198

{8)

Chapier $

the dais. If the value is zero the entire data item will contain spaces. If the
value is oot zero, the vesult is the same an when the insertion charscter is
coly to the left of the decimal point.

To avoid truncation, the minimom size of the PICTURE character-string
for the receiving data item must be the number of charecters in the sending
data item, plus the oumber of noo-fleating insertion characters being edied
into the receiving data item, phus one for the floating insertion characser.

Zero Suppression Editing. The suppression of leading zeroes in numeric
character positioms is indicated by the use of the alphabetic character *Z* or
the character "*' (asterisk) es suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in & given
FICTURE character-siring. Each suppression symbol is counied in
determining the size of the item. If 'Z’ is used the replacement charscter
will be the space and if the asterisk is used, the replacement character will
be "*,

Zero suppression and replacement is indicated in a PICTURE character-
string by using a sting of one or more of the allowsble symbols fo
represcnt leading numeric character positions which are to be replaced
when the associated character position in the data cootains a zero. Any of
the simpie insertion cherecters embedded in the siring of symbols or o the
immediate right of this siring are part of the string.

In a PFICTURE character-string, there are only two ways of representing
zero suppression. One way is o represent eny of all of the [cading numeric
character positions to the left of the decimal point by suppression symbols.
The other way is to represent all of the numeric charscter positions in the
PICTURE character-string by suppression symbals.

If the suppression symbols appear only 1o the left of the decimal point, any
leading zero in the data which corresponds to a symbol in the string is
replaced by the replacement character. Suppression terminates at the firat
non-zere digit in the data represented by the suppression symbol string or at
the decimal point, whichever is encountered fitst.

If all bumeric character positicns in the PICTURE character-string are
represented by suppression symbols and the value of the data is not zero the
result is the same a3 if the suppression characters were only to the left of the
decimal point. If the value is zero and the suppression symbol is “Z’, the
entice data item will be spaces. If the value 15 zero and the suppression

DATA DI¥ISION 199

symbol is "**, the data item will be all '*' except for the actnal decimal
point.
(9 The symbols '+, °~, "*, ‘Z', and the currency symbol, when used as

floating replacement characters, are mutally exclusive within a given
charscter-siring.

The following chart shows legal combinations of picture characters. An “x” st an
interscction indicates that the symbol at the top of & colutin may precade the symbol
at the teft of & row. The currency symbol is indicated by a dollar sign ($) character.

FIXED FLOAT OTHER
B, . + +C §$|Z 2 + + % %]|9 A5 VP
D - - R LA X
! D
R

" FBO/ X X X X x[x = x x x x{x x X

Il. X KL X X ilx =z 2 x x x|x K

M. X 3 x i x x X x

H+-

I¥+- X x X lx x x|z x X
CER DR I X X X 4 X x|=x x
5 %

HZ X X x| x

L|Z X x X X xlx =x %

q+- XX X x

M- I X X x XK x

T % A X X X
] 12 = 2 1 X i

a9 L %X x x x| x K X X X X X

MAX x x X
s
¥ X X x{x x X X X x
P X x) 4 XX x x x x X
P X X X X

Non-floating insention symbods '+ end *-', floating insertion symbols ‘Z°, "**, '+,
‘', '$*, and the other symbol 'P* appear twice in the preceding chart. The Jeftmost
column and uppermost row for ¢ach symbol represent its use to the left of die
decimal point position. The second appeasance of the symbol in the chart represents
its use o the right of the decimal point.

200 * Chapeers

The following characters are mutally exclusive in & PICTURE string;

non-floating *+' and *-'
"CR' and 'DB’

‘2" and

floating *+* and '-'

At least one of the symbols "A’, 'X’, “Z’, "9° or '*', or at least two of the charscters
"+, " or ‘$' must be avsent in & PICTURE string,

DATA DIVISION 201

S54.4 Describing Data Itemn

level-number | data-pame }
{ FILLER }

[; REDEFINES data-nama]

[; { ICTURE 1} IS character string |
{PIC }
{ COMPUTATIONAL }
LIUSAGEIS] { COMPF ¥l
{ DISPLAY !
{ INDEX }

[SIGN1S]1 {LEADING }{ SEPARATE CHARACTER |
{TRAILING }

[OCCURS { number TO number TTIMES DEFENDING on name } |
{ oumber TIMES }

[INDEXED BY name [, name]]

[{SYNCHRONIZED [{ LEFT }1]
{ SYNCH } {RIGHT }

[{ JUSTIFIED } RIGHT]
{ JUST }

[BLANK WHEN ZERD]

[: VALUE is literal] .

This section imdicates how data items may be described. Itemxs with level
numbers & or 88 arc described in the next section. The following general rules

apply:

202 Chapter 5

(L) the clauses (described in subsections) may be written in any order except

(a) the data pame or FILLER keyword must immediately follow the
level number; and

() when the REDEFINES clause is used, it mast immedistely follow
the data name or FILLER keyword,

(I A PICTURE clause must be specified for every elementary iiem except for
an index data ftem in which case the clause may pot be used.

(3) A 77 level data item must be specified a5 an clementary data item. The
FILLER keyword cannot be used with this level number.

(4} The following keywords are equivalent:

THRU THROUGH

FIC FICTURE

COMF COMPUTATIONAL
SYNC SYNCHRONIZED
IUST JUSTIFIED

(5} The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO clauses may be used only with elementary data items,

The following subsections describe the various clauses.

-
leFII..LEIIkcywordmybeusedmmadofadatanmwhmtheclcmmy
item is sever to be explicitly referenced. Thus, it is used to reserve storage which
will be referenced in some other manner such as using the group item containing it.
The FILLER keyword may be used many times in a program.

3.4.4.1 BLANK WHEN ZERO

This clause is used to indicate that the jtem is to contain spaces when its value is
zero. It may only be specified for an elementary item which is numeric or mimeric
edited. The category of an item containing this clause is considered to be numeric
edited.

DATA DIVISION 203

5.4.4.2 JUSTIFIED

This clause is wsed to specify non-standard positioning of data within a data
item. It may only be specified for an elementary item which is meither numeric aor
edited.

Normally, when data is moved to a field it is moved as follows:

(0 When the data is larger than the field, the data is cuncated on the right and
pleced in the figld.

{2) When the data is smaller than the ficld, the data is avgmented with space
characters oo the right and placed in the feld.

The JUSTIFIED clause changes this normal action as follows:

(N When the data is larger than the field, the data is truncated on the left and
placed in the feld.

-
{21 When the data is smaller than the field, the data i3 augmented with space
characters on the left and placed in the field.

In both cases, the rightmaost position of the data is placed in the rightmost position of
the receiving field.
5.4.4.3 OCCURS Clause

The OCCURS clause is described in the chepter entitied TABLE HANDLING.

5.4.4.4 PFICTURE Clause

The PICTURE clause is used to describe the general characteristics and editing
requirements of an elementary data item. This is accomplished by the PICTURE
string following the PFICTURE keyword (sec PEICTURE STRING). The clause
may oaly be specified for elementary dats items.

204 Chapter 5

5.4.4.% REDEFINES
ThelEDEFlNﬂchuulathupmﬁdeamthardeﬂniﬁﬂnofapmﬁmly
defined arca of storage. The ewo data names must have the same level number and
there must be no data item with a bower tevel number between these two data items
in the program. Lavel 66 and 38 jtems may oot use REDEFINES.
The clause is used in order to provide more than one definition of how an area of

storage is to be trested. This cnables, for example, two or more PLCTURE claimes
to apply to a single area of stocage.

[2
The following rules apply to the data item following the REDEFINES keyword:
(1 The data #tem may not itself contain 2 REDEFINES clause, although it
may be subordinate to a group item which does contain a REDEFINES
clause. Thus, the following i3 illegal:
a5 A,
05 B REDEFINES A.
05 C REDEFINES B.

The data item “C" is REDEFINEd using the data item “C* which is jtself
REDEFINEd. The following is legal:

03 X REDEFINES Y.
oS A
05 B REDEFINES A,
05 C REDEFINES A.

{2 The data item cannot contain an OCCURS clause. The following would be
itlegal:

10 TAB-COST OCCURS 20 TIMES.
10 TAB REDEFINES TAB-COST.

The following mules apply to the data item following the tevel number:

DATA DIVISION 205

(L The data item may not use an CCCURS clause.

{2 The data item, or any items subordinate to it, may not contsin 2 VALUE
clanse, except for condition name entriea. The VALUE clause can only be
used with an item which acwally defines storage. Any item which is
REDEFINEd to occupy existing storage cannot have this clawse. Thas,

10 A PIC 99 YALLIE 15 47,
10 B REDEFINES A PIC XX,
is legal, whil=
10 A PIC 99.
ll]' -B REDEFINES A PIC XX VALUE IS "9,
is illegal.
The following rules apply io both data items:
(n The items may oot have (1 level numbers in the FILE SECTION.

{2) When the items do not have 01 level numbers, they must be the pame size.

5.4.4.6 SIGN

This clause i3 used to indicate the position and representation of signs of numeric
data items. Iu may be used only with oumeric data items with a PECTURE string
comtaining an "S” or with group items which contain at least oac such data itemn.

When the clause has not begn specified for cither an clementary numeric data
item whos¢ picture contains an “S* or for a group item containing it, the sign s
stored in the same stocage location as the ripht-most character of the data item.
Because this last character in nsed to store both the last digit and the sign, an attempt
to DISPLAY the lnst character will cause it 1o appear as another character than the
digit. The data may be reviewed in a more anderstandable formet by moving the
dats to & numeric edited data iem and then DISPLAYing that item.

206 Chapter 3

The SIGN clanse is used to abtain the storage of the sign information in differest
Ways:

(%)) When TRAILING is specified and SEPARATE is present, the sign is
stored as a "+" or » ™" in a character following the Jast digit.

£ When LEADING is specified and SEPARATE is present, the sign is
stored az & "+ or 2 *-" in a characier preceding the first digit.

2 When TRAILING is specified and SEPARATE is ot given, the default
represeatation of the sign (described previously) is used.

(4 When LEADING is specified and SEPARATE is not given, the default
representation of the sign (described previously) is used except that the First
digit of the data item contalns the sign (not the last one}.

5.4.4.7 SYNCHRONIZED

This clause is intended to be used to align data on the "natural” boundaries of
stormge that are required in some computer systems. In the systems in which
microCOBOL is cumently implementsd or being implemented (IBM 370, DEC
PDP{11, IBM Personal Computer, Motoral 6809) this alignment is unnecessary and
50 this clause has no effect. The clause may only be used with clementary data
itemns.

5.4.4.8 USAGE

This clause is intetded to provide different representations of data for items,
depending upon whether they are used in computations or not. Waterloo
microCOBOL yses the same representation for both COMPUTATIONAL and
MSPLAY items.

An item specified as COMPUTATIONAL may have 3 PICTURE string
comtaining only the characters “9", "S*, *¥" and ‘P*. When the USAGE clause iz
specificd for a group jtems it applies to the elementary items sabordinate to it.

An item specified a5 INDEX can only be used to index items in tables {see
INDEXIMN). The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and
BLANK WHEN ZERO clauses cannot be used for an indexed dat item.

DATA DIVISION 207

5!‘1‘-’ V&LUE

The VALUE clause is used to place an initial value in a data item, This is the
value conteined in the item when the program begins execution. When the storage
for o data item has not been initialized in this way, the data item should not be used
ax value until & value has placed in the data item. The Waterloo microCOBOL
Interpreter treats as &R eITor ANY attempt (o use such an undefined vatue.

The data valve to be placed into the storage for a data item is specified as cither 3
literal o & figurative constant. The rules for numeric and non-pumeric items are
given in the following paragraphs.

A numeric literad or a figurative constant may be specified as initialization for a
numeric data itsm. A numeric literal must not be larger than the capability of the
jtemn to store that vatue. If the literal specifies a sign, the data item must be a signed
numeric item.

Non-numeric data items, including group items, may be initialized with non-
pumeric literals or figurative constants. The size of the literal cannot exceed the size
of the data ieem. No editing is performed; a literal is presented in an edited form.

The JUSTIFIED and BLANK WHEN ZERO clauses are ignored when the
data is placed into data itemn as a result of the VALUE clause. The clazse may not be
used in the following cases:

(i) when the data item also containg an GCCURS or REDEFINES clause, of
iz subordinate to a group item coutaining those ¢lauses;

2 when the data item is in the FILE SECTION; or
()] when the deta item is group item which has subordinate items with any of

the JUSTIFIED, SYNCHRONIZED, or USAGE (other then DISPLAY)
clanses,

208 Chaprer 5

£4.5 66 Level Data Itemas

66 name-1; RENAMES name-2 [{ THROUGH } name-3)
{ THRI} }

A 85 level data ilem defines an alternative method to group one of more
cl:mmmdatnhems.Thﬁﬁlcvclitemiscmsidnodmbeaﬂmpiwm,unleuit
renames § single ¢hamentary data item. The sworage for the 66 level item begins at
the start of the data item given following the RENAMES keywaond and continuss o
the end of the daty item specified in the THRU clause. When no THRU or
THROIIGHcInummmmn,ﬁaamg::ﬂauhmdofﬂwdmimgiwn
following the RENAMES claunse.

Consider the following example:

01 A.
03 B.
10 CPIC X,
10 DPIC X.
05 E.
1 FPIC X.
13 GPIC X,
1 H PIC X.
66 DEF-1 RENAMES D THROUGH G.
66 DEF-z RENAMES D THRU E.

The data item "DEF- 17 includea the elementary items "D, “F*, and *G"; the data jlem
"DEF-2" includes the elementary items "D, “F° "G" and "H".

The following rules apply to 66 level data items:

(L All 66 level items must ocour immediately following the last daia
description in & logical record.

{2) The one or two data items specified in the RENAMES clause must be
distinet items in the logical in which the 66 level isem applies. These items
may oot be 01, 66, 77 or B6 level items. These items may not have an
OCCURS clause nar can either be subordinate to an item with this clanss.

DATA DIVISION 209

(2) When the THRU or THROUGH keyword is used, the data item following
the keyword must not start before and must end after the daia item given
following the RENAMES keyword.

(d} The 66 level data item is treated as an elementary item if the THRU clause

is not uxed and if the data jtem following the RENAMES keyword is an
clementary item: otherwize, the item s treated as a groop item.

5.4.6 B8 Level Data Items

38 pame; { VALUEIS } literal [{ THROUGH } literal }
{ VALUES ARE } [{ THRU }
[, literal [{ THROUGH } literal J 1. . .
{ THRU }

Level 88 data items are used to specify condition mames to be associated with
ficlds, called condition variables. Consider the following cxample:

77 TR-CODE FICTLURE 9.

88 GOOD-CODE VALUES ARE 20, M, 40.
88 ADD-CODE VALUE IS 20

88 DLT-CODE VALUE 1S 30.

88 CHG-CODE VALUE IS 40.

Four condition names are defined for the condition variable “TR-CODE". The usage
of one of these 38 Jevel items as a simplke condition will result in a velue of “irue’
when the condition variable contains one of the values given with that BR Jevel itam.
Thus, the statement

IF GOOD-CODE
may be used to test if "TR-CODE' containg 20, 30 or 40. Similarly,

IF CHG-CODE

may be used to test if "TR-CODE" containg 40.

210 Chapter 5

The 88 level items are given following the field to be used as the condition
variabic. The condition varisble may noi have any of the following properties:

(1} level 66

(P] USAGE given as COMP, COMPUTATIONAL or INDEX .
(3) JUSTIFIED or SYNCHRONIZED clauses.

The conditional variable may be an item in a logical record.

The values to be used to test if the condition name is true are given as single
literals or as ranges of values (when THRU or THROUGH keywords used). The
test 1 see if the conditional variable contains an appropriste value is equivalent to
one of the following:

literal condition- variable = literal

range condition-variable NOT < first-literal

AND
condition-varisble NOT > second-literal

where the lieerals used in the range test are respectively the literals before and after
the THRU or THROUGH keyword.

Chapter 6

PROCEDURE DIVISION

6.1 Owerview

PROCEDURE DIVISHON.
[DECLARATIVES.
{ section-name SECTHON, declarative sentence
[paragraph-name. [sentence] ...] } ...

END DECLARATIVES.]

{procedure body)

where the procedure body is given by:

{ peragraph-pame. [sentence] . . . }

{ section-name SECTION.

[peragraph-name. [sentence 3 ...]... } ...

212 Chapter 6

mmmmnlmlﬂﬂumm“&mﬂmncﬁmtobep@dm
by the program. The division consists of a number of paragraphs which consist of
sentences to specify particular actions and of directives to specify actions to take
place when certain error sitations arise.

Exch paragraph consists of zero or more sentences. Each semtence consists of
0D€ OF Tiore atatements, followed by & period (.} character. Each stafement starts
with a verb. These verbs are discussed in the following chapters.

Ammbﬂofmuvﬂtsmsﬁdmhermdiﬂamfmmu;i.e..ﬂmyhua
portion of them which is executed oaly if some condition is true. For example,

READ IN-FILE INTO IN-RECORD
AT END MOVE HIGH-¥ALUES TO IN-KEY.

i]]umm.READsumminwlﬁchnMG\'vabisaxmuudwh:nmm;tis
made 1o read past the end of the file. When there is o conditional action associgted
with the suatement, the statement is said to be an imperative statemnent. A gequence
of imperative statements is also treated a5 an imperative statement. Many of the
conditional statements specify that an imperative statement ot be the conditional
part of the conditional statement.

The optional DECLARATIVES portion occurs first in the PROCEDURE
IMVISION. It is composed of & number of sections, each one of which has a USE
statement that specifics an error condition. The section in question is executed
whenever the specified error condition arises during the normal execution of the
program. The END DECLARATIVES statement marks the end of the declaratives
area.

The main body of the PROCEDURE DIVISION follows the optional
DECLARATWESM.Thehudymmimeilhernfnnumbuofmmwl
nuni:erufwﬁmsuchufwhichmimnfammﬂmhu.ﬁmﬁmmd
paragraph siames start in Arca A. A paragraph consists of zero or more sentences,
cach ending with a period. A sentence consists of one or more verbs. Each verb
starts in Area B. IF the septence defined by the verbs is written on more than one
Ijne,ﬂlemntinuodlim{s}n]snminﬁruﬂ.Avmti:nntmquimdmbetbeﬁlﬂ
word oo a line.

When the program is placed ioto execution, control begins at the first section or
paragraph (following the optional DECLARATIVES srea) in the program. Control
mecans the place et which the program is being executed. Normally, control procesds
sequentially through the program, performing the actions indicated by each verb

PROCEDURE DIVISION 253

encountared. Certain verbs, however, may cause controf to be altered to some other
place in the program. These actions are described in detail in e sections of the
mamnual dealing with COBOL verbs.

6.2 Declarativea
This area starts with
DECLARATIVES,

and ends with
END DECLARATIVES.

Both sre written starting in Area A. The area between these statements consists of a
number of sections. Each section name is immediately followed by a USE statement
which specifies sn emmor condition. Should that error condition arise during the
execution of the program, then control is passed to the first paragraph following the
USE statement.

When the execution of the section is complete. control retumns to statement
following that which caused the error. It should be poted that this mechanism
provides B method whereby cmors can be mapped, diagnosed, andfor comective
action can be applied. The subsactions describing the USE statement should be
consulted for the specific condivions which may be given in that statement.

Each section in the DECLARATIVES area should be considered self-comained
for the following reasons:

(1} There can be no reference to a section of paragraph pame in the
DECLARATIVES area from outside that area, except in a PERFORM
statement.

