- commodora Super‘pET computar

Waterloo microCOBOL

Tutorial

and

Reference Manual

P.H.Dirksen

I.W. Welch

Copyright 1982, by the authors.

All rights reserved. No part of this publication may be reproduced or used in any
form or by any means - graphic, clectronic, or machanical, including photocopying,
recording, taping or information storage and retrieval systems - without written
permission of the authors.

Diaclaimer

Waterloo Computing Systems Limited makes no representation or warranty with
respect to the adequacy of this documentation or the programs which it describes for
any pasticular purpose or with respect o its adequacy to prodike any particular
result. In no event shall Walerloo Computing Systems Limited, its employees, its
comtraciors or the authers of this documentation be liable for special, direct, indirect
of consequential damages, losses, costs, charges. claims, demands, or claim for lost
profits, fees or expenses of any nature or kind.

Preface

Waterloo microCOBOL i imended to be a substantial implementation of the
standard OOBOL language. The language supported is suitable for both teaching
purposes and for programming many businesa problems.

It is intended o make available & oumber of different mictoCOBOL processors.
Al the time of writing, interpreters are available for the Commodore SuperPET and
for the IBM VYMMCMS operating syatem. Interpreters are being tested for the TRM
Persopal Computer and for DEC VAX YMS systems. Az well, compilers are being
developed for the systems mentioned.

This manual ia presented in two parts. The first part is a collection of annotated
examples intended to intreduce the resder to many of the features of microCOROL.,
In this way, & novice is presented with a saged intreduction to the language. An
experienced programmer tould use the cxamples 1o compare microCOBOL to other
COBOL implementstions or to other languages.

The second part is a comprehensive language referance munual for Waterloo
microCOBOL. Essentially, the [anguage supponted includes level one of the
NUCLEUS, SEQUENTIAL I}, RELATIVE 1-0 s TABLE HANDLING
modules described in COBOL Standards (ANSI X3.23-1974 or 1SO 1989-1978),
Parts of fevel two in these modules have also been impiementad, including Ful)
support for the PERFORM, STRING and UNSTRING verbs, A fow items have
been omited from level one:

¥ The I-O-CONTROL parngraph in the ENVIRONMENT DIVISION is
not supporied.

{2 The MELETE statement in RELATIVE 1O is not supporied.
(3) Paragraph and section names must contain at least ane alphabetic character.

(4) Continvation of & line is not supponted. Syntactic onits, such as data names
or litezals canpot be split across lines.

No support is provided for tape hardware,
P. H. Drrksen
L. W. Welch

April 1982

Acknewledgement

The design and implementation of the Waterloo micreCOBOL processors in hased
upon ideas evolved over the past decade in & oumber of orgenizations. All members
of the Coroputer Systems Group (University of Waterloo), the Waterloo Foundation
for the Advancement of Computing, and Waterloo Computing Systems, Ltd. have
made o substantisl contribution to ity development, The actual design and
programoning of the system directly involved the following people: James Bruvn,
Keith Campbelt, Martin Leisiner, Lyle Resnick, Liz Ruest, Jack Schueler, David
Till snd Jim Welch. Sharon Haydamek was responsible for the prdoction of thig
MRNUSCTIPE.

Ackmowlcdpermsent: American Nationsl Standards Institaie

Portions of this manual have been reproduced from “American National
Stendard Programming Language COBOL” {X3.23-1974). We are indebted to the
unnamed guthors for this excellent technical document. The following parsgraphs
provide acknowledgement, sn requestad in the standard.

COBOL is an industry Language and is sot the property of any company or group
of companies, or of any organization of group of Ofganizations.

No warranty, expressed or implied, s made by any contributor o by the
CODASYL Programming Language Committee az 1o the accurscy and functioning
of the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committes, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (wademark of Sperry Rand Corporaton), Programming for the
UNIVAC | and 1I, Data Automstion Systems copyrighted 1958, 1959, by
Sperry Rand Corpoeation; 1BM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-