{2) Thare can be no reference from within the DECLARATIVES area 1o a
section or paragraph name found outside the aves.

]| No action can take place while executing statements in a
DECLARATIVES section which cause the execcution of another
DECLARATIVES scction that had previously been invoked and had
not yet retumned control 1o the place of iovocation.

214 Chapeer 6

6.} Commson Terms

This section containe descriptions of several common terms which will be
referenced io the following sections. The cxplanations are included separately since
they apply to a number of statements,

6.3.1 Arithmetic Expressions

Arithmetic expressions are used in various statsments in order to specify values
which are to be calculaed. For example,

COMPUTEZ=X"Y + B.
is a statement which specifies that the expression
X*Y+ B

be evaluated and that the resultant value is to be assighed to the data item “Z", In the
cxample, the expression is evaluated by multiplying together the values of "X" and
*¥" and then adding the value of "B" to produce the final result.

An expression is written a8 a combination of aames of elementary data Htems,
numeric literals, arithmetic operators and parentheses. The rules by which these
elements ae combined are very similar to the familiar conventions of algebra or
srithmetic.

The following binary operalors (given betwsen two valnesy may be used in
arithinetic expressions

gdd two values

subtract secomd valwe from first

multiply rwo values

divide second value ino first

raise first value 1o power of second value

I +

| Bl
*

and the following snary operators {given in front of a value) may be used:

4+ has the effect of muoltiplying by +1
= haa the effect of muttiplying by —1

These operators may be combined with parentheses, names and literals in the
manner shown in the following able:

PROCEDURE DIVISION 213

Name binary unary (}
op. op.
Name X X
Binary op. X X X
Unary op. x x
(x X x
3 X x

The table has five columns and rows. An “x” at the intersection of a row and column
indicates that an itern from the column can immediately follow an item from the
row. The “name” item represents boch oumeric literals and elementary duts itemns.

In addition, the following rules apply:

(L) An expression musi start with a name, opening pareathesis or a vpary
operator.

£2) An expression must end with a name o a closing parenthesis.

{3 The parenthesss must be paired such that each ckosing parenthesis is o the
tight of the correaponding opening parenthesis,

Operators must be written with a space both before and after the operator.

The order in which an expression is evaluated is determined by parentheses in
the expression and by the priority of the operators. The following priorities of
operstors apply:

1 Unary + and -

2 Exponcntiation

K] Multiplication and Division

4 Addition and Subtrsstion
Operations enclosed within parentheses are performed firt, with the ioner most
pairs evalusted before the omer pairs. When parcntheses are not used, or

parenthesized expressions arc ut the same level of inclusiveness, the priority of
operations determines the order in which the operations are applied.

216 Chapter 6

Considet the following expression, where data items A, B and € have valoes 4,
6 end 2 respectively:

—A{2+BfCHYy*25C
The evalustion proceeds as follows:
—AT™Z+BY/Oy*25*C

{-4}** ((2+B)/C)*25+%C
{—4}* ({8 fC*25*C
{—4} v ({4})*25%2
{256} % 2.5+ 2

{640} * 2

{1280}

The result of each operation has been shown in braces { {}).

Arithmetic expressiony are calculated with 36 significant digits of interval
accuracy. In addition to zeto, the absolute values which may be represented range
from 10 o the 75-th power to 10 to —75-th power. The sxponentiation (raising to a
power) operalion is an approximation procedure which vaties from implementation
1o implementation; it usually gives reselts which have fewer (typically 7 or 8)
significant digits of precision.

6.3.2 Cenditional Expressions

Conditional expressions identify conditions that are tested 1o enable the object
program i select between aliernate paths of control dependimg upon the truth value
of the condition. Conditonal expressions are specified in the IF and PERFORM
slatements. There are two categories of conditions associated with conditicnal
expressions: simple conditions and complex conditions. Each may be enclosed
within any number of paired parentheses, in which case its casegory is not changed.

6.3.2.1 Simple Conditiona
The simple conditions are the relation, class, condition-peme and sign

cooditions. A simple condition has a truth vatue of "true’ or ‘false’. The inclvsion in
parentheses of simple conditions docs pot change the simple truth value,

PROCEDURE DIVISEON 217

6.3.2.1.1 Relantion Conditiom

A relation condition causes a comparison of two operands, each of which roay
be the data item referenced by an identitier, a literal, or the value resulting from an
arithmetic expression. A relation condition has a math value of "true’ if the relation
cxints between the operands. Comparison of two numeric operands is permitied
regardless of the formats specified in their respective USAGE clauses, However, for
all other comparisons the operands must have the same usage. If sither of the
operands iz & grouyp item, the nonnumeric comparison rules apply.

The gencral format of a relation condition is as follows:

{ wdentifier } relation { identifier 3
{ litaral } { lLitecal }
{ arithmetic expression } { arithmetic sxpeession }

where a “relation” i one of the relational operators:

IS [NOT] GREATER THAN
IS [NOT] LESS THAN

IS [NOT) EQUAL TO
I5[NOT] =

IS[NOT] <

IS[NOT] =

The first operand is called the subject of the condition; the second operand is
called the object of the condition. The relation condition must contain at least ope
reference to an identifier.

The relational operator specifies the type of comparison to be made in a relation
condition. A space must precede and follow each reserved word comprising the
relational operstor. When used, NOT and the next key word or relation charactsr are
one relational operator that defines the comparieon o be execated for truth value;
... NOT EQUAL iz s truth test for an "wnequal’ comparison; NOT GREATER is
a truth test for an ‘equal’ or 'leis’ comparison.

6.3.2.1.1.1 Cowmparison of Nomeric Operands u

For operands whose class is numeric, & comparison is made with respect to the
algebraic value of the operands. The length of the literal or arithmetic expression
operands, in terms of number of digits represented, is not significant, Zero is
considered 4 unique value regardless of the sign.

218 Chapter 6

Comparisan of these operands is permitted regardless of the masoer in which
their usage is described. Unsigned numeric operands are considered positive for

purposes of comparison,

6.3.2.1.1.2 Comparizson of Nomnumeric Operands

For aonnumeric operands, of one aumeric and oot nonnumeric operand, &
comparizon is made with respect 1o the collating sequence of characters. One of the
operands is specified &5 nmumeric, it must be an integer data or an imeger literal and:

B If the nonnumeric operand is an elementary data item of 3 nonROMEric
literel, the numeric operand is treated as though it were moved to an
elementary alphanumeric data itemn of the same size a5 the oumeric data
itemn {in terms of standard data format characters), and the contents of this
alphanumeric data item were then compared to the nonmumeric operand.

b. If the poooumeric operand is a growp item, the numeric operand is treated
as though it were moved to & group of the same size as the numeric data
itern (in terms of standard date format characters), and the contents of this
group ilem were then compared to the nonnumeric operand.

c. A noo-integer numeric operand cannot be compared {0 a nonnAMENc
operand.

The size of an operand is the woeal number of standard data format characters in
the operand. Numeric and nonnumeric operands may be compared only when their
usage is the same.

There are two cases to consider: operands of equal size and operands of unequal
size,

(n Operanda of equal nize. If the operands are of equal size, comparison
effectively procesds by comparing charmctets in corresponding character
positions starting from the high order end and continuing yptil cither a pair
of unequal charscters is encountered or the Jow order e of the operand is
reached, whichever comes first. The operamnds are determined to be equal if
all pairs of characters compare equally through the last pair, when the low
order end is reached.

The first encountered pair of nnequal characters is comparsd to determine
their relative position in the collating sequence. The operand that conlains

PROCEDURE DIVISION 219

the charscter that is positioned higher in the collating sequence is
considered to be the greater operamnd.

12} Operands of unequal size. If the operands are of unequal size, ¢onparison
proceeds as though the shorter operand were extended on the right by
sufficient spaces o make the operands of equal size.

6.3.2.1.2 Class Condition

The class coendifion determines whether the operand i3 numeric, that is, consists
enkirely of the charscters *0°, '1°, '2°, '3, ..., ‘9, with or without the operational
sign, or alphabetic, that is, consists entirely of the characters "A’, 'B*, 'C*, ..., 'Z",
space. The general format for the class condition i3 as follows:

identifier IS { NOT} { NUMERIC }
{ ALPHABETIC }

The usage of the operand being tested miest be described as display. When used,
NOT and the next key word specify one class condition that defines the class test 10
be executed for ruth value: e.g. NOT NUMERIC is a truth test for determining that
an operand is nonouDweric,

The NUMERIC icst cannot be used with an item whose data description
describes the item as alphabetic or as & group item composed of clementary iteims
whose data Jdescription indicates the presence of operational sign(s). If the data
description of the item being tested does oot indicate the presence of an operational
sign, the itern being tested i3 determined to be numeric only if the contents are
numeric and an operatione] sign is not present, If the data description of the item
does indicate the presence of an operational sign. the item being tested is determined
ic be numeric only i the contents are numetx: and a valid operational sign is preseot.
Valid operational signs for data items deseribed with the SIGN IS SEPARATE
clause are the standard data format characters, "+ and "—".

The ALPHABETIC test cannot be uged with sn iem whose data description
describes the item 86 numeric. The itém being tested is determined Lo be alphabetic
oaly if the contents consist of any combination of the alphabetc characters 'A'
through ‘Z’ and the space.

220 Chapter §

6.1.2.1.3 Condition-Name Conditien (Conditions Variable)

In a condition-pame condition, & canditional variable (see Leavel 88 data iteme})
i5 tested to determine whether o not its value is equal to one of the valwes associated
with a copdition-name, The general format for the condition-name condition is as
follows:

condition-name
I the conditign-name is associated with a range or Tanges of values, then the
conditional variable is tested to dstermine whether of pot its value falls in this Tange,
incloding the end vatues.

The rules for comparing a conditional varieble with a condition-name value are
the same as those specified for relation conditions.

The result of the test is wrue if one of the values correspending 1o the condition-
name equals the value of its associated conditional variable.
6.3.2.1.4 Sigm Condition

The sign conditin determines whether o not the algebraic valwe of an

arithmetic expreasion is less than, greater than, or equal to zero. The general format
for a sign condition is as follows;

arithmetic-expression IS { NOT } {POSITIVE }
{NEGATIVE }
{ZERD }

When used, NOT and the next key word specify obe sign condition that defines
the algebraic test to be executed for truth value; ¢.g., NOT ZERC is & truth test for
a ponzero (positive or negative) valve. An operand is positive if ita value is greater
than zero, negative if its value is less than zero, and zero if its value is equal to zero.
The arithinetic expression must contain at least one referenice 1o a variable.

6.3.2.2 Complex Conditions

A complex condition is formed by combining simple conditions, cambined
cooditions and/or complex conditions with logical connectors (bogical OpeTRIOry
AND and OR) or negating these conditions with logical pegation (the logical
opetator NOT) The truth value of a complex condition, whether parenthesized or

PROCEDURE DIVISION 221

not, is that outh value which resulis from the interaction of all the stated logical
operators on the individual outh velues of simphe conditions, or the infermediate
truth values of conditions logically coanected or logically negated.

The logical operators and their meanings are:
Logical Operalor Meaning

AND Logical conjunction; the outh value is "true’ if beoth of the
conjpined conditions are true; "false’ if one or both of the
conjoined conditions is Ealse.

OR Logical inclusive OR; the trath value is "ue” if one or
both of the included conditions is trse: "false” if both
included conditions are false.

NOT Logical negation or reversal of trath vabue; the truth value
ig “true’ if the condition is false; ‘false’ if the condition is
true.

The logicel operators must be precedad by a space and followed by a space.

6.3.2.2.1 Negated Simple Cotuditioms

A gimple condition is negated through the use of the logical operator NOT. The
negated simple condivion effects the opposite truth value for a simpie condition.
Thus the truth value of a negated simple condition is “true’ if and only if the truth
value of the simple condition is ‘false’; the truth value of a negated simple condition
is 'false’ if and only if the tuth value of the simphk: comditon is "true’. The inclusion
in parentheses of B negated simple condition doas not change the tuth value,

The geperal format for a negated simple condition is:

NOT simple-condition

222 Chapter &

6.3.2.2.2 Combined and Negated Combined Conditions

A combined conditior results from <onnecting conditions with one of the logical
operators AND or OR. The general format of a combined condition is:

comition { { AND } comdition }...
{OR }
Where ‘condition’ may be;
{1} A simple comdition, or
(2} A negated simple condition, or
E3] A combined condition, or

(4 A negaied combined condition: i.e., the NOT logical operator followed
by a combined condition enclosed within parentheses, or

(3 Combinations of the above, specified according to the rules summarized
in the following 1able. Combinations of Conditions, Logical Operators,
and Parentheses.

Although parentheses need never be used when either AN or OR (but not both})
is used exclusively in a combined condition, parentheses may be used to effect a
final truth value when a mixture of AND, OR and NOT is used,

The following wabic indicates the ways in which conditions apd logical operators
may be combined and parenthesized. There must be 3 one-to-one correspondence
between left and right parentheses such thet each left parenthesis is to the laft of its

corresponding right parenthesis.

PROCEDURE DIVISION 213

In a left-to-right sequence of elements

Locatien in

conditional Element, when not Element, when pot
Given the expression First, may be last may be
following immediately pre- immediaiely fol-
element First 1Llaste ceded by only: lowed by only:
condition Yes No OR, NOT, AND, (OR, ANL,)
OR or AND Mo Na conditon, } condition, NOT, {
NOT Yes No OR, AND, ¢ condition, |
(Yes No OR, NOT, AND, (condition, NOT, ¢
) No Yes condition,) OB, AND,)

Thus, the element pait OB NOT is permissible while the pair NOT OR is not
permissible; "NOT" is permissible while NOT NOT is not permissible.

6.3.2.2.3 Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succesding relution condition
contains a subject or subject and relaticnal operator that is common with the
preceding relation condition, and no parenthesss are used within such a consecutive
sequence, any relation condition except the first may be abbreviated by:

i The omission of the subject of the relation condition, or

{2) The cmission of the subject and relational operator of the relation
condition.

The format for an abbreviated combined refation condition is:

relation-condition § { AND } [NOT]
{OR }

[relational-operator] object } ...

Within a sequence of relation conditions bath of the above forms of abbweviation
may be used. The effect of wsing such abbreviations is as if the last preceding stated
subject were inseried in place of the omitted subiect, and the last staed relationsl
Operator were insérted in place of the omitted relationsl operator. The result of such
implied insertion must comply with the rules shown. This ipsertion of an omitted

224 Chapter 6

subject and/or relational operator terminates otke 2 complete simple condition is
encountered within a complex condition.

The interpretation applied to ¢he wse of the word NOT in an abbeeviated
combined relation condition is as follows:

(i If the word immedistely following NOT is GREATER, ‘>', LESS,
'<', EQUAL, "=', then the NOT participates s part of the relational
Operator; otherwise

(2) The NOT is interpreted as & logical operator and, therefore, the implied
insertion of subject or relational operator results in a negated relation
condition.

Some examples of abbrevisted combined and pegated combined relation
conditions and expanded cquivalents follow.

Abbreviated Combined Expanded Bouivalent
Relation Condition
a>bANDNOT < cOR d { {(a > b) AND {a NOT < ¢
OR {a NOT < d)
a NOT EQUAL b OR ¢ (a NOT EQUAL b}
OR (a NOT BEQUAL c)
NMOTa=bORCc {(NOT {a = b)) OR {a = ¢)
NOT (a GREATER b OR < ¢) NOT ({a GREATER b) OR (8 < c))

NOT (a NOT > b AND ¢ AND NOT d) NOT ((({(a NOT > b)
AND (a NOT = c))
AND (NOT {a NOT > d)¥¥%)

6.3.2.2.4 Comditdon Evalustion Rubes

Parentheses may be used to specify the order in which individual conditions of
complex conditions are to be evaluated when it is necessary to depart from the
implied eveluation precedence. Conditions within parentheses are evaluatad first,
and, within nested parentheses, evaluation proceeds from the least inclusive
condifion to the most inclusive condition. When parentheses are not used, or

PROCEDURE DIVISION 225

parenthesized conditions are ar the same bevel of inclusiveness, the following
hierarchical order of logical evaluation is implied vntil the final truth value is
determined:

{n
()

(3)

(4)

{3)
{6)

Values are established for arithmelic expressions.
Truth values for simple conditions are established in the following order:

relation (following the expansion of any abbreviated
relation condition)

clags

condition-name

switch-status

sign

Truth valves For negated simple conditions are sstablished.

Truth values for combined conditions are established: AND logical
cperators, followed by OR logical operators.

Truth values for negated combined conditions are established.
When the sequence of evaluation is not completely specified by

pasentheses, the order of evaluation of consecutive operations of the
same hisrarchical lavel is from left to right.

225 Chapter §

6.4 COBRESPONDING Items

Several COBOL verts (AIMD, SUBTRACT, MOVE) have an optional
CORRESPONDANG or CORR keyword which may be wsed when the verb
operands refer to group items. The inclusion of this keyword causes these verbs to
act individually upon subgsdinate items of these group items, when the names of the
subordinate items cxactly comespond within their group items. Consider the
following records:

01 A
0 B FIC 99
02 D PIC ¥
02 E PIC M
01 F.
02 B PIC %
n2 C AC @
02 D PIC 99
The statement

MOVE CORRESPONDING A TOF.
is squivalent to the two statements:

MOVE BIN A TO BINF.
MOVE DIN A TO DINF.

Only those fields that have the same names when fully qualified, up to but ot
including the group items, in the statement are MOYEd.

Two items are said to correspond when they are subondinate 1o the group items
named in the statement using CORRESPONDING and:

{1 The items de not have FILLER as a data name.

(] The items have the same data name and qualifiers up to the group items
named in the statement,

(3 At least one of the items is clementary (MOVE staterncnt) or both are
clementary (ADD, SUBTRACT statements).

{4y MNeither items contain 66 or BB level data items.

PROCEDURE DMVISION m

5 Neither itenis have REDEFINES, RENAMES or OCCURS clauses.

The grovp items in the CORRESIFONDING statement may have a REDEFINES
or OCCURS clense, Any items, and subondinate items to them, which are
subordinate 1o the group items and heve REDEFINES or OCCURS clauaes, arc oot
considered th be corresponding.

6.5 Undefined Valoen

The Waterlog miccoCOBOL Interpretés detects &8 an efror any atempt to Lsc an
undefined value. A dat item to which a valuc has not yet been asaigned is said to be
undefined.

Other COBOL processors may not detect it use of undefined values or may
place predictable values into undefined items. It is considered poor programming
practice 10 rely on these nonstandard fewthares.

Chapter 7

Interacting with the Terminal

7.1 Overview

Twoe COBOL statements mey be used to interact with a vser of a program, via
the terminal. The IMSPLAY statement mey be used 1o ransmit data to be shown
upon the terminal screen. The ACCEPT siatement transfers data entered using the

keyboard 1o a data item.

The various inputfouiput stalements may also be used with the terminal screen
and keyboard considered to be files. The statements are described in later chapters.

The ACCEPT statement may also be used to obain the current date and time.
For completeness, these uses of the ACCEPT statement are alse described in this

chapter.
The next sections describe the ACCEPT and DISPLAY statements.

7.2 ACCEPT Statement

ACCEPT identifier [FROM { DATE } |
{ TIME }

The ACCEPT statement may be uged to obtin data from the user’s terminal or
to obtain data representing the current time or the current data. The accepted data is
wansferced to the date itemn specified following the ACCEFT keyword. This wansfer
obeys the following rules:

(1) The size of data transfeered is the minjmum of the accepted data and the
size of the accepting data item.

230 Chapter 7

2} No verification is performed for the appropristeness of the data for the
data item in question.

(3) The daa is directly transferred. Mo editing in performed in this oransfer.

{4) When the accepted data is shorter than the accepting item, the transfer
starte o the leftmost character in the data item. Characters in the data
itemn to which data is not ranaferred remain unchanged.

Thus, the ACCEPT statement may be used to obtuin daty interactively from the
terminal. Cantion should be used in this situation, aa a portion of the accepting data
item will unchanged if less data is wansferred than the item can contain,

When the FROM TIME clause is specified, the dete returned is en eight-
character integer value {no sign) repeesenting the number of seconds since midmight.
Thus, 2:41 p.m. would be expressed as 14410000,

When the FROM DATE clanse is specified, the data returned is » sik-chasacter

integer value. The date of March 9. 1932 would be expressed as 320309, Two digits
are used for each of the year of the century, month and day of month.

73 DISPLAY Statement

DISPLAY { identifier } [, {identifier }] ...
{literal } { litwad }

The DISPLAY staternent may be used to display data upon the terminal. The
datw to be displayed is given a list following the keyword IHSPLAY. Each item in
the List is either a literal or the name of & dats item. In the latter case, the value of the
data item is displayed. The data is displayed wpem the termimal without any
intervaning blunks or editing, in the order in which itema are given in the list. When
the sizes of the ilems exceads the size of a line on the tesmunal, the cucrent line is
displayed and the remainder is displayed using another line.

When all or part of & data item has not been assigned & value during the
execution of a program, (hose character positions are said to be wundefimed.
Undefined characters are DISPLAYed as question-mark (?) characters.

Chapter 8

MOVE Statement

MOVE { identifier } TO { identifier } [, identifier } ...
{ literal }

MOVE { CORRESPONDING } identifict TO identifier
{ CORR L

The MOVE statement is used to transfer data to one or more data areas. When
the move iovolves elementary items, the data may be exdited from one representation
to another. The contents of this chapter wre alto important as several other
descriptions in the reference manual deacribe the use of dam items g if they had
beet moved 1o specific fields in particular ways. A REAID siatement with an INTO
clame, for example, causes data to be moved from the FILE SECTION to a data
jtem. This transfer is accomplished with the same rules as if the data had been
MOVEd.

When the CORR of CORRESPONDING keywond i used, corresponding
items are moved from the source groap item to the target group items, Refer to the
section on CORRESPONDING ITEMS for a description of bow the cortesponding
itams gre selacted for a pair of group items. The results of a MOVE with this option
are an if the corresponding items hud been specified individually in separate MOVE
statrmends.

The following rules spply the MOVE verh:

(1 The data designated by the kitersl or identifier following the MOVE
keywind is moved first to the data jtems in the onder that they follow the

232

(&

Chapter 8

TO keyword. Any subscripting of indexing wssociated with an identifier
following the TO keyword is evaluated immediately before the data is
moved Lo the eespective data item,

Any subscripting or indexing associated with the identifier which
follows the MOVE keyword is evaluated only ooce, immediately before
data is moved to the first of the receiving operands. The result of the
statemnent

MOVE a(b) TO b, ¢ {b)
i equivalent to;

MOVE a (b) TO temp
MOVE wemp TO b
MOVE temp TO ¢ {b)

where "temp” is an intermediate resolt item provided by the implementor.

Any MOYE in which the sending and receiving items are both elementary
itemis is an #lementary move. Every elememtary item belongs to one of the
following categories: numeric, alphabetic, alphanumeric, numeric edited,
alphanumeric edited. These categories are described in the section dealing
with PICTURE strings. Numeric literals belong to the category numeric,
and nonnugeric literals belong to the cotegory alphsmumeric. The
figurative constant ZERQ belongs to the category numeric. The figurative
constant SPACE belongs to the category alphabetic. All other figutative
constants belong to the category alphanumeric.

The following rles apply to an ekementary move between thess sategories:

a. The figurative constant SPACE, a numeric edited, alphanumeric
edited, or alphabetic data item st not be moved to a nusmeric or
numeric edited data item.

b. A numeric literal, the figurative constant ZERQ, a numeric data
item or a numeric adited data item most got be moved to an
alphebetic data jtesn.

. A non-integer numeric literal or 4 non-integer numeric data ilem
must not be moved to an alphanumeric or alphanumeric edited
data item.

MOVE Statement 2313

(3)

d.

All other elementary moves are legal and are performed according
to the rules given in the next rale.

Any necessary conversion of data feom one form of imernal represcntation
to another takes place during legal elementary moves, along with any
editing specified for the receiving daa item:

a.

When an atphanumeric edited or alphanumeric item is a receiving
iem, alignment and any necessary space filling takes place. If the
size of the sending item is greater than the size of the receiviog
itern, the excess characters are tuocated on the right afier the
receiving iem is filled. If the sending item is described as being
signed numeric, the operational sign will nol be moved; if the
operational 3ign occupied a scparate character position, the
character will not be moved and the size of the sending item will
be considered to be one less than its actual gize.

When a pumeric ot nometiz edited item is the receiving iem,
alignment by decimal poimt and any necessary zero-filling mkes
place, except where zeroes are replaced because of editing
requirements.

1 When & signed pumeric item is the meceiving ilem, the
sign of the sending item is placed in the receiving item.
Conversion of the representation of the sign takes place
as pecessary. If the sanding item is unsigned, a positive
sign is generated for the receiving item.

3y When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and po
aperational sign is generated for the receiving item.

K] When a data tem Jdescribed as alphanumeric is the
sending item, data is moved as if the sending item were
described as an unsigned oumeric imeger.

Whet a receiving ficld is described as alphabetic, justification and
any necessary space-filling takes place. If the size of the sending
itern is greater than the size of the receiving item, the excess
characters are truncated on the right afier the receiving item is
filled.

234

(#)

(3}

Chapter §

Any move that is not an elementary move is reated exactly as if it were an
alphanumenic to alphanumeric elementary move, sxcept that there is no
conversion of data from one form of inteanal representation to another. In
such a move, the receiving area will be filled without consideration for the
individual slementary or group items contained within sither the sending or
receiving arca, except a8 noted in the preceding rule with the OCCURS
clauge,

Data in the following chart summarizes the legality of the various types of
MOVE statements. The general rule reference indicates the rule that
prohibits the move or the behavior of a legal move.

SENDING ALPHABETIC ALPHANUMERIC NUMERIC
[TEM EDITED EDITED
ALPHANUMERIC NUMERIC

ALPHABETIC YES/AMC YE3{3a NO{2a
ALPHANUMERIC YES/3: YES/3a YES/%
ALPHANUMERIC

EDITED YES/3¢ YES/3a NO{2a
NUMERIC

INTEGER NO/Ih YES/3a YES/3b
NUMERIC

NON-INTEGER NO{lb NOfic YES5/3b
NUMERIC

EDITED NO/2b YES{3a NOy2a

Chapter 9

Arithmetic Statements

9.1 Overview

This chapter is concerned with the statements that cavse computarions © be
performed and the result saved in data items. The ADD, SUBTRACT,
MULTIPLY and MVIDE statements perform the operations indicated by their
names. The COMPUTE statcrnent causes an arithmetic expression to be svalusted
and the resultant value to be stored in data items.

In the pext section several common clauses found with the arithmetic statements
will be described. The subsequent sections will describe the five arithmetic
StAbEWEnts.

9.2 Common Terms

In all the arithmetic statements the optional ROUNDED keyword andfor the
optional SIZE ERROR clause may be specified. These features are deseribed in
this section to avoid redundant explanations with the description of cach verb.

3.2.1 ROUNDED

In the arithmetic statements any data item which is specified to recgive a value
{except the REMAINDER identifier in DIVIDE) may be given with the
ROUNDED keyword immediately following the data name. This keyword cauges
values 1o be assigned to these identifiers with the number of decimal places rounded
to the number of decimal places in the data item. Tn the absence of the keyword, the
value to be assigned is truncated to the number of decimal places in the receiving
datz item.

234 Chapter 9

When the low-onder integer positions of the receiving data item are representad
by the charscter ‘P’ in its PICTURE, the rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

9.2.2 SIZE ERROR

ON SIZE ERROR imperative-staiement

A size error condition exists when the absolute value of 8 result exceads the
capacity of a data item {o contain the valoe (after decimal point alignment). Division
by zere always causes this condition. The size errar condition applies 1o final results
only, except for the MULTIPLY and DIVIDE sisternents, in which cases the
condition applies 1o intermediate results as well,

Whea the SIZE ERROR clause is not specified for a statement, results cauging
the error are fruncated on the Ieft (after decimal point alignment) for sssignment to
data items. When the clause is specified, data items for which the condition applics
are left wnchanged and the imperative sentence specified in the clause is executed.

Receiving data items, for which no size error condition is activated, receive dats
before the imperative statement in the SIZE ERROR clause is executed, Thus, if
there are multiple receiving values, ecither specified or resulting from a
CORRESPONDING clause, those data items for which there is no size error
condition witl all receive values. Consequently, if the size error condition was
detected for any of the receiving values, then the imperative statement in that clause
is executed.

9.2.3 Composite of Operands

The term "composite of operands” is used to describe the computational size of a
number of numetic cperands. The value is calculated as the size of a hypothetical
data itemn resulting from the super imposition of the operands aligned on this decimal
point. For example, consider the following items:

7 A PIC 999V
7! B PIC 99990
T C PIC 9V99999

Arithmatic Statements 237
The hypothetical operand would bave a picture specification of 9999V99999 and
would require & digits.

The ADD, SUBTRACT, MULTTPLY and DIVIDE statements all require that
the composite of operands pot excesd 18 digits. Refer to the descriptions of thess
statements for the details of which operands are used in this calculation.

9.2.4 ADD Statersent

ADD { identifier } [, { identifier }] ...
{ literal } { literal }

T identificr [ROUNDED] [, identifier [ROUNDED] ...
[; ON SIZE ERROR imperativa statement]
ADD { identifier }. { identifier } {, {ideotifier }) ...
{ bteral } { literal } { literal]
GIVING identifier [ROAINDED] [identifier { ROUNDED]]...
[ON SIZE ERROR imperative statement |
ADD { CORRESPONDING } identifier TO identificr [ROUNDED)
{ CORR }

[; ON STZE ERROR imperative statement]

This starement calealates the sum of 8 number of elementary oumeric operands
and then stores that sum. The sum is stwed in sach daty item specified by the TO
phrase or by the GIVING phase. The sum is calculated either from all operands (TO
vsed} or from the operands preceding the GIVING keyword.

When the CORRESPONDING or CORR kevword is specified, the effect is
the same 83 if all cormesponding data items {see CORRESPONIANG section) were
specified in appropriate ADD statements, An exception to this cffect is the SIZE
ERROR clavse which, if specified, in executed only once at the end of the list of

238 Chapter 9
concepiual ADY statements, if a size emror condition was detected in any of them
(see SIZE ERROR).

The results assigned 1o data items may be rounded (see ROUNI).

The composite of operands (se¢ COMPOSITE OF OPERANDS) ix deterniined
for ali operards used to produce the sum. Wi the CORRESPONDING or

CORR keyword is given, the composite is dewrmined for cach pair of
corresponding items. The compaosite of cpeyands must pot exceed 18 digits.

9.2.5 COMPUTE Statement

COMPUTE identifier [ROUNDED | [, identifier | ROUNDED]) ...
= arithietic-cxpression

[ON SIZE ERROR imperative statement]

The COMPUTE statement cvalvates an arithmetic expression (see
ARITHMETIC EXPRESSIONS) and assigns the resultant value to one or more data
items. These receiving items must be clementary numeric or owmeric edited items.
The valuc assigned to theze items may be rounded (sce ROUNDED). A size error
condition may cause the execution of the imperative statement given in a SIZE
ERROR clause (sce SIZE ERROR}.

The expression is caleulated only once per COMPUTE statement, The value is
then assigned 1o cach of the data items specified to the left of the assignment

operator (=).

Arithmetic Statements

%.2.6 DIVIDE Statexsent

DIVIDE { identifier } INTO identifier [ROUNDED)
{ literal 1

[, wdentifier [ROUNDED]] ...
[ON SIZE ERROR imperative atatement]
DIVIDE {identifier } INTO { identifier }
{ literal } {literal }
GIVING identifier [ROUNIHED] [, identifier [ROUNDED 1 1...
[ON SIZE ERROR imperative statemnent]
MVIDE { identifter } BY { identifier }
{ lieeral } { literal @}
GIVING identifier [ROUNDED] [, identifier [ROUNDED] ...
[: ON SIZE ERROR imperative siaicment |
DIVIDE { identifier } INTQ { identifier }
{ literal 1 { literal }
GIYING identifier [ROUNDED | REMAINDER identifier
[; ON SIZE ERROR imperative statement]
DIVIDE { identifier } BY { sdentifier ¥
{ literal } { literad }
GIVING wdentifier [ROUNDED] REMAINDER identifier

[; ON SIZE ERROR imperative statement |

240 Chapter 9

The DIVIDE wmatement ¢auses an elementary sumeric data item or numeric
literal 1o be divided into obe or more numeric operands 10 produce one or maore
quotients and, optionally, a remainder.

When the INTO clause is specified, the operand following the DIVIDE
keyword is divided into the operand(s) following the INFO keyword. When the BY
keyword is given, the operand following the BY keywoed is divided imo the operand
following the DIVIDE keyword.

When a list of data items follows the INTO keyword, each of the quotients
formed replaces the respective data items used in the computations. When the
GIVING keyword is present, the guoticnt is aasigned to each of the data items
following that keyword. If the REMAINDER keyword is present, the computed
remainder is assigned to the data-item following that keyword.

All data items to recsive quotients may be followed by the ROUNDED
keyword, in which case those items receive rounded values {scc ROUNDED).

Execution of the statement may cause a size error 1o be detected when assigning
8 quodicnt(s) or remainders. When a size esror occurs for the gquoticnt, the data item
specified in the optionai REMAINDER clause is unchanged.

The composite of operands (see COMPOSITE OF OPERANDS) i determined
for all data items in the statement which receive a quotient. This value must not
exceed 18 digits.

Arithmetic Statements 241

9.2.7 MULTIPLY Stutement

MULTIPLY { identifier } BY { identifier } [ROUNDED]
{ literal }

[, identifier [ROAINDED 1] . . .
[; ON SIZE ERROR imperative statcment]
MULTIPLY { idensifier } BY { identifier }
{ literal } { lizeral }
GIVING identifier [ROUNDED |
[. identifier [ROUNDED]]. ..

[: ON SIZE ERROR imperative statement]

The MULTIPLY staement canses a number of numetic operands to be
multiplied together and the resulting product to be assigned to obe o mare items.
Opetands following the MULTIPFLY and BY keywords must be numeric; operands
following the GIVING keyword must be numetic or nomesic odited. All operands

must be elementary.

When the GIVING clause is specified, the product formed by multiplying the
operands following the MULTIPLY and BY keywords is assigned to cach data item
in the list following the GIVING keyword. When the GIVING clanse is omitted,
the operand following the MULTIPLY keyword is multiplied by each data item in
the list and each product is assigned to the respective dat item in the list.

Each daty item receiving a product may receive & rounded value if the data name
is followed by the ROUNDED keyword (3ee ROUNDED).

The composite of operands (see COMPOSITE OF OFERANDS) is determined
using all the receiving data jlems. This vahse may not excesd 18 digits.

242 Chapter 9

2,28 SUBTRACT Statersent

SUBTRACT { identifier } [, { identifier } ...]
{ literll } {literal }

FROM identifier [ROUNDED] [identifier [ROUNDED]]...
[, ON SIZE ERROR imperative statement]
SUBTRACT { identifier } [, { identifier }...)
{ literal } { literal }

FROM { identificr }
{ literat }

GIVING identifier [ROUNDED |
[, identifier [ROUNDED 1] ...
[ON S1IZE ERROR imperative statement |
SUBTRACT { CORRESPONDING } identifier
{ CORR }
FROM identifier [ROUNDED |

{; ON SIZE ERROR imperative statement]

The SUBTRACT statement subtrects a value or a number of values from a
number of values and stores the result in a data item. When the GIVING keyword is
presend, the sum of the values following the SUBTRACT keyword are subtracted
from the valve following the FROM keyword and the result is placed in each of the
data ems following the GIVING keyword, Otherwise, the sum of the values
following the SUBTRACT keyword is subtracted froum each of identifiers following
the FROM keyword and that difference is siored in each of the respective
idertifiers.

When the CORRESPONDING or CORR keyword is spacified, the effect ia
the same es if all corresponding (see CORRESPONDING) data items were

Arithoetic Staternents 243

specified in SUBTRACT statements. An exception to this effect is the SIZE
ERROR clause which, if specified, is executed only at the end of the conceptaal
SUBTRACT statements, provided the size ermor condition was detecied in any of
the (scc SIZE ERROR).

The results assigned to data items may be rounded {see ROUND),

The composite of operands (see COMPOSITE OF OPERANDS) is
determined for all operands except those following the GIVING keyword; when
CORRESPONDING or CORR is given, the composite of operands s determined
for each corresponding paxr. This value cannot exceed 18 digits.

Chapter 10

Sections and Paragraphs

10.1 Overview

When & program begins exccution, the First stabsment i be exocoled is the firm
statement it the program following the optional DECLARATIVES area. Normally,
the next statement to be cxecuted i the ope immediately following the ooe just
completed. Several statements, however, may cause control i change to somne other
place in the programs. These satements, GO, PERFORM and EXIT, we
describad in thin chapter. The STOF statement (halts or suspends exacution of a
program) is wso described. The ALTER statemeat is atsocviated with the GO
sticment and 30 is described. Other statements which cause control & vary from
normpl ssquential cxecotion include the TF stakemeni and other conditional
statements which are described clsewhere.

10,2 Procedwrs Numes

The PROCEDURE DIVISION is organized either as 3 group of paragraphs or
15 a group of scctions containing paragraphs. Every parsgraph, except poasibly the
first in the FROCEINRE DIVISION or a saction, has 2 name (vwritten in Ares A)
praceding it. Brery section also hay & name.

The names of sections and peragraphs are jointly called procedire names. These
names are impartant because they are referenced in GO, PERFORM und ALTER
sttements o specify how control is to be aliered fromn the normal ssquential
executipn of statements.

246 Chapter 10

Section names must be unique and must not be keywords. Paragraph names
muzt be either unique or capable of being uniquely gualified using the name of the
section in which they are found:

paragraph-name { IN } section-name
{OF }

One of the preceding forms is used to qualify a parugraph pame.
It is congidered good programming practice o wse names which accurately

describe the function performed in sections and paragraphs. In this way the program
is more understandable by anybody referring to the source program.

10.3 ALTER Statenyent

ALTER procedure-pame TO [PROCEED T{] procedure-neme
{, procedure-name TO [PROCEED TO] procedure-name] ...

TheALTERstﬂcmmhuudtochlngtﬂmpmmdmmwhichmnmﬂmyh
transfesred vsing o GO statement. The GO statement must be the only tatement in
the paragraph(s) immediately referenced before the TO keyword(s). This GO
sfatenent Ty oot contain a DEPENDING clause. The execution of the ALTER
statemeni causes any subsequent exccution of the GO statement(s) to transfer
control 1o the procedure {paragraph or section) named following to TO keyword in
the ALTER siatement.

WARNING

Many people, including the authors, discourage or prohibit the use of this verb, It is
generally felt that its use tends to decreass the clarity of a program. This is bacanse it
is often unclear where the target of 8 GO is located, unkess the entire source listing is
inspected in detail.

Sections and Paragraphe 247

10.4 EXIT Statessent

EXIT

The EXIT statement s providad in arder to define & procedure name of a given
poind in the program. It must be the only santence in a paragraph. The statement has
no effect while the program execuies.

The stateosent is often wsed in a paragraph which is the sacond paragraph of a

PERFORM-THROUGH verb (s¢¢ FERFORM). In this way, paragraphs may be
added to or deleted from the group of performed paragraphs.

1.5 GO Satenent

GO TO [procedure-name |

GO TO procedure-name [, procedure-name J ...

DEPENDING ON identifier

The GO or GOTD statement may be used ty transfer control to another part of
the PROCEDURE DIVISION. When the form

GO TCO procedure-name

is used (and an ALFER does not apply for the statememt), the execution of the
siaicment causes conirol to be ransferred to the point in the program indicated by
the procedure nama.

No procedure names are given with the GO staiement, only when the GO
statement is to be used in conjunction with ALTER statemenis {see ALTER). The
DEPENDING clause is used when one of 8 number of procedures is (o be selected.
In this situation, the value of the idemtifier following that kevword is vsed to
determine to which procedures contrel is transfereed. When the value of this
identifier is 1 the first procedure in the list receives control; when it is 2 the second
procedure receives control; and so forth. When the value is not an unsigoed positive

248 Chapler 10

integer vlue or when the valwe exceeds the nunnber of procedures in the list, coatrol
passes to the pext statement according o the normal sequential execution of
Matement.

14.6 PERFORM Statement

PERFORM procodure [{ THROUGH } procedure]
{ THRU ¥

[{identifier } TIMES]
{ oumber }
FERFORM procedure [{ THROUGH } procedure)
{ THRIJ }

[UNTIL condition]

PERFORM procedure [{ THROUGH } procedure]

{ THRU }
VARYING { idectifier } FROM {identifir }
{ Literal } {index-name }
{ literal }

BY { idennfier } UNTIL condition
{ literal }

[AFTER { identificr } FROM { identificr)}
{ index-pame } { index-name }
{ Titerai }

BY { idemtifler } UNTIL condition
{ literal }

Sections ard Paragraphs 249

[AFTER { identifler 3} FROM {identifier }
{ index-name } { indax-name }
{ litcral }

BY { identifier } UNTIL condition]]
{ liveral ¥

The FERFORM statement is used to ranefer control to one or more procedures.
The stmtement differs from the GO statement in that contro] implicity retums to the:
point of PERFORM when the execution of the PERFORMad procedures is
complete.

The simplest forms of the PERFORM verb are as foliows:

FERFORM parapraph
PERFORM section

The PERFORM verb caoses control to pass to the paragraph or section referenced.
When the last statement in that paragraph or section has been execuied, control
passes ko the swtement following the inidal PERFPORM statement.

When the THROUGH or THRU clause is used
PERFORM procedure THRU procedure

the procedure following the PERFORM keywond is passed comtrol. Control retumns
to the statement followiong the PERFORM verb when the procedure following the
THRU o THROUGH keyword has been exacuted.

When the TIMES keyword is present, the procadures given in the statement arc
exccuted the nomber of times indicated by the lieeral or the value of the elementary
oumeric integer <Jata item preceding the TIMES keyword. When the valac is a
positive integer, the procedures are executed that number of Gmes and then control
continues to the next siatement io the normal sequential manmer of execution. When
the vafue is non-positive, no procedures are PERFORMed by the statement.

The UNTIL ciause {without any VARYING clausen) causex the indicated
procedures [0 be PERFORMed until the sssociated condition becomes wue. The
staternent

PERFORM Pl [THRU PI]
UNTIL condition

250 Chapter 10

is equivalent to the following group of statements:

L1.
IF condition GO TO L2,
FERFORM FP1 [THRU P2].
GOTOLL.

Lz

It should be noted that the UNTIL condition is tested before each PERPORM takes
place. Thus, if the condition i initially true, no procadures would be PERFORMed
by the¢ statcment.

The VARYING phrase is used in conjunction with the UNTIL clause to give a
data item a sequence of values, ome cach time the indicated procedures arc
PERFORMed

PERFORM F1 {THRU P2]
VARYING D FROM V1 BY v}
UNTIL condition

A ststement of the preceding form is equivalent to the following pasudo statements:

set D io V1 valoe.

L1
IF condition GO TO L2,
PERFORM FP1 [THRU P2}
sugment D with V2 value.
GOTOLIL.

L2.

Ope or rwo AFTER clauses may be given. A siatement of the form

PERFORM F1 [THRU P2}
VARYING D1 FROM Y11 TO VI2
UNTIL condition- 1
AFTER D2 FROM V21 TO V22
UNTIL condition-2
AFTER D3 FROM V31 TO V32
UNTIL conditiorn-3

is equivalent to the following pseudo sutements.

Secticns and Paragrapha 251

set D1 to V11 value.

eet D2 o V21 value.

st 13 5o V31 value.
Lt.

IF condition-1 GO TO L&,
L2.

IF condition-2 GO TO LS.

IF condition-3 GO TO LA,
PERFORM Pl [THRU P2].
augment D3 with ¥32 value.
GO TOLY

set D3 to V3 valae.
augment DX with V22 value.
GO TO L2,

st D2 wo W21 value.
anpment DI with V12 valne.
GO TO L1.

L&

When an index name occurs in a VARYING, AFTER or FROM phase, values are
placed in the data item in the aasocisted YARYING or AFTER phate according to
the rules of the SET statement (see SET). Otheywise, datn itema are initialized
according to the ruies of the MOVE matement {se¢ MOVE) and asugmented
according o the rules of the ADDY statement (sec ADD).

A PERFORMcd procedure or group of PERFORMed procedures may
themnselver contzin FERFORM matements. These staterments must PERFORM
procedures that are completely excluded from procedures indtially being actively
FERFORMed or, in the case of THRU or THROUGH, must reference procedures
that are all actively being FERFORMed, cxcluding the actual procodures
referenced in the fost FPERFORM-THROUGH staternent.

252 Chapter 10

10.7 STOP Statement

STOP { RUN }
{ Titeral }

The STOP statement is used to halt execution of s COBOL program, completely
of emporarily. When the RUN keyword follows the verb, the execution of the
program is completed. When a literal follows the verb, the literal is displayed and
the Debugger is entered (sz¢ DEBUGGER).

Chapter 11

IF Statement
IF conditipn; { stalement } [; ELSE { statement
{ NEXT SENTENCE } { NEXT SENTENCE

11.1 Overview

The execution of an IF staternent causes the condition following the IF keyword
to be evaluated. When the condition is true, the statement following the condition is
execuled; when the condition is false and the ELSE keyword iz presest, the
statement following the ELSE iz executed. Control pormally continues following
the [F statement, regardiess of whether the condition was true or false.

The syntactic definition of the IF statement specifies that a statement may be
given following either the condition or the ELSE keyward. A statement may
jnvolve several verbs. Thus,

MOVE Al 10 B
ADD 2w C
DISPLAY Q

is a statemnent involving three verbs. Tt is commyon to use a statement of this pature
with an IF. It should be noted that the statement does haf contain a period ()
character. Because this stalement may contain several more elementary statements,
the statement following the condition is be called the true range of the IF. The
statement fotlowing the ELSE keyword is called the false range of the IF,

254 Chapter 11

The NEXT SENTENCE clause may be specified in place of ecither the
statement following the condition or following the ELSE keyword. The execution
of this chause has no effect. [t is useful, bowever, in permitting the full form of the
IF statcroent to be coded. This is oficn pecessary in neased IF's, to be discussed
Later.

Th:aumplninthiachﬂptuwﬂlmakeuunfhdentnﬁun.%ismimpumm
convemion used when coding programs. Indedtation is designed to incresse the
chﬂtyufﬂwpmgnmbymtkin;obﬁuusﬂwsmmufh.ltismtmquhadbyum
COBOL language nor does it comvey any special information to the COBOL
processor. The cxamples could be written, in a less undersiandahle format, without
sty indentation.

112 Simple IF

EF condition; stetement

This simplest form of the IF statement has no ELSE clause. When the condition
15 evaluated as true, the troe mnge following the condibion is executed and then
control continwes following the IF statement; when the condition is falee, the true
range following the condition is not executed and control continuea following the IF
statemenit. Thus,

if eolour = 14
display ‘peach’.
causes the MISPLAY statement to be executed only when the value of *colowr” is
14. The trwe range of the IF is that single statement.

Them:lufth:[htam:mntmdoftheu-ucmgeisd:mminedhyuwpuind{.}
character. Several siatements may be found in the true range:

if colour = 14
add 1 o peach-count
display "peach®.
hﬁ:nample,twoluumeuuuiﬂbeemutedif"colunr’hunva]ueofm.ﬂm
m:tthepuiod{.}chmisgivmunlylhﬂﬂummge,

IF Sistement 255

In order 1o incresce the clarity of the program, it is a common peactice to indent
the statemenis that are to be conditiopally executed, Various indentation
conventions can be used; what is important in that a consistent method bhe used
throughout an entire program. In this way, it is obvious which stalements are o be
executed when the condition is true. It becomes eany 1o visually verify thet s pariod
follows only the last statemant in the seguence.

11.3 ELSE Chose

IF condition; { stetement } ELSE { statement
{ NEXT SENTENCE } { NEXT SENTENCE

The more geparal form of an IF statement involves an ELSE ctause, In this
case, the execution of the IF causes one of two ranpas of statements to be salectad
for execution. When the condition is true, the range following the condition is
executed; ofherwise, the range following the ELSE is executed. Following the
execution of one of these ranges. control pormelly continnes following the falee
range. The TF statement

IF SALARY > S0000.00
DISPLAY "Executive’
ELSE
DISPLAY 'Warker'.

causes "Executive” to be MSPLAYed when the value of "SALARY" exceonds
50.,000; otherwise, “Worker” is IHSPFLAYed.

Several statemernts may form the true or false ranges:

IF SALARY > 50000.00
ADD | TO EXEC-COUNT
DISPLAY "Executive’

ELSE
ADD 1 TO WORKER-COUNT
DISPLAY "Worker".

ARain, it is considered good style to indent both groups of statements. A period is
given only after the false range.

256 Chapeer 11

11.4 Nested IF

An IF statement may itself be ane of statements in the the true or false range of
an IF. o this case, the IF i3 said to be nested:

if salary > S0000.00
add 1 to high-priced
if job = 'VP
add | to vp-count
clze
#dd 1 1o exec-comnt
else
akl 1 o worker-count.

[n the cxample, an IF is nested inside the rue range of the outer IF, The end of the
nested IF satement is determioed by the ELSE of the outer IF statement (the second
ELSE in the ¢xampic).

An IF statement may also be nested inside the false range of en IF:

if salary = 5000000
add 1 1o executve-count
cise
if job = ‘clerk’
add 1 to clerk-count
else
add 1 to worker-count.

In the example, the peried () character determines the end of both the inner and the
outer IF's,

H becomes particuiarly important to wse a consisient style of indentation with
nested IF's. In this way, the structure of the program is clearly indicated.

The COBOL language peymits an IF to be nested only ar end of the tnie or fatse
range of an IF. This is because of the way the end of an IF statement is determined,
The end is determined by encountering a period (.) charscter or by encalnttering an
ELSE keyword for an enclosing IF staternent. Consider the following:

IF Statament 257

if salnry > 50000
if job = "V
display ‘VICE-PRESIDENT’
elae
display ‘EXECUTIVE'
display salary
cloc
dinplay “WORKER'.

The indemtation indicates that "VICE-PRESIDENT" and then the value of "salary”
should be DISPLAYed when the values of “salary” and "job” are $1000 and "VP*
tespectively. However, only “VICE-PRESIDENT" would be DISPLAYed. This is
because the statement)

display salary

is purt of the False range of the nested IF. The desired cffect may be obtained by
placing the inner IF in & separate parsgraph to be FERFORMed from the place it
wat ofiginally pested:

if salary > 50000
perform print-job
display salary

else
display * worker'.

print-job.
if job = “¥VP*
display *VICE-PRESIDENT"
chse
display "EXECUTIVE".

This example accomplishes the effect indicated by the indentation of the original
example.

One use of the NEXT SENTENCE clause is illustrated by the bollowing
(crmoneous) cxarmple:

if nalary > 50000
if job = “VP"
add | to vp-count
clse
add 1 to worker-count.

258 Chapser 11

The indentation indicates that 1 is to be added to *worker-count” whenever the value
of "salary” does not excesd 30000. However, the ELSE clause is part of the nested
IF, not the cuter IF. This situation may be remedied as follows:

if salary = SO000
if job = “VP*
add 1 tg vp-count
tlze
mexl semence
else
add 1 1o worker-count.

The: NEXT SENTENCE clause is used to give the aested IF an ELSE ¢lause and 30
the original ELSE clause now applies to the outer ELSE.

115 Multiple Cheice

An IF with an ELSE can be used to sclect one of two alternatives. By pesting IF
statements, a choice may be made to select one from many alternatives:

if job = "VP'
display ' VICE-PRESIDENT"
elae
if job = "CL’
display '"CLERK’
else
if jobh = 'SC'
display 'SECRETARY"
clse
display "WORKER'.

In the example, ane of four messages is DISPLAYed, depending npon the value of
"job”. .

An alternate method of indentation is often used 2o emphasize the structure of
those multiple-choice situations:

IF Statement 259

if job = VP
display ‘VICE-PRESIDENT'
elneif job = *CL!
display 'CLERK'
else if job = "SC'
display 'SECRETARY’
else
display "WORKER".

In this case, the four choices mre shown mt the same level of indentation. This
emphasizes that one of the four is to be selected.

Chapter 12

Sequential Files

12.1 Introdwction to Files

Verious input/output stalernents are wied (o control the rransmirsion of dats o
and from an exccuting COBOL program. Data within an executing program is kept
in daea isema and manipulased wing varions COBCGL. statements such as MOVE or
ADD,

Diata cutside of programs is organized ioto fles. Each file has u rystem name by
which it 1s catalogued o the compuater system in which it resides. A file consists of 8
number of recordr, each one of which is organized into a number of elementary data
items. WRITE staterments sre used trangmit new records to # file. REWRITE
statements are msed to transmit records to replace existing records in a file. REAT
statements are used to tranamit the data in records so the executing COBOL
program.

When 1 file is 1o accessed, it must first be connecied to the program using an
OFEN statement. A CLOSE statement is mead to undo this connection when the
program has completed accesaing the file,

A COBOL idemwifier, called a filename, & used to identify a given file io &
program. It should be noited that the filkename is not the system Alename; the
filcpame is associated with a particular file by using the SELECT statement in the
ENVIRONMENT division or by using the YALUE clause of an FD in the DATA
division.

The records in B file may be accessed esither sequentiatly or mndomly. By
sequentiolly is meant that the vecords can only be read in the onder that they were
originglly writken to file and that the records cam only be written inn the order in
which they are to be stored in the file. By randomly is meant that recorda can be read
of written in any opder; the number of the specific record to be accessed is

262 Chapter 12

established by the valuwe of the data itern given in the RELATIVE KEY pluasc in a
SELECT statement for the file in question.

Every file @ be accessed in & COBOL program must have at least the following
COMPODENLE:

(i A SELECT statement in the ENVIRONMENT divigion.
(2} An FD in the DATA DIVESION.

{3 An DPEN statement which is exscuted prior to any other statements which
arc cxecuted and cause acoess 1o the file.

{4) A CLOSE sutement which iz executed after all accssses 1w the file have
been completed.

Because of the precise rules concetning the accessibility of data in the FILE
SECTION, many programmers do not directly access the daia in the FILE
SECTION. Instead, reconis are copied into WORKING-STORAGE a3 they are
read {uging the INTO clause of the READ) and copicd from WORKING-
STORAGE as they arc written (using the FROM clause of the WRITE amxi
REWRITE statements).

The FILE SECTION defines the memory to cootain records read from or
transmitted to files. The record descriptions in each FID describe the memory. Since
more than one type of record can be read or written, a number of record descriptions
may be given in an FI). Unlike data in the WORKING-STORAGE SECTION ,
the data specified by these record descriptions is not always accessible. It is pot
accessible, for example, before the file has been OPENed. A READ siatement
makes accessible the record which is read. A READ or REWRITE matcment
transmits the record which is currently sccessible and then that record becames
unaccesasible.

12.2 ENYIRONMENT DIVISION

The ENVIRONMENT DIVISION, in general, is explained in full detail in the
chapter by that neme. In this section, caly the pant of twe division applying to
sequential files is discussed. This pertains to the SELECT statement in the FILE-
CONTROL paragraph of the INPUT-QUTPUT scction. The syntax permitted for
the SELECT statement is aa follows:

Sequential Files 263

SELECT [OPTIONAL] file-name
ABSIGN TO literal
[; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE 15 SEQUENTIAL]
[; FILE STATUS IS name].
This restricted form of the SELECT statement applies to sequential files only. The
meaning of the vatious phranes is described i the chapter about the
ENVIRONMENT DIVISION (see SELECT).
12.3 DATA DIVISION
The DATA DIVISION is completely explained in the chapeer by that name.

The description of FI¥s in that chapter completely applics to scquentisl files.
Consequendy, no other details are provided in this saction.

124 PROCEIURE DIVISION

12.4.1 CLOSE Statement

[{WITHNOREWIND]
{ FOR REMOYAL }

[, file-pame ...] ...

The CLOSE statement is wsed to disconnect a file from a program. It should be
exccuted when the program has completed execution of all statements which access
that file. Waterloo microCOBOL checks gmly this syntax for all options shown in
the syniactic description st the start of this section. No actions are performoed as a
result of these options, since many systems do not bave facilities to support them.

264 Chapeer 12

12.4.2 OFEN Statement

OPEN { INPUT } file-name, [, file-naruc] ...
{ OUTPUT }
{10 }
{ EXTEND }

[{INPUT } file-name, [, file-name 1...] ...
{ OUTPLUT }
{10 }
{EXTEND }

The OPEN statement is used to connect a file w the COBOL program. Tt
prepares the file 10 be accessed using COBOL mtatements such as READ or
WRITE. It must be executed before the file can be accessed.

Associated with each file name is one of the following OFPEN modes:
INPUT The file wili only be accessed using the REAIY statement.

OUTPUT The file will only be accessed with WRITE statemnents. A new file will
be created to consist of the records tansmitted using WRITE
statements. The order of records in this new file ig the order in which
they were written. If the file already exists, the file written will replace
the oid ooe.

IO The file may only be accessed vaing READ, or REWRITE staterments.

EXTEND The file may only be accessed with WRITE statements. The records
written are added to the end of the file, in the order written.

A file must exist in order o be OPENed for INPUT, 1.0 oc EXTEND, The file
may exist when (Q¥PENed for output; the new file created will repince the existing
file.

Onca a file has been CLOSEd, it may be OPENed again. Thus, it is possible 1o
OFPEN a file for OUTPUT, create it using WRITE statements, CLOSE the file, o
OPEN it for INFUT, READ the file, and then the CLOSE it again.

Sequential Files 265

12.4.3 READ Statement

READ file-name RECORD [INTO identifier]

[; AT END imperative statement }

The READ siatement causes the next logical record to be made available for
processing by the program. Mede avaiiehle means the next record in the Gle is now
available 1o be accessed in the record description(s) supplied with the FI¥ in the
DATA DIVISION for the file. This data ic available until the next REATY statement
(or & CLOSE staternent) is executed for the file. There is no recond made available
following the OPEN statement for the file or following 4 READ statement which
attempis 1o read past the end of the file.

When the INTO clause is present. the data in the record description for the FI» is
transfarred o the record in the INTO clause, acconding 1o the rules of the MOVE
statemmant. Any subscripting or indexing associated with the identifict is perfurmed
after the record has been read and before it is wransferred o the data item.

An AT END condition occurs when an attempt is made to read past the end of
the file. The following actions occur in the specified order:

(1) If a FILE STATUS data item has been specified by the SELECT clause in
the ENVIRONMENT DHVISION, then that data item is given the

appropriave value,

{2 If an AT END phrase is specified in the READ siatemant, control is
wansferred o the imperalive siatement with that phrase. Any USE
procedure specified for this file is not execuoted.

(3) If no AT END phrase is specified 2nd a USE procedure bas been specified,
then that procedure is executed.

{4) If neither an AT ENIF phrase nor a USE procodure exist for the file, an
error messnge will be displayed and the program execution is terminated.

It is an ervor 0o atiempt to vesd past the end of 4 file more than once in A program,
withowl a CLOSE followed by an OPFEN for thai file.

266 Chapter 12

12.4.4 REWRITE Statement

REWRITE record-name [FROM identifier]

The REWRITE statement is used to repioce 8 racofd in an existing file. The
tecord 1o he replaced is the onc made available by the previous anccessfully-
executed READ statement for the file, No other intsrvening inpat/otpat operation
is permitted for the file in question. The file must have been OPENed for I-Q.

When the FROM phrase is pressnt, the execution of the REWRITE statement
is squivalent to:

MOVE identifier TO record-name.
REWRITE record-name.

Both the record-name and the identifier must not refer to the same storage ares.
The logical record made availsble by a READ statement is no longer available
to the program once 4 REWRITE statement is executed for that record.

11.4.5 USE Statement

USE AFTER STANDARD { EXCEPFTION } PROCEDURE
{ ERROR 1

ON{ file-name [, file-name] ...
{INPUT
{ OUTPLT
{10
{ EXTEND

gt gt St gt g

The USE statement specifies procedures to be used when inputfoutput errors
occur. The USE statemient must appear in the declaratives section of the
PROCEDURE DIVISION. It must immediately follow a section header and is
followed by a period. The remajnder of the section consists of zero or more
pmcedmlpmugmphsmbeemcuwduhenmcmdiumdinpwuutputmmm.
The USE statement is never executed; it merely defines the conditions calling for the

Sequeantia) Files 267
execution of USE procedares. The keywords ERROR and EXCEPTION are
synonymous and may be used interchangeably.

The USE procedure is invoked for the input/output errors specified following
the optignal ON keyword:

FILENAME All input/output errors for the file.

INPUT All inputfoutput errors for files OPENed for INPUT.
QUTPUT All input/outpint errors for files QOPENed for OUTPUT.
O All input/output errary for files OFENed for 1-0.
EXTEND All inpatfoutput errors for files OFENed for EXTEND.

The USE procedure is not executed when the input/output satement ceusing the
error contains a clause, such gs AT ENI, to handle the condition.

For additional rmules concerming declaratives, see the section entited
DECLARATIYES.

12.4.6 WRITE Statement

WRITE recortname [FROM identifier]

[{BEFORE } ADVANCING { { idemtificr } [{LINES }1 }]
{ AFTER } {{oumber } {LINE } }

{ }
{ PAGE }

The WRITE statement is used to release a record to an OUTPUT or EXTEND
file. To release means that the record is concepiually transmitted to the file. The
record-name is the name of a logical record used in the FIY for the file in question.

Immediately after a file is successfully QOPENed for OUTPUT, the logical
recordis) in the FIF is available o receive data. 4 MOYE statement, for example,
may be used to move data to the logical record. A WRITE statement causes the
record in the FI) to be conceptually transmitted to the file. The data in that record s

268 Chapter 12

no longer available. Any data subsequently moved 1o a bogical record(s) in the FI»
will be used to compose the next logical record, if any.

When the FRDM phrase is present, the statement is equivalent to the following
state ety

MOVE identifier TO record-name
WERITE recotd-pame

The WRITE staternent in the preceding example is to be understood to contain any
ADVANCING phrase that occnrred in the original WRITE statement.

The use of the ADVANCING phrase is used to control the vertical spacing of
records in an output file. It must be specified in all WRITE statemenits for a file or
in none of them. When the BEFORE keyword is used, the record is written and then
the positioning occurs; when the AFTER keyword is used, the positioning oceurs
2nd then the record is written. The positioning can be to the top of a page (PAGE
keyword given) or by a number of lines. The first character in every record writhen
with the ADVANCING option is reserved for use in vertica) positioning, often
called carriage controf.

The positioning indicated by the ADVANCING phrase is accomplished in
system-dependent manners (see SYSTEM DEPENDENCIES). Generslly spesking,
there are twe different situations:

(1) Terminal: The system will attempt to clear the screen when ADVANCING
PAGE is used and will write blank lines for other positioning. The
carriage-control character, at the stant of the record, is not displayed epon
the screen.

{2) Carvigge -control Files: These files wifl have an extra character appended
to the front of some or alt records. The exira (camriage-conteod} character is
used by the computer hardware to provide vertical positioning on printed
pages.

When the ADVANCING clause is not specified for a file, the first character in each
record is normaily ransmitted unchanged to the file iw question. An exception to this
rule occurs when microCOBOL can recognize that a file, such as a printer, will
requite the first character for positioning. In thiz case, the following control
characters in the lefimost pasition of a record have the indicated meaning:

Sequential Files 269

‘l' ADVANCE PAGE
'+' ADVANCE ZERO LINES (overprint)
'+ ADVANCE 1 LINE

')' ADVANCE 2 LINES

.t ADVANCE 3 LINES

Any character pot specified in the preceding is treated as & space character. The
detection of these specin]l files is system dependent {s¢¢ SYSTEM
DEPENDENCIES for a description of the files detected in each system).

Chapter 13

Relative Files

1.1 Overview

The concept of files, in general, is introduced in the first section of the chapter
about sequential files. The records in a sequential file may be only resd or wrinen
consecutively. Relative files provide the capability to access records in any order.

When records are to be acoessed in random or non-sequential order, the position
of & recond to be accessad is taken from a special duta itemn. The RELATIVE KEY
phrase of & SELECT statement apecifies the data item which contains the cugrent
record pointer for the fle, This is a positive inkeger value apecifying the namber of
the recond 10 be read or writen. The records in the file are numbered consecutively
with the initial recond at position one. Thus, to read or write 2 specific record the
RELATIVE KEY data item should be assigned a number indicating the position of
the recond to be accessed.

Relative fikes can also be accesaed sequentially in much the same way as is
discussed in the chapier sbout Scquential Files. The ACCESE clause of the
SELECT statement specifies exactly how the file is to accessed. These files may be
accessed sequendtially, relatively, or in combinacon called dynamic sccess. When
reconds are acceesed saqueatially (sequential or dynamic ecoess), spocial forms of
the READ and WRITE statements are used to indscate that the RELATIVE KEY

data itam is not eequired.

13.2 ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION, in general, is explained in full detail in the
chapter by thet name. In this soction, only the part of the division applying to
relative files is discussed. This pertaing 1o the SELECT stasement in the FILE-
CONTROL paragraph of the INFUT-OUTPUT section. The syntax parmitted for
the SELECT starement is as follows:

272 Chapter 13

SELECT [OPTIONAL] file-name
ASSIGN TQ literal
[; ORGANIZATION IS { RELATIVE } |
[ACCESS MODE IS { SEQUENTIAL [, RELATIVE KEY IS pame] }]
{ b
{ {RANDOM } RELATIVE KEY IS name 3
{ {DYNAMIC } }
[; FILE STATUS IS pame].
This restricted form of the SELECT statement applies only o relative files. The
meaning of the various phrases is described in the chapter abomt the
ENVIRONMENT DIVISION (see SELECT).
13.3 DATA DIVISION
The DATA DIVISION iz completely explained in the chapter by that name.

The descripion of FD's in that chapter completely applics to relative files.
Consequendy, no other details are provided in this section.

134 PROCEINURE DIVISION

13.4.1 CLOSE Statement

CLOSE filengme [WITH LOCK] [, filename [WITH LOCK]] ...

The CLOSE statement is wsed to discomnect a file from a program. It should be
executed when the program has completed execution of all sistements which access
that file. Waterloo microCOBOL checks only this syntax for all options shown in
the syntactic description at the start of this section. No actions are performed as a
result of these options, since many systems do not have facilites to support them.

Relative Files 273

13.4.2 OFEN Statement

OPEN { INPUT } file-nume, [, file-name] ...
{ OUTPUT }
{10 }

[{INPUT } file-name, [, filename] ...] ...
{ OUTPUT }
{10 h

The OPEN statement is used 10 connect a file 1o the COBOL program. It
prepares the file to the accessed wsing COBOL amtements such #5 READ or
WRITE. It must be executed for a file before the file can be accessed.

Associated with each file name is one of the following OPEN modes:
INPUT The file wili only be accessed using the READ siatement.

OUTPUT The file will only be accessed with WRITE statements. A new file will
be created to comsist of the records ransmitied using WRITE
statements. The onder of reconds in this pew fils is the opder in which
they were written. If the file already exists, the file writen will replace
the old poe.

0 The file may only be scoeised usking READ, or REWRITE statements.

A file must exist in order 1o be OPENed for INPUT or [40. The file may sxist when
OPENcd for cutput; the pew file created will replace the existing file.

Ouce a file has been CLOSEY, it may be OPENed again. Thas, it is possible o
OPEN a file for QUTPUT, create it using WRITE statements, CLOSE the filz, to
OPEN it for INPUT, READ the fils, and then the CLOSE it again.

274 Chapter 13

14,3 READ Statement

READ file-ame | NEXT RECORD] [INTO identifier]

[; AT END imperative seatement |

READ file-pame RECORD [INTO identifier]

[; INVALID KEY imperative statement]

The READ matement causes the nexy logical record to be made available for
processing by the program. By made availabie means that the oext record in the file
is now available vo be accessed in the record description(s) supplied with the FII in
the DATA DIVISION for the file. This data is available until the pext READ
stasement {or 8 CLOSE statement) is execoted for the file. There is no record made
available following the OFEN statement for the file or following a RIEEAD sistement
which attempts to read past the end of the file.

When the INT'Q clause is present, the data in the record description for the FD is
wansferred to the pecord in the INTO clause, according w0 the nules of the MOVE
statement. Any subscripting or indexing associated with the identifier is performed
after the record has been read and before it is moved to the date tem.

When the ACCESS is SEQUENTIAL, the records are retrieved sequentially in
order that they are located in the file. The INVALID KEY clause may not be
specified.

An AT END condition occurs when an attempt is made to read past the end of
the file. The following actions occur in the specified order:

{1) If a FILE STATUS data item has been specified by the SELECT clause in
the ENVIRONMENT DIVISION, then that data jtem is given the

appropriate value.

(X If an AT END phrase is specified in the READ statement, control is
transferred to the imperative statpment with that phrase. Any USE
procedure specified for this filke is pot executed.

{3) If no AT END phrase is specified and a USE procedure has been specified,
then that procedure is executed.

Relative Files 275

(4} If neither an AT END phrase nor & USE procedure exist for the file, an
error message will be displayed and the program execution is terminated.

It in an error 1o attempt so read past the end of a file more than once in 3 program,
without a CLOSE ifollowed by an OPEN for that file.

When the ACCESS is RELATIVE ocither the NEXT keyword por the AT
END clsuse may be specified. The record to be read is located ar the position
indicated by the data item named RELATIVE KEY claust in the SELECT
statement for the file. 1f the file dots not contain a record at the indicated position,
then the INVALID KEY condition is detected. The following actions ocour in the

{13 A value is placed into the FILE STATUS data item, if specified, for the
file, to indicate the INVALID KEY condition.

(2 If an IN¥ALID KEY clause is specified for the statement, control is
transferred to the imperative statement specified in this clanse. Aoy USE
procedure specified for this file is ot executed.

(Y] If an INVALID KEY clawse is not specified and an approprinte USE
staternent exists for the file, then the indicated USE procedure in executed.

4 If oeither an INVALID KEY clause not an appropriate USE statement
exist, an error message is displayed and the peogram execution is
werminated,

When the ACCESS is DYNAMIC, the file may be read secuentially or
relatively. A ssquentisl READ statement specifies the NEXT keyword and
optionally the AT END clause. This statement behaves in the manner of 4 READ
statement for SEQUENTIAL ACCESS described above. A relative READ may
not specify the NEXT keyword nor the AT END clause, but may specify a
INVALID KEY clauge. This statement behaves in the same way as the relative
READ staternent described above.

276 Chapter 13

13.4.4 REWRITE Statement

REWRITE record-name [FROM idenvifier |

[; INVALID KEY imperative stadement]

The REWRITE statcment is used to replace a record in an exinting fite. When
the ACCESS is SEQUENTIAL, the recond 1o be replaced is the ooc made available
by the previous succossfully exccuted READ statement for the file. No other
intervening inputfoutput operation may have been executed for the file in question.
The hle must have been OPENed for 1-0. When the ACCESS & either
RELATIVE o DYNAMIC, the rocord to be replaced is determined by the value of
the date jtem given in the RELATTVE KRY clause for the file. When the file does
not contmin such a recond o be updated, the INVALID KEY condition is detacted
and processed {the acton to be pecformed in described in the section sbout the
READ statement}. The file must be OPENed for 1-0).

‘When the FROM phrase ix present, the execution of the REWRITE statement
is squivalent to;

MOVYE identifier TO record-pame.
REWEITE record-name.

Both the record-pame and the identifier must not refer to the tame storage ares.

The logical record made available by » READ statement i3 oo longer avadlable
to the program once 8 REWRITE statement in executad for that recocd.

Relutive Files 4

13.4.5 USE Ststement

USE AFTER STANDARD { EXCEPTION } PROCEDURE

{ ERROR !
ON{ file-name [, file-name] ... }
{ INPUT }
{ OUTPUT }
{10 }

The USE statement specifics procedures to be used when inpotfoutput errors
arise. A USE sistement mwst appear in the declarstives section of the
PFROCEDURE DIVISION. It must immediately follow a section header and is
followed by a period. The remainder of the section comsists of zero of more
procedutal paragraphs to be executed when the indicated input/output ermor occurs.
The USE statement is never exacuted; it merely defines the conditions calling for the
cexscution of UUSE procedures. The keywords ERROR and EXCEPTION are
synonymous and may be used interchangeahly.

The USE procedure is invoked for the inputfoutput arroes specified following
the optional ON keyword:

FILENAME All input/output errors for the file.

INPUT All input{foutput errors for files OPENed for INPUT.

OUTPUT All inputfoutput errors for files OPENed for OUTPUT.

-0 All inputfoutput errors for files OPENed for 1-0.

The USE procedure is not executed when the ioputfoutput statement causing an
emor containg & clavse, such as AT END or INVALID KEY, 10 handle the
condificn.

For additionel rules concerning declaratives, see the section entitled
DECLARATIVES.

278 Chapier 13

13.4.6 WRITE Stateraent

WRITE record-name [FROM identificr]

[{BEFORE } ADVANCING { { idemtifier }[{LINES }] }]
{ AFTER } E{numbm- } {LINE } }};
{ PAGE H

WRITE record-name [FROM identifier]

[; INVALID KEY imperative statemant |

The WRITE statement is usad to release a record to an OUTPUT or EXTEND
file. To releqse means that the record is conceptually transmittad to the file. The
record-pame it the name of a logical record vsed in the FIP for the file in question.

Immediately afier a file is successfully OFENed for OUTPUT, the logical
record(s) in the FID is availabie to receive data. A MOVE statement, for example,
may be used to move data 1o the logical record. A WRITE statement canses the
record in the FI} to be conceptually transmitted to the file. The data in that record is
oo longer available. Any data subsequentty moved 1o # logical record(s) in the FD
will be used 10 compose the next logical record, if any.

When the FROM phrase is present, the statement is equivalent to the following
siaterneats:

MOVE identifier TO record-nane
WRITE record-name

when the ACCESS is SEQUENTIAL the vecord is written 1o the next pasition in
the file. The file must be OPEN with for QUTPUT. Otherwise, the file must be
OPENed for 1-0. The position t0 which the record is written is determined by the
vilue of the dana item given in the RELATIVE KEY phrase of the SELECT
statement. An INVALID KEY condition is detacted when either

(n the recond already exists for the file: or

(2 an attempt is made to writé a record beyond the boundarics estahlished for
the file.

Relative Files P

The actions performed when this condition is detected are described in the saction
about the READ statement.

Chapter 14

- Tables

14.1 Overview

In many computer applications it is desirable w define tables of dawa, Each
clement in the wble has the same dats description. In COBOL, this may be
scromplished with the OCCURS clause:

01 cost-table.
05 cost pic 999V99 occurs 100 ames.

Thess statements illustrate how to define a table "cost” which has 100 nomeric
elements, each with five digits. A group item may also be repested:

0] part-information.
03 part occurs 500 times.
05 part-nomber pic 910}
O3 coet pic 999V99.
05 price pic 999V99.

This example illustrates how to specify a table "part” of 500 clements, Each shement
consists of three items named "part-number”, "cost” and “price”,

Individwal clements in & table are referenced waing subreripts:
cost(10)
cost(i)

The preceding illustration shows two examples of aubscripting. The first example
ahows how the wnth element of *cost” ia referenced. The second reference uses the
value of "i" to determine which element oy reference. If *i” has a value of 17, the
17-th element would be referenced.

182 Chapter 14

Subscripts are written enclosed by s pair of parentheses. Each subscript is
specified as a date item {not subscripted) or B numeric likral.

A subscripted daia jiem can be used jn most places that an items withowt
subscripts might be used:

move coal(i} 1o curreni-cost.
add cost(i) cot(j) giving price
add sales-tax cost(j) giving bill(k)

The preceding examples are intended to give the *flavour” of how subscripied items
might be used.

Items with a table may also be repeated with the CCURS clause:

Ol sales—ata.
03 region occurs 190 times
05 salesman occurs 5 times.
10 salestotal pic HBYVI9.
10 salescount pic 9(5).

The preceding example shows e table *region” of 10 clements. Each slement of
"region” iz itself 8 table of 5 "salesman”. Each “salesman” slement consists of two
items “salestotal” and “salescount”. In this case, two subscripes are required to
reference the clementary items;

salestotal(i, j)
salestotal in salesmanl(i, j}
salestotal in salesman in region(i, j)

The preceding axamples illustrate three equivalenst references to » *salestotal™ date
item for the j-th “salssman” in the i-th "region”. Up w three kevels of tables may be
defined. Thug, it is illegal to use a QOUCURS clause for a dats item which is
contained in three group itetns which all contsin an OCCURS clause. A space
character should follow each comma (,) chavacter when more than one subscript is
given for & dats name.

The other features of COBOL table handling are:

(1} the ability 1o specify tables whose nize varies (OCCURS DEPENDING);
anvd

Tables 283
{2 an alicrnative (INDEXING) to subscripting a3 a means of referenciog
elements in tables.

These feamres are described in the detailed portions of this chapter.

14.2 OCCURS

OCCURS integer { TO mteger | TIMES
[DEPENDING ON identifier]

[INDEXED BY index-name [, index-pame 1 ...]

The OCCURS clause is used to declare a number of repeated elements of the
same (ype. The simplast form of the clause

OCCURS integer TIMES

specifies that element in 1o be repeated the indicated nuomber of times. An example
of this format of the clause is given in the preceding section.

A second form of the clause may be vzed when the number of elements in the
table iy variable:

OCCURS integer TO integer TIMES
DEPENDING ON data-name

In this case, the number of elements in the table is determined by the value of the
data itemn given following the BEPENDING keyword. The positive integer value of
this data item st be in the range indicated by the positive integers following the
QCCURS keyword. The following notes apply to this format of the QCCURS
chauge:

n Storage is always reserved for the maximom number of elements; the dara
item indicates the number of occurances of the items.

(2) No data may follow a wvariable-gized table in a record. Except for
subordinate items, the date item containing en GCCURS DEFENDING
clainse must be the last data item in a record.

284 Chapter 14

()] This formax of the QCCURS clause cannot be specified if the data item 1o
which it applics is subordinate ty a dats item containing an OCCURS
clause.

(4} The data name following the DEPENDING keyword cannot be located in
the table being spacified by the OCCURS clause.

(51 ‘When B group item, having subocdinate to it g data item with an OCCURS
DEPENDING clause, is referenced, omly that part of the table indicated by
the DEPENDING dats iterny will be used in the operation. Thus, varishbe-
sized reconds can be read or written since only the defined part of the table
is ransmiered.

The Waterloo mictoCOBOL Interpreter will rest ax an error any atempt 1o
refercoce an clement of & table that is beyond the bounds of the tabie.

The following rules apply to the OCCURS clavse in general:

(1} The cleuse may not be specified for data items with level sumbers 01, 66,
TV or 88,

{2 The OCCURS clause may also apecify one or more index names. The use
of these items is discussed io the following section.

14.3 Indexing

Indexing may be used as an altarnstive to subscripting in order the reference
clements in a table. Subscripts arc integer values, presented as & numeric Literal or a
data itern. Index values are contained in cither index-names (specified by
INDEXED phrase of OCCURS clause) or in index data items (data tems with a
USAGE IS INDEX clausc). The normal arithmetic caleulations of COBOL are used
Lo sasign integer values to data items used a subscripts. Index values are assigned 1o
index-names or index datw kems vsing the SET or PERFORM statenents.

Indexing is intended to provide an efficient mechaniem to access elements in a
table. The index vaiues are "hidden” from the COBOL programmer; they may be
implemented in whatever manner is efficient for the hardware on which the COROL
FTOSTRIN SX&CUbes.

Index daty jtems are used only to store index values, Indexing is accomplished
only with index names and/or with numeric literals. Congider the following COBOL
statoments.;

Tables 285

02 COST OCCURS 100 TIMES
INDEXED BY COST-INDEX
PICTURE %8)V99.

SET COST-INDEX TO 47.
MOVE 49.34 TQ COST (COST-INDEX).

The SET statement causes the appropriate index value to reference the 47-th item of

"COST" to be assigned to the index-name “COST-INDEX". The pext statement

illustrates bhow "COST" can be indexed using this index name The MOVE
— statement would cause the value 49.34 to be assigned 1o the 47-th item of “COST".

The following terms may be used a5 an index:

index-name
index-name + literal
index-pame - literal
Literal
where the literal is a positive numeric literal. As with subscripts, up to three indices
- may be required depending upon the oumber of tables to which a data iem is
subordinate. The general form of indexing i
dawa-name { index, [, index [, index]1)

The next section describes the SET statement which may be used place values in
index names or index data items,

286 : Chapter 14

14.4 SET Statement

SET { idemifier [, { identifier ¥1..}yTO { identifier }

{ index-name { index-name } { index-pame }
{ number 3
SET ndex-name [, index-pame] ... {UPBY } { identifier }

{DOWNBY } { number }

The SET staternent is used to assign values to index-names of to index-data
items. It may also be used o assign an iMeger value, representing the number of the
clement in the table being referenced by a index name to a data item.

When the TO clause is present, the SET statement is used to assign & value
representing a position in a table. There are four possibilities for the item following
the T keyword:

{1 elementary datz item which is an integer: the vafue of the data itern
represents the position in a table.

(2) elementary data itern whose USAGE is INDEX: the valoe of the data item
indicates a position in any table.

&Y index name: the value of the index name represents a position in the table
which defined that index name.

{4) numeric literal: the value of the literal is the table position.

The value representing this positon is assigned 1o each of the items following the
SET keyword. There are three possibilities for each of these items:

(1} integer data item: this item may receive only an integer representing the
position indicated by an index name.

(2) index name: this item may receive & value representing a position in the
table for which it is defined, from any of the possibilities foitowing the TO
keyword,

Tables 287

» index datw item: this item may receive only a value representing a position
in any table from either another index data ftem or from an index name,

Omly the possibilities outlined above are permitted.

When the UF BY or OWN BY clause is used, the values of index names
following the SET keyword are adjusted relatively by a number of positions in the
table for which they are each defined. The number of positions to be sdjusted is
given by the value of the integer literal or of the elementary integer data item:

SET COST-INDEX UF BY 2

The =xample shows how an index data itern: can be adjusted two onward in = table.
Thus, if "COST-INDEX" indicated the 47-th position in the table before the SET
statement way executed, it would indicate the 49-th position after execution of the
statenwent.

Chapter 15

String Manipulation

15.1 Overview
Three verbs are provided to manipulate data as strings:

INSPECT provides the capability to coumt and/or replace occurrances of
characters in a deta item.

STRING provides the capability to compose part or ait of a date item from a
numbet of srings.

UNSTRING provides the capability 1o extract the contents of parts of a data item
and assign these parts to other data items.

The INSPECT and UNSTRING verbs are often useful for scanning data which 18
free-format andjor variable sized. Any COBOL data itern may be used a5 a string.
The data items are viewed as ssquences of characters to be manipulated using the
string verbs. The STRING verb is often useful for constructing gutput which is not
aligned upon field boundaries.

290 Chapter L5

15.2 INSPELT Statemnent

INSPECT identifier TALLYING
{,idemifiert FOR {, { { ALL }
{ { {LEADING }
{ { CHARACTERS

[{ BEFORE } INITIAL {identifier } 1} ...} ..

{ AFTER } { literal }
INSPECT identifier REPLACING
{CHARACTERSRY { identifier }
% { literal }
{{.{ALL } {, identifier } BY { identifier }

{{ {FIRST }{ dterml } { literal }
{{ {LEADING)

[{ BEFORE } INITIAL {identifier }]}..} ...}
{ AFTER } { literal }

INSPECT identifier TALLYING
{.identificFOR {i { { ALL } { identifier } }

{ { LEADING } { liseral 1}

{ CHARACTERS }

{
{
[{ BEFORE } INTTIAL {identifier }]}...} ...
{ AFTER } { titert }

String Manipulation 291

REFLACING

{Cﬂmmlf{umﬁﬁn }

f{ { il }

{{.{ALL } {, identifict } BY { identifier }

{{ {LEADING 1} { literal } {literal }
{{ {FIRSY }

[{ BEFORE)} INITIAL {idetificr })} ... } ... }
} {

{
{ AFTER

The INSPECT simement provides the capability 1o count amd/or replace
occurmances of groups of characters in a daa item. The TALLYING clause
npedﬁaaﬂnchumt:mupumbcmmmd.m:mﬂﬁmunduwhthlhcym
counted, and the data item 10 contain the count. The REPLACING ¢lanse specifics
the character growps to be replaced, the replacement values, and the conditions
under which replacement takss place. When both clauses are preseat the statement is
treated a8 if it were two INSPECT statememis, the first with an identical
TALLYING clamse and the second with an identical REPLACING clause.

Both the TALLYING and REPLACING clauses specify s oumber of
character-group occurtances for which 1o search. The comparison cycle proceeds as
follows:

() The comparison starts with the first character io the data item following the
INSPECT keyword.

(2) The character groups are processed, in order specified in the TALLYING
of REFLACING clause, searching for the firat one to match the data item
starting with the cumrent character posidon.

{a) If no match is found, the comparison position is sdvanced by
one.

(by If a march is found, a TALLYING or REPLACING opersticn
is performed and the comparison position is advanced by the
size of the matched item.

)] The preceding step is repeated provided the entire data item has Dot been
inspectsd. Otherwise, the execution of the statement is complieted.

292 Chapter 15

Thus, the comparison cycle proceeds n character at a time until 3 match is found.
The comparison resumes, following a match, at a position edjusted onward by the
size of the item matched.

Bach of the TALLYING or REPLACING phrases may contain 8 BEFORE or
ﬁHﬂhywdmmmnmcmgamwlﬁchﬂwcumpnﬁmcychuﬁvsly
considers the phrase, When the BEFORE keyword is given, the phrase is actively
considered only up to the character immediately precading the charscter string given
as # literal or data jeem following that keyword. When the AFTER keyword is
given, the phmse is actively considered only following the last character of the
character string given as a literal or data item following that keyword. If neither
phrase is specified, the phrase in actively considered throughout the inspected data

item.

mchmsuingtnbemuchedhyﬂwcmpndmncyckmybespeciﬁndin
a number of ways:

{1) CHARACTERS : this is a one-chafacter item which matches any <haracter
in the data itemn being inspected.

(2} ALL date-name or literal : the character string to be matched is the value of
the literal or data item.

k)] LEADING data-name or literal : the character sming to be matchad is the
vajue of the literal or date item ; the match is valid only at the first position
for which the clause is to be actively comsidered, when a match oceurs,
each of the contiguous occurances of the matched string in the data item is
counted/replaced.

) FIRST data itom or literal : the character string to be matched is the value
of literal or data item; the clause is no longer actively considered after it has
been successfully metched.

String Manipulation 293

153 STKING Statement

STRING { identifier } [, { identifier }1...
{literal } { Literal }

DELIMITEDBY { identifier }
{ literal }

[{idenafier } [, {idemtifier }1...
{literal } {literal }

DELIMITEDBY { identifier }]. . .
{ literat }

INTO identifier [WITH POINTER identifier]

[ON OVERFLOW imperative statemem]

The STRING starement is used to place one o more "small* srings of
characiers inte a "large” data item. The placement can start (POTNTER phrase)
anywhere in the *large” string. For each of the "small® strings, a delimiting character
string may be given to specify only the portios of the string up to the delimiter are i
be placed inte the "large” sring.

The daea item Following the INTD keyword is the "large” string inte which the
small strings are placed. The placement starts al 1he Jeftrmost charpster of the data
item when the FOINTER phrase is pot specified. When the POINTER phrase is
specified, the data item following that keyword must contain a pasitive integer value
used a3 the offset (one represents the leftmost position of the data item) at which the
placement will start. This data item is incremented by one each time & character is
placed into the receiving data item. It may be noted that moltiple STRING
statemgnts, using the FOINTER data item, may be vsed to construct single “large”
data item. The POINTER data iters will conwin the offset used in the next
STRING statement to piace its cheracters immediately following those placed by
the preceding STRING staterment.

Preceding the INTO keyword are given a oumber of sequences of data iems ot
literats, each followed by a DELIMETED phrase. Each of the dats items or literals
are considered in the omder they are given in the STRING statement, the portion of
these “small” strings pleced into the “large” string depends upon the first
DELIMITED phrase which follows the character string:

294 Chaptey 15

(4] SIZE: the entire character string is placed in the *large” character etring.

(2) literat or dats item: caly the portion of the "small” character string up to, but
not including, the value of the delimiting literal or dats item is placed in the
"large” character siring.

The placement of characters into the "large” character string proceeds a character at a
time. The process is completed when cither

(1) ﬂie'smalfchlrmurshiugshweullhemmovodmlhs'hrgc'suing;nr

{2) the value of the POINTER data item is non-positive or large than the size
of the "large” string.

In the lJater caxe, the imperative statement associated with the DVERPLOW clause
will be executsd, if this clause is specified.

Saing Manipulation

15.4 UNSTRING Statement

295

UNSTRING identifier

{ DELIMITED BY [ALL) { identifier }

{ fiteral

[OR[ALL) { identifier }] ...

{ lireral ¥
INT Oidentifier
[, DELTMITER IN identifier]
[, COUNT IN identifier]
[, identifier
[, DELIMITER IN identifier]
[, COUNT IN identificr]] ...
{ WITH POINTER identifier]

[TALLYING IN identifier]

[ON OVERFLOW imperative statement)

1

The UNSTRING verb may be used to create "small”™ strings from s "large”
string. The “large” string is given by the date item immediately following the
UNSTRING keyword. The UNSTRING process may start anywhbere (POSITION
phrase) in the "large” string. The number of “small’ sirings created may be counied
using the TALLYING keyword. Each "small” string (named following an INTO
keyword) is created from characters in the "large” string, starting at the cument
position srd continuing to cither the end of the siring or to the point immediately
preceding the » delimiting character string {specified in 2 DELIMITING phrase).
For each such receiving sring, the specific delimiter encountered may be saved
({DELIMITER IN) as may be the number of characters to be moved to the receiving
string (CORTNT IN} The current position is advanced following each movement to
the next position to the right of the delimiting character siring in the *large” string.

296 Chapter 15

When the POINTER keyword is not given, the "large” string is processed
starting at the leftimost character of the string. 'When the keyword is preseat, the
value of the data item following the keyword is used a3 an offset (one represents the
leftmost position), in order to establish the poine at which processing starts. Al the
completion of the statement, the POINTER data itemy will comtain the offeet of the
next unexamined character in the "large” otring. Thus, another TUNSTRING
statement may then be executed with this FOINTER value 1o continue the
UNSTRINGing process at the point completed by the initial UNSTRING
atavernent.

The DELIMITED BY phrasc i5 used t0 give one or more character sequences to
be used to delimit the charsctars to be moved to the current "small” data item. When
the ALL keyword is present, multiple occurrances of the delimitér value {given by
the data item or literal following the keyword) are treated as if the value occurred
cnce. Multiple delimiters may be given by separating the specifications with the OR
keyword.

When the TALLYING keyword is present, the value one is added to the daes
item npecified following the keyword, each time a “small” string has date moved to
it. In thizs way. a count of the number of UNSTRING operations can be maintained.
The UNSTRING siateinent docs not initalize this data item in any way.

When the OVERFLOW clavse is present, the imperative statemant giver in
that clause is executad under the following conditions:

(1} the data item given following the POINTER keyword is noo-positive or
greater than the size of the "large” character siring: or

{2 gl the "small® items have been processed and there still exist unexamined
characters in the "large” string.

String Mniputation Xy

15.5 Farmatting Example

In order to illustrate some of the featutes of string manipulaticn, a sample
program has been included in this section. The program reads a file (unformatted
text) of BO-character records and produces another file (formatted text) of
BO-character records. An input secord is composed of zero of more words saparated
from one another by aone or more space characters.

The program scans words and adds them to an output line. When the addition of
a word would exceed the capacity of a line, that line is written and the word is added
to the start of the next line., Thus, the program may be contidered to be a primitive
text formatting program.

* word/line problem
[]

identification division.
program-id. WORDLINE.
environmeni division.
configumtion section.
source-computier. THM-4331.
object-computer. IBM-4331.

input-output section.

file-control.
select optional card-file
assign to "unfmt’
file siatus is cand-atatus.
select line-fike
ansign to 'fmited’.

data division,
file section.
fd card-fike
label records are standam.

01 card-record.
02 filler pic x{BO).

298

fd

01

line-file

label reconis are standard .
line-record.

02 filler pic x{80).

working-storage section.

17

77
77
77
7

77
T?

7
7

cani-status pic xx.

cand-pir pic 99.
line-pa pic 99,
word-size pic 99
word-count pic 99,

got-wond pic xXXX.
card-data pic x(300.

ling-data pic x(80).
word-data pic x(20).

procedure division.

open input card-file.
perform init-line.

move "0 to card-seatus
perform read-card.
petform process-card

until eard-status not eqoal ‘00"

perform Find-lipe.
close card-file.

stop run.

read-cand.

réesx] cand-file into card-data
at end.
dispiay card-data

PrOCess-cand

mave | to card-pir.
perform get-word.
perform process-word

until got-word ot equal ‘e’

perform read-card.

Chapter 13

Soing Manipulation

get-word.
move zero o word-cownt.
oxve spaces to word-data.
unsaing card-dats
delimited by all space
inte word-data
count in word-gize
with pointer card-pir
tallying word-counnt.
if word-count greater than zero
move ‘frue’ 10 got-word
add | to word-size
else
move ‘'nope’ 10 got-word.
display "word: ' word-data.

process-word.

if word-size + line-pir greater than 81
perferm write-line
perform oew-line.

siring
word-data delimited by space
space delimited by sige
into line-data
with pointer line-pir.

perform get-word.

init-line.
open output line-fik.
perform new-line.

new-line,
move | o line-pir.
move spaces to ling-data.

fini-line.
perform write-line.
close line-file,
write-line.

write fine-record from line-data.
display line-data.

Chapter 16

Interactive Debugger

16,1 Overview

The internctive debupger is an istepral part of the microCOBOL interpreter
sysem. It is desipned to be used to monikr the execution of a program. The
facilitiea provided include the capability o exscute COBOL statements
imavesdiately, to sxecnie statesients in the program one b i s o contime o
terminate execution. The debugger in entered when an error occura during the
exscution of & program, when the BREAK key (or an equivalent key) is depressed,
of when sn ENTHR DEBUGGING statement is execuied.

It should be noted that the microCOBOL interprater will check the syninx of the
emtire program before the sotual exccution of the program iz commenced. Any
ayntax errofs detected at this point do not couse the debugger Lo be entered. The
debugger is cotered only after the actual exccution of the program has statted.

Whet the detrugger in cntered, a oumber of mcssages arc displayed ot the
eeminal. These messages show the soctions or paragmphs which are being actively
performed at the time of the error. In addition, the ststement in emor is displayed,
with s indication of the position io the statensent at which the arror wid detected, A
full Bnglish-taxt error meesage is alw digplayed.

Debugging commands are entered as single letiens, optionally followsd by extra
informaticn. The following sections describe these commands.

16.2 Comtimer {¢) Command

Tha contipne command caumes the microCOBOL interpreter o resume
cxecution of the COBOL program siarting with the cwmrent statement. This
command is typically used following an ENTER DEBUGGING statemnent or after
the iser has replaced o dats value which camsed the error to be derectad.

302 Chapter 16

The starement at which execution resumes is the one following the last one
executed, unbess the debugger was snkered because of an srror. In the later case,
extoution resumes with the ststement that caused the srror.

16} Execute (¢} Command

& sentence

The Execute command causes s COBOL sentence to be execuied, as if the
sentence were inserted into the program (followed by an ENTER DEBUGGING
statement) at the point in the program st which the debugger was entered.

The debugger is normmally pe-cotered, in the same stale as axisted before the
scolence was executed, after successful exccution of the senbence. An exception io
this rule is the successfiul execution of a GO T statement. In this situation the
debugger is serminated and execution comtinues normally at the target statemnent.

When an error occurs while executing the sentence, the debugger is not entered
recursively. It is re-cmtered with same state as xisted before the sentence was began
exccution with the Exocute command, Thus, the suspended statement is the one at
which the debugger was originally invoked.

The Exccute statement has many powsrful uses when debugging programs. The
contents of data items may be inspecied by executing 3 DISPLAY statement:

¢ diaplay myvar

The preceding cxample causes the value of the data item *myvar® to be displayed
upon the screcn. A section or paragraph may be exccuted by executing a
PERFPORM statement. Valucs may be placed into data items by executing MOVE
Halemants:

e move 19.34 o amoun.

The preceding example illustrates how the value 79.34 may be placed in the data
item "amount”.

Somﬂimu:numrnuyhemmponﬁ]ymwmdbymuﬁngmmmm
statements. For examgle, an attemnpt to use an undefined value might be corrected by
exccuting 3 MOVE statement to place an appropriate value in the data item. It

Interactive Debugger 303

would then be possible to use the Continve (c) command to resurne cxscition of the
progam. In ofher cases, the debugger should be terminated with the Quit (q)
command.

16.4 Quit (q) Commuand

The Quit command causes the exccution of the program to términase and the
editing subsystem to be re-sntered.

16.5 Step (n) Command

The Step command canses the program to execate the singls statement at which
the debugger has suspsnded execution. Depressing the RETURN key another time
causes the next statement to execuie. In some implementaGons, keeping the
RETURN key depressed causes the program to execute with cach hine te be exccuted
displayed immedistely before it is executed. Thus, the flow of control can be
precisely viewed.

16.6 Where-am-1 (w) Command
The Where-am-1 command cauges the messages displayed, when the debugger
wat initiglly ensered, to be displayed again on the terminal. The command may be

used to remind a user where the program is suspended sod of the error that caused
the debugger to be sntered.

16.7 ENTER DEBUGGING

ENTER DEBUGGING ENYVIRONMENT

The ENTER DEBUGGING statement is used to enter the debugging ai points
specified by the progrunmer. This stabement i3 am extension to standard COBOL is
intended t© be used only when debugging programs asing the microCOBOL
interpreter.

Chapter 17

CALL Statement

CALL { identifier } USING identifier
{ literal }

[. {identifier }]...
{ literal }

The CALL statement, as implementedd, i5 an exvension to COBOL. It is intended
to be used only to invoke machine-language subrowtines. Warerloo microCOBOL
provides oo support for the Inter-Program Communication module described in the
COBOL language.

The integer data item or liveral following the CALL keyword is used as the
address of the subroutine to be invoked. The integer data item foltoeang the SING
keyword contains & return value, if any, from that subroutine. The remaining daca
items o literals are passed 1o the invoked subroutine as parametess.

The method by which parameters and return values are communicated with the
called subroutine is dependent upon the computer system oo which the COBOL
program execites (see SYSTEM DEPENDENCIES). In gencral, the convention
used is compatible with that used by the WSL (Watcrloo Systems Language)

programming language.

Chapter 18

System Dependencies:

15.1 Overvisw

System dependencics arise because the hardware and controlling programa differ
from computer system to computer system. A COBOL processor will, in genersl,
buffer the wier from many of these dependencies. In some cases, however, it s
better that & programmesr be aware of these dependencies in order that a program is
able to cxecule on various systems.

System dependencies are moat ofien encountered in the following areas:
{1} file eystem
(2) collating sequence
()] hardware constraints of petipberals
{4 cailing assembiy-language subroutines
These ismues are discussed in sach of the system dependent sections. As well, 8

section on postability is included to act as a guide for those who wish by execute
progrums on moltiple compating systems.

08 Chapter 18

18.2 Portabllity

Essentially, poriability is the ability to move a program from poe compating
environment to another. The amount of effort this entails is & measure of the degree
of portability of the program in question. A number of techniques can be used to
increase the povtability of a program.
18.2.1 Flle Names

The Ale peming conventions differ from system to systen, However, most
aystemns support short file names (say 6 charecters) composed of wppercase letters.
18.2.2 Use of Files

Files should be used in the most straight-forward way possible. Techniques to be
avoided include:
(1) creating a file with SEQUENTIAL organization and then processing it
with RELATIVE organization.
() cxtending the size of a file with RELATIVE organization.
(K] creating a RELATIVE file with RANDOM access.

These techniques work om many systems, but not all. It is often expensive to
reprogram an application which uses ene or more of these capabilitics.

18.2.3 Code Set

Waterloo microCOBOL supports only the native (hardware) implememation of
the collating saquence. There are two principal code seéts in popular use; ERCDHC
(larger IBM computers) and ASCH (most other computers). Since characters are
arranged differently in these code sets, writing programs to depend upon a specific
ordering should be avoided.

System Dependencies: W00

18.3 Commodore SoperPET

This section outlines the system dependencies for the Commodore SuperPET.
More detail is found in the System Overview Manuat for that computer.

18.3.1 Code Set

The Commodore SuperPET wses the ASCIH collating sequence.

18.3.2 Date Support

In order that the ACCEPT FROM DATE verb produce the correct result, the
curremt date (s¢¢ DATE commend in EDMITOR description) should be set an
"YYMMDD" where "YY™ is the Jast two digits of the year, "MM" is the number of
the month, and "DIY* is number of the day. Thus, September 25, 1983 is entered as
8025,

ER.1.3 Files

Files are completely described in the System Orverview manuval. This section
deals with the aspects that pertain directly 1o microCOBOL. There are two formats
of files which may be stored on Commeodore 2040 or 8050 diskettes, “seq” and "rel”.
These files comespond, coughly, to the COBOL sequential and relative
organizations.

A file name, on & diskette system, is piven in the format:

{type:sizeMevice:name], {seq }]
{eel }

where “name” is given as up to 16 characiers, inchuing special charscters and
spaces. If omitted, "seq” is assumed,

Because "seq” files may be processed only in a sequential manner, they should
be used only with ORGANIZATION IS SEQUENTIAL. When
ORGANIZATION IS RELATIVE, “rel” files must be used since only these files
permit random access,

310 Chapier 18

There are three types of files which may be stored in either of the two formats:

text A text fle compists of vaniable-sized mconds, containing only
*printable” characters. This file type is chosen by default when the type
15 not mettioned.

variable A vaniable file consists of variable-sized records which may contain
arbitrary characters.

fixed A fixed file consists of fixed-sized mcords which may comtain arbitrary
characters.,

Fixed files should be used when all records in the file have the same size: otherwise,
varishle o text fikes should be used. Text files should not be used to store files in
which there are index dsa items or signed numeric values in which the SIGN IS
SEPARATE is not given.

The size iz the maximum size, in characters, of a record in the file. For fixed
files, this size is the size of all records.

The file system with the SuperPET does not store file type or size information.
Consequently, each time a file is used, the type, size and format specifications
should be given as part of the file pame. The safext convention is to use the identical
file specification each time the file is mentioned.

18.3.4 Listing Files

When the ADVANCING keyword is used with a WRITE statement, it mast be
used for all WRITE stateroents for that file. Record descriptions shoukd reasrve an
extra character at the start of each record for carriage-control informsation. This
character is filled in sutomatically by microlOBOL.

When the ADVANCING keyword is met used for a file and thar file is
recognizable as a listing File, the first charncter in cach record written in assumed to
be n character used for vertical positioning. The only such file recognized on the
SuperPET is the file “printes”.

The control characters ‘1°, '0°, '+°, '/, and ' * are oanslated to ASCIH form-
feed, line-feed nnd camriage-retumn characters, o combinations of chersciers,
automakically by microCOBOL. Where large numbers of lines are skipped, blank
records may be written to the file to ensore proper vertical spacing.

System Depandencies: in

15.2.5 Call Interface

Tha execution of the CALL statemwenit causcs an issembly-language subroutine
to be invoked. The parameters, if any, given in the CALL statement are passed to
the invoked routine as follows:

integer An ineger data item or liscral is passed as a two-byte binary value.

other The dats item or Hseral is copied 1o 4 temporary Jocation and a byte with
hexadecimal zeroes is appended 1o the end of the copied value. The addrecs
of the temporary copy is pessed to the asscmbly-language routine.

Al pararmeters are passed upon the stack pointed at by the SP register. The address
to which the assembly-language routing should retumn is pushed on the stack
following the parameters, if any. The address 1o which controt is passed is obtained
by taking the integer vakie given following the CALL keyword and treating that
vilue as an akiress.

The assembty-language subrowtine should resarn to the address pushed at the top
of the 5P stack. When that return takes place, that address should have been popped
from the stack. The parameters should stll reside upon the stack. The contents of the
bardware D) register are used as the return value. This valve is placed in the data
item, if present, given following the USING keyword.

Comwider the following exampie:
Tr ADDR PIC 99999,
7?7 INT-VAL PIC %9
77 CHR-VAL PIC X(3).
7T RET-VAL PIC %5).

MOVE 27 TO INT-VAL.
MOVE "ABCDE’ TO CHR-VAL.

MOVE 21345 to ADDR.

CALL ADDR USING RET-VAL, INT-VAL, CHR-VAL.
DISPLAY RET-VAL.

The execution of the CALL statement will canse a temporary copy of "CHR-VAL"
to be pliced in memory (say at location 19437} A zerced byws is appended
following the five charscters "ABCDEF" at this location. The contents of the SP
stack when the routine af Jocation 21346 receives control wee as follows, (all eniries
are two-byte valucs):

312 Chapter 18

{top) 16457 (return address)
27 {value of INT-VAL)
{boitom) 19437 (address of temporary sring)

When the assembly-language subrouting returns to addeess 16457, s the completon
of ils execution, the stack conotents will appear:

{top) 27 (value of INT-VAL)
(bottam) 19437 (sddress of temporary siring)

If the hardware [} register contaims 963, then that value is placed imo "RET-YAL".
Consequently,

00943

will be DISPLAYed by the statement following the CALL statement in the
example.

Notes:

{1) It 15 the responsibility of the programmer to load the assembly-language
subrontine inte memocy and to supply the correct address of that routioe.

)] The library routines described in Warerloo 6809 Assembier : Tutorial and
Reference Manuo! may be called uging the CALL statesment.

(K1) The Waterloc 680% WSL compiler geperates subroutines in 6809 assembly
tanguage which may be invoked with the CALL statcment.

System Dependencies: 313

18.4 YM/CMS

This section outlines the system dependencies for the IBM VM/CMS operating
system.

18.4.1 Code Set

The compaters on which YM/CMS executes wse the EBCDIC collating
sequence.

18.4.2 Flles
File names in the VM/CMS file system are pgiven as
name fype mode

and are described complesely in the documentation written by 1BM for this operating
system. Generally, users will specify only the mame and occasionally the rype.
Theac names may be up to 8 characters in Jengih and composed of letters and digits.

When creating files it is not pecessary to specify any information sbout the size
of recorde or the format of the files. This information is suomatically determined by
microCOBOL.

There it no differcnce between files organized sequentially and randomly.
Casriage control characters are the normaj EBCDIC characters ‘17, ‘07, * ', '-' and
'+’, Where large numbers of lines are ADVANCED, blank lives may be inserted in
the File.

18.4.3 Listiag Flles

When the ADVANCING keyword is used with & WRITE atatement, it suat be
used for all WRITE mscments for that file, Record descriptions should reserve an
extra character at the start of czach record for camisge-control infortnation. This
character ix filled in avtomaticslly by microCOBOL.

When the ADVANCING keyword is not used for a file and that file is
recognizable as a Listing file, the first charpcter in sach record written is asaumed o
be a charncter used for vertical positioning. The files recopnized in the VM/CMS are
the file "printer” and filez with a type of "LISTING".

314 Chapter 18

The control characters *1°, '0°, "+', '-', and * ' are not translated to any other
character as most IBM printers use these characters for vertical spacing. Where large
pumbers of lines are skipped, blank records muy be written to the file to cosure

proper vertical spacing.

18.4.4 Call Interface

The execution of the CALL statcrpent causes an asscmbly-langnage subroutine
to be invoked. The parameters, if any, given in the CALL stasiement are passed to
the inveked routine as follows:

integer An integer data item o Literal is passed as a four-byte binary value,

other The data item or literal is copied to a temporary location and a byte with
hexadecimal zeroes is appended to the end of the copisd value. The address
of the temporary copy is passed to the assembly-language routine.

Al perameters are passed using a list pointed at by register 12, The address w0 which
the assembly-kmgwage routine should return is contained in register 14, The sddress
to which control is passed iz obtained by taking the integer value given following the
CALL keyword and treating thet velue as an address.

The aasembly-lunguage subroutine should return to the address contained in
register 14. The contents of the register 1) are used as the return value. This valoe is
placed io the date item, if present, given following the USING keyword.

Consider the following example:
77 ADDR PiC 99999,
77 INT-VAL PIC 9.
T CHR-VAL PIC X(5).
7T RET-VAL PIC %5).

MOVE 27 TO INT-VAL.

MOVE "ABCDE" TO CHR-VAL.

MOVE 21346 w ADDR.

CALL ADDR USING RET-VAL, INT-VAL, CHR-VAL.
DISPEAY RET-VAL.

The execution of the CALL statement will cruse 8 temporary copy of "CHR-VAL”
o be placed in memory (say at location 19%437). A zeroed byte is sppended

System Dependencies: 3
following the five charscters "ABCDEF at this location. Register 12 points at a list
a5 Fallows:

27 {value of INT-VAL)
19437 {axdkdrens of temporary siring)

If register 11 comtaing 963 when the mssembly-language subroutine completes
exccution, then that value will be placed in "RET-VAL" and

00963

will be DISFLAYed by the statement following the CALL statement in the
example.

MNotes:

(h It ix the reaponsibility of the programmer to load the nssembly-language
subroutine into memory and to supply the correct address of that routing.

(2) The Waterloo VM/CMS WSL compiler generates sulmoutings in /370
assembly language which may be invoked with the CALL statement.

Appendix A

Language Skeleton

This appendix gives the skeleton for the syptax accepted by Waterdoo
microlCOBOL. It ix organized by division.

Al IDENTIFICATION DIVISION.

A.l.1 Skeleton

IDENTIFICATION IMYISION.
FROGRAM-ID. name.
[AUTHOR. [comment]]
[INSTALLATEON. { comment]]
[DATE-WRITTEN. [comment]]
[DATE-COMPILED. [comment] |

[SECURITY. [comment] }

318 Appendix A
A.2 ENVIRONMENT DIVISION

A.2.1 Skeleton

ENVIRONMENT IMVISION.

CONFIGLURATION SECTION.

SOURCE-COMPUTER. name [WITH DEBUGGING MODE).

OBJECT-COMPUTER. name.
{ WORDS }

LMEMORY SIZE number { CHARACTERS }]
{ MODULES }

[,FROGRAM COLLATING SEQUENCE is name }

[SPECIAL-NAMES.
LCURRENCY SIGN 1S literal]

[, DECIMAL-POINT IS COMMA | 1.

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{select clause} . .]

Language Skeleton 39

A.2.2 SELECT Clause
SELECT [OPTIONAL] file-name
ASSIGN TO literal

[; ORGANIZATION IS [RELATIVE }]
{ SEQUENTIAL }

[; ACCESS MODE [S§ { SEQUENTIAL [RELATTVE KEY IS name]

}
{ }
{ {RANDOM } , RELATIVE KEY IS name ~ }
}

{ {DYNAMIC }

[; FILE STATUS 15 name].
A3 DATA DIVISION

A.3.1 Skeleten

DATA DIVISION.
[FILE SECTION.

[FD filename

(FL entry)

(record-description entey} . . .). ..]

[WORKING-STORAGE SECTION.

{ 17 (data-description} }.o.]
{ {record-description coiry} b

30 Appendix A

A3.2 FD emtry

[: BLOCK contains [number TO] number { RECORDS }}
{ CHARACTERS }

[; RECORD CONTAINS { number TO] oumber CHARACTERS]

[: LABEL {RECORD IS }{STANDARD })
{RECORDS ARE)} { OMITTED }

[; VALUE OF literal is literal

[DATA { RECORDIS } name, namc ...
{ RECORDS ARE }

{; CODE-SET IS5 name)

A.%.) Duta-description entry: Level 66
66 name-t; RENAMES name-2[{ THROUGH } name-32]
{ THRU }
A.3.4 Data-description eniry: Level 88

88 name; { VALUEIS } literal [{ THROUGH } literal)
{ VALUES ARE } [{ THRU }

[, literal | { THROUGH } literal]]. . .
{ THRU }

Language Skeleton a2

AJS Duta-description entry: Levels 01-49

level-mmmber { data-name }
{ FILLER }

[: REDEFINES data-name]

[{ PICTURE } IS character string]

{PC H
{ COMPUTATIONAL }
[USAGEIS] { COMP ¥
{ DISPLAY }
{ INDEX }

[SIGN 151 { LEADING } [SEPARATE CHARACTER]
{TRAILING }

[: OCCURS { number TO sumber TIMES DEPENDBING on name }]
{ oumber TIMES }

[INDEXED BY name [, pame]]

[{SYNCHRONIZED }[{ LEFT }]]
{ SYNCH } { RIGHT }

[{ JUSTIFIED } RIGHT)
{ JUST y

[: BLANK WHEN ZERO)

[; VALUE is literal] .

xn

A4 PROCEDURE DIVISION

A4l Skeletom
PROCEDURE DIVISION.
[DECLARATIVES.
{ section-name SECTION. declarative searence
[peragraph-name. [sentence] ...] } ...
END DECLARATIVES. |

{procedure body)

A.4.2 Precedure Body
{ pamgraph-name. [sentence] . . . }

{ section-name SECTION.

f peragraph-name. [sentence] ... 1.0} ...

Appendix A

Language Skeleton i3

AAY Statements

ACCEPT identifier [FROM { DATE } 1]
{ TIME }

ADD { idemifier } [, { identifier }] ...
{ literal 3} { literal }
TO identifier [ROUNDED | [, identifier [ROAUNDED] ...
{; OMN SIZE ERROR imperative statement]
ADD { identifier }, { identifier } [, {identifier }] ...
{ litral } {literal } {lierat]
GIVING identifier [ROUNDED] [identifier [ROUNDED]]...
[; ON SIZE ERROR imperative statement]
ADD { CORRESPONDING 7 idedtifier TO identifier [ROUNDED]
{ CORR }

[; ON SIZE ERROR imperative staiement]

ALTER procedure-name TO [PROCEED T] procecure-name
[, procedure-name TO [PROCEED T(] procedure-pame | ...
CALL { identificr } USING identifier
{ literal H

[. {identifier %7 ...
{ literal }

Appendix A

CLOSE file-name [{{REEL }[{ WITHNOREWIND }]
{UNIT } {FOR REMOVAL)

31
{ }
{ }
{ WITH { NO REWIND } }
{ { LOCK } }

[, Ble-name ... | ...

COMPUTE identifier [ROUNDED] [, identifier [ROUNDED]] ...
= arithmetic-cxpression
[[ON SIZE ERROR imperative statement]

DISPLAY { identifier } [, { identifier }] ...
{litersl } {literal }

DIVIDE { identifier } INTO identifier [ROUNDED]
{ literal 1}
[, identifier [ROUNDED]] ...
[; ON SIZE ERROR imperative statement]
DIVIDE {idemtifier } INTO { identifier }
{ literal } {literal }
GIVING identifier [ROUNDED] [, identifier [ROUNDED |]...
(. ON SIZE ERROR imperative statement |
DIVIDE { identifier } BY { identifier }
{ literal | { literal }
GIVING identifier [ROUNDED] [, identifier [ROUNDED] J...

i ON SIZE ERROR imperative statemant]

Language Skeleton zs

IMVIDE { identifies } INTO { identifier }
{ literal } { literal 3}

GIVING identifier [ROUNDED] REMAINDER identifier
[ON SIZE ERROR imperative statement]
DIVIDE { identifier }BY { identifier }
{ liveral } { liternl }
GIVING identifier [ROUNDED | REMAINDER identifier

[; ON SIZE ERROR impcrative statement |

ENTER DEBUGGING ENVIEONMENT

EXIT

GO TO [procedure-name]

{{} TO procedure-name [, procedure-name] ...

DEPENDING ON identifier

IF condition; { statement }[ELSE { statement 1]
{ NEXT SENTENCE } { NEXT SENTENCE }
INSPECT ideatifier TALLYING
{.identifier FOR {, { {ALL ¥ { identifier } ¥
{ { {LEADING }{ literal })
{ { CHARACTERS }

({ BEFORE } INITIAL {identifier }3}}... } ...
{ AFTER } { literal }

24

INSPECT identifier REPLACING

{CHARACTERSBY { identifier }

} { literal }

{{.{ALL } {, identifier } BY { identifier }
{{ {FIRST }{ lieral 3 {literd }
{{ {LEADING }

[{ BEFORE } INTRIAL {identifier })} ...} ..}
{ AFTER } { literal }

INSPECY identificr TALLYING
{,identifier FOR { { ALL } { identifier } }

{ {LEADING } { literat } }

{ CHARACTERS }

*

{
{
{

[{ BEFORE } INITIAL {identifier }1} ...} ...
{ AFTER } { literai }

REPLACING

{CHARACTERSBY { identifier }

E { literal }

{{.{ALL Y {, identifier } BY { identifier }
{{ {LEADING } { litaral }oo { literal }
{{ {FIRST }

[{ BEFORE } INTTIAL {identifier }]}...}... }
{ AFTER } { literal }

MOVE { identifier } TQ { identifier } [, identifier] ...
{ literal }

MOVE { CORRESPONDING } identifier TO identifier
{ CORR '

Language Skeleton 7
MULTIPLY { identifier } BY { idemtifier } [ROUNDED]
{ literal }
[, identifier [ROUNDED]]. ..
[; ‘ON SIZE ERROR imperative statement]
MULTIPLY { identifier } BY { idemtificr }
{ liteeal } { literadl }
GIVING identifier [ROUNDED]
[, identifier [ROUNDED }1]. . .
[; ON SIZE ERROR imperative statement]
OPEN {INPUT } file-name, [, file-name | ...
{OUTPUT }
{1-0 }
{ EXTEND }
[{INPUT } file-name, [, file-pame J...] ...
{ OUTPUT }

{1-0 }
{ EXTEND }

PERFORM procedure [{ THROUGH } procedure |
{ THRRU }
[{identifier } TIMES]
{ number }
PERFORM procedure [{ THROUGH } procedure]
{ THRU }

[UNTIL condition]

328

FERFORM procedure [{ THROUGH)} procedure |
{ THRU }
YARYING { identifier } FROM {identifier }
{ literal ' { indkex-name 3
{ literai }
BY {idemifier } UNTIL conditioa
{ literal }
[AFTER { identifier } FROM { identifier }
{ index-name } {index-name }
{ literal }
BY {identifi@ } UNTIL condition
{ litersl }
[AFTER { idemtifier } FROM { identifier }
{ index-name } { index-name }
{ literal }

BY { identifier } UNTIL condition]]
{ titeral }

READ file-name [NEXT RECORDY] [INTO identifier)

[. AT END imperative statemnent]

READ file-name RECORD [INTOQ identifier]

[INYALID KEY imperative statement |

REWRITE record-name [FROM identifier]

[; INVALID KEY imperative staiement |

SET { identifier [, { identifier }]..}TO
{ index-name { index-name }

Appendix A

{ identifier
{ index-name
{ number

}
h
}

Language Skeleton 329

SET index-pame [, index-name | ... {UPBY } {identfier)}
{DOWNBY } { number }

STOP { RUN }
{ litezal }

STRING { identifier } [, { identifier }] ...
{literal } { literal }

DELIMITEDBY { identifier }
{ lieeral }

[{idensifier } [, { identifier }1...
{literal } {literal }

DELIMITEDBY { identifier }1. ..
{ literal }

INTO identifier [WITH POINTER identifier]
[; ON OVERFLOW imperative statement]
SUBTRACT { identifier } [, {identifier } ... }
{ lLiteral } { literal 1
FROM identifier [ROUNDED] [identifier [ROUNDED]]...

[ON SIZE ERROR imperative statzment)

330 Appendix A
SUBTRACT { identifier } [, { identifier } ... }
{hiteradl } {litermd @}

FROM { identifier }
{ literal ~ }

GIVING identifier [ROUNDED j
[. identifier [ROUNDED]] ...
[. ON SIZE ERROR imperstive statement]
SUBTRACT { CORRESPONDING } identifier
{ CORR }
FROM identifier [ROUNDED]

[: ON SIZE ERROR imperative statement]

Lenpusge Skeleton 331

UNSTRING identifier

[DELIMITED BY [ALL] { identifier }
{ literal }

[OR[ALL] { idextifier }]...1]
{ literal }

INTOidentificr
[, DELIMITER IN identifier]
[, COUNT IN identifier]

{, identifier

[. DELIMITER TN identifier]
[. COUNT IN identifier 1] ...

[WITH POINTER identifier)

[TALLYING IM identifier]

[; ON OVERFLOW impcrative statement]

USE AFTER STANDARD { EXCEPTION } PROCEDURE

{ ERROR ¥
ON { file-name [, file-name J... }
{ INPUT)
{ OUTPUT 1
{10 }
{ EXTEND }

WRITE record-name [FROM identifier]
[{BEFORE } ADVANCING { { identifier } [{LINES }] }]
{ AFTER } E{numh:r ¥ {LINE } i
{ PAGE }

312

WRITE record-name [FROM identifier |

[, INVALID KEY imperstive statement]

Appendix A

Appendix B

Reserved Words

The following is a list of reserved words in the full COBOL language. Waterloo
microCOBOL treats all the words as reserved, even though many are not required in
the current language defmition. This ensures compatibility with other COBOL

CH DATE-WRITTEN FOR
CHARACTER DAY FROM
CHARACTERS DE EMI
CLOCK-UNITS DEBUG-CONTENTS ENABLE
CLOSE DEBUG-ITEM END

COBOL DEBUG-LENE END-CF-PAGE
CODE DEBUG-NAME ENTER
CODE-SET DEBUG-SUB-1 ENVIRONMENT
COLLATING DEBUG-SUB-2 EOP
COLUMN DEBUG-SUB-3 EQUAL
COMMA DEBUGGING ERROR
COMMUNICATION DECIMAL-POINT ESl

COMP DECLARATIVES EVERY
COMPUTATIONAL DELETE EXCEPTION
COMPUTE DELIMITED EXIT
CONFIGURATION DELIMITER EXTEND
CONTAINS DEPENDING FD

CONTROL DESCENDING FILE
CONTROLS DESTINATION FILE-CONTROL
COFY DETAIL FILLER

CORR DISABLE FINAL
CORRESPONDING DISPLAY FIRST
COUNT DIVIDE FOOTING
CURRENCY DIVISION FOR

DATA DOWN FROM

DATE DUPLICATES GENERATE
DATE-COMFILED FOOTING GIVING

1M

G

GREATER
GROUP
HEADING
HIGH-VALUE
HIGH-VALUES
o
I-0-CONTROL
IDENTIFICATION
IF

IN

INDEX
INDEXED
INDICATE
TNTTLAL
INITIATE
INPUT
INPUT-OUTPLUT
INSPECT
INSTALLATION
INTC
INVALID

IS

JUST
JUSTIFIED
KEY

LABEL

LAST
LEADING
LEFT

LENGTH

LESS

LIMIT

LIMITS
LINAGE

LINAGE-COUNTER

LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES

MEMORY PROGRAM-ID
MERGE QUEUE
MESSAGE QUOTE
MODE QUOTES
MODULES RANDOM
MOVE RD
MULTIPLE READ
MULTIPLY RECEIVE
NATIVE RECORD
NEGATIVE RECORDS
NEXT REDEFINES
NO REEL

NOT REFERENCES
NUMBER RELATIVE
NUMERIC RELEASE
OBJECT-COMPUTERREMAINDER
QCCURS REMOVAL
OF RENAMES
OFF REPLACING
OMITTED REPORT

ON REPORTING
OPEN REPORTS
OPTIONAL RERUN

OR RESERVE
ORGANIZATION RESET
CGUTPUT RETURN
OVERFLOW REVERSED
PAGE REWIND
PAGE-COUNTER REWRITE
PERFORM RF

PF RH

PH RIGHT

FIC ROUNDED
PCTURE RUN

PLUS SAME
POINTER SD
PGSITION SEARCH
POSITIVE SECTION
PRINTING SECURITY
PROCEDURE SEGMENT
PROCEDURES SEGMENT-LIMIT
PROCEED SELECT
PROGRAM SEND

Appendix B

SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-
COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT
SUM
SUPPRESS
SYMBOLIC
SYNC
$YNCHRONIZED
TABLE
TALLYING
TAPE
TERMINAL
TERMINATE
TEXT
THAN
THROUGH
THRU
TIME
TIMES
TO
TOP

TRAILING UPON
TYPE USAGE
UNIT USE
UNSTRING USING
UNTIL VALUE

VALUES
VARYING
WHEN

WORDS

335

WORKING-
STORAGE

ZERO
ZEROES
ZEROS '

336

ACCESS, 181
dynamiz, 181
mmndom, 181
relative, 181
sequential, 181
ADVANCING, 264, 310, 313
ALL, 171
alphabetic, 190, 219
alphamwmieric, 191
cdited, 19]
AND, 90-21, 221
afrea
A, 169, 212
B, 169, 212
arithmetic, 95, 105, 214, 235
pocuracy, 216
expression, 214
expregsions, 106
opeTators, 106, 214
priogity, 107, 215
assembly language, 318, 314
ASSIGN, 181
AT END, 44, 46, 180, 265
AUTHOR, 174

BLANK WHEN ZERO, 202, 207

BLOCK CONTAINS, 145

carriuge

control, 268
carriage control, 64
category, 190, 195
COBOL., 4, 167

program, 4
CODESET, 18
collating sequence, 103, 173,

308-309, 311

column, 169
comma, 167, 179
comment, 7, 169-170
COMP, 202, 210
COTLPArizQn

noonumeric, 17, 218

numesic, 217
compoaite of operamda, 236
COMPUTATIONAL, 202, 206,

210
copdition, 17, 73, 91

abbreviaed, 223

class, 219

combined, 222

complex, 220

compound, 90

evaluation, 224

pame, 209, 220

relation, 217

gign, 230

simple, 216

variable, 2049, 220
conditional

expression, 216

stateroent, 212
constant, 171

ALL, 171

figurative, 171
control, 212
CORR, 226, 231, 236, 242
CORRESPONDING, 226, 231,

236, 242
currency symbol, 179, 195

DATA

FD, 186

VALUE, 207
data name, L0, 169
DATE. 230, 309
DATE-COMPILED, 175
DATE-WRITTEN, 174
debugger, 301

continue, 301

exccule, M2

quit, 303

stiep, 303

where, 303
decimel point, 179, 194
DECLARATIVES, 212-213, 245

Index

division, 5, 168
DATA, 165, 133
ENVIRONMENT, 168, 177,
262, 71
IDENTIFICATION, 163, 173
PROCEDURE, 158, 211
dollar-sign, 179

editing, 195
fixed insection, 196
foating insertion, 196-197
msertion, 196
simple insertion, 196
Zero suppeession, 196, 158
elementary
item, 187
MOVE, 232
clementary item
size, 192
ELSE, 78, 2583, 255, 157
end nf file, 43, 45, 26%, 274

false range, 81, 253, 255-256
FD, 34, 62, i84
figurative constant, 47, 171
mize, 171
file, 33
creatmg, 36
cxample, 48
introduction, 33, 261
pame, 3M-35, 58, [R0
pames, 38
OFTIONAL, 140
random, 261
reading, 40, 52
relative, 146, 149, 153, 156,
27
SECTION, 183, 208, 207
sequential, 261
STATUS, 15]
student, 48
file name, 169

337

FILE-CONTROL, 80
files
portability, 308
SuperPET, 309
system depeodent, 313
VM{CMS, 313
FILLER, 27, 202, 226

group item, 187

HIGH-VALILE, 171
HIGH-VALUES, 46, 171

IF, 8%, 253, 255.256, 258
multiple choice, 82, 258
nested, 256, 258
range, 76, 253
simple, 254

impezative statement, 212

IN, 188

indentation, 17, 31, 87, 254-256,

258

index, 153, 156, 204, 210, 231

Indexing. 234

INBUT-OUTPUT, 179

INSTALLATION, 174

INVALID KEY, 152, 181

JUST, 202
JUSTIFIED, 202-203, 207, 210

LABEL, 184-18%
level number, 10, 187
66, 208, 210, 2246
T, 202
88, 209, 22&
literal, 171
numeric, 100, 103, 17}
logical operator, 88, 221
LOW-VALUE, 17}
LOW-VALUES, 171

338 Index

machine-langnage fo 194
subroutines, 305 o TLS, 194
MOVE A, 193
copversion, 233 B, 193
elementary, 232 CR, 115, 193
group, 234 currency symbol, L5, 117,
legal, 234 195, 196
DE, (95
name, 10, 169 decimal point, 99, 109
COBROL., 169 floating character, 199
lowercase, [70 P, 193, 236
paragraph, 13, 169, 245 period, 194
procedure, 245 precedence, 199
section, 169, 245 §, 103, 193
uppetcase, 170 ¥, 100, 193
NEGATIVE, 220 X, 194
nested IF, 258 Z, 112, 17, 14, 199
NEXT SENTENCE, 254, 257 0, 194
NOT, 221 9, 112, 117, 194
numeric, 194G, 219 portability, 308
edited, 192 POSITIVE, 220
sign, 104 printer spacing, 64
numeric edieed, 110 PROGRAM-ID, 5, 7, 173-174
OBJECT-COMPUTER, 178 Qualification, 188, 246
OCCURS, 130, 144, 144, QUOTE, 171
204-205, 207, 227, QUOTES, 171
281-283
OF, 188 TAngES
OR, 90-91, 221 false, 81
QORGANIZATION, 181 aue, 81
record, 22, 24, 188
paragraph, 13, 212 RECORD CONTAINS, 185
PIC, 20, 202 REDEFINES, 137, 202, 204, 207,
PICTURE, %6, 202 227
Clause, 203 relational operator, 73, 217
string, 190 RELATIVE KEY, 181
PICTURE clause, 10, 24, 29 RENAMES, 208, 227
picture skring report
+. 195, 199 exanmple, 52
%, 115, [17, 195, 199 reserved word, 11, 169, 317
* 195, 199 ' rounding, 100, 235

- 113, 195, 199

Indax

SECURITY, 175
SELECT. 48, 151, 180, 262, 271
examples, 182
semicolon, E67
sentence, T, 212
separator, 168
S1GN, 205
SIZE ERROR, 101, 234
SOURCE-COMPUTER, L78
SPACE, 171
SPACES, 171
SPECIAL-NAMES, 179
statement, 4, 212, 253, 323
ACCEPT, 10, 14, 229, 309
ADD, 97, 226
ALTER, 246
arithmetic, 235
CALL. 305, 311, 114
CLOSE, 39, 42, 263, IT2
comment, 7, 169-170
COMPUTE. 105, 2338
conditional, 212
DISPLAY, 7, 21, 205, 230
DIVIDE, 97, 239
ENTER, M1, 23
EXIT, 247
GO, 247
GOTO, 247
IF, 70, 74, 78, 253
imperative, 212
INSPECT, 290
MOVE, 28, 226, 23]
MULTIFLY, 97, 241
OPEN, 38, 41, 264, 273
PERFORM, 12, 15, 136, 213,
248, 234
READ, 41, 44, 152, 265, 274
REWRITE, 266, 276
SET, 284-285
ETOP, 7, 282

W

STRING, 291
SUBTRACT, 97, 226, 242
sumumary, 323
UNSTRING, 295
USE, 213, 266, 277
WRITE, 39, 267, 278
sings, 289
student file, 43
description, 50
subscripts, 127, 141, 231, 28]
SYNC, 202
SYNCHRONIZED, 202, 206-27,
210
syntax coavemtions, 167
system dependencies, 307
SupetPET, 309
YMCMS, 313

tables, 127, 281
termoinal, 264

textfile, 51
THROUGH, 202
THRLI, 202

TIME, 230

true range, E1, 253-256

undefined vakie, 227
UNTIL clause, 15, 249
USAGE, 206-207, 210

YALUE, 205
data, 35, 27, 200
FD, 185

verh, 7

WORKING-STORAGE, 10, 187

ZERQ, 171, 220
ZERDES, 171

1

Commaodore Magazina

Thig Di-menthty magazine, published by Commodors, provides o vehichs 1or aharing the
latpat product information on Commodore systema, programming technigues, hardware
irtartacing, And agpl ications for the CBM, PET, SuperPET, and VIC Sysiema. Each |ssue
containe usar application featusss, columnk by lsxiing axparts, the lnlest news on User
clube, & queationdanswer botline column, and reviews of the ieat Books andg sofiwers.

T subacripdion e ia 31500 for aix issuss par ysar within the U.S. and its possassions,
and 525,00 for Canade and Maxico. Make chacks payabls to COMMODORE BUSINESS
MACHINES, and amnd ta:

Editor, Commodors Megazing
Cammcdore Buainezs Machines, Inc,
48t Moora Road

King of Pruasia, FFA 15405

The Tranaactor

The Trenaactor, which (& & monthly publicailon of Commodore-Canads, (& privanly a
technical periodical, containing pertinen] hamriwae and software infoimation for ihe
CBM, PET, Vi, and SuperPET syslema. Each insue features product ivawes, harntware
and software evaloatons, and programming 1ips trom ihe firesi techracal experis an
Comimipions producis. Addilionally, The Transactor containg genaral informaticn such
&s prixiuct updates and trade show raports,

The subscripition fes is $10.00 for six insues within Canada and tha Lnited States, and
$13.00 for all forgign countries. Maka checks payvable to COMMODORE BUSINESS
WMACHINES, INC. and sand to:

Editor, Tha Transactor
Commodors Guainans Machines, Inc.
370 Pharmacy Avanue
Agincourl, Onfario, Canada M1W 2K4

Waterloo mm? u mabatantinl mw the standwrd S}B&}L
is or teaching 'or the programming
problerms, The language includas meny features described 13 COBO
Standards ANSI X3.28-1974 and IS0 1985-1978. m

This book is divided into two sections. 1n the first part, a collection of annotated

examples to intraduce the rander 1o microCOBOL is given, Examples inchide im-

plementation of: :

B Intvxdoctory examples

B Reading and writing files

B Arithmetic

B Printing & editing numeric values

M Subscriptsd dats oames

B Relative files

B and more

The necond section is a detailed reference manual describing the language sup-

ported by Waterloo microCOBOL, Waterloo microCOBPOL in im ina

pumhernfdi_ﬁmtmmpihra,gatems.“’hﬂemmufﬂﬁsmn applies to all

implomentations, a chaptet on System Dependencies in also incl o deecribe

features particular to a specific system. [tams coversd include:

B The four divisions of Waterloo microCOBOL ms — IDENTIFICA-
TION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and
PROCEDURE DIVISION.

B Discussions of the various statements used in mictoCOBOL and explanations
of their use

[] lenations of ial i i i
Wm_mmmmt Fﬂas,Rd_uthﬂac,TlhlasmdStnng

B The use of the interactive Debugger in monitoring program execution.

METRIBUTED BY

Howard W Sams & Co., Inc.

4300 WEST &30 ST NDUANAFOLIS, MO M LISA

$0- 021000 ISAN: 0-872-21000-3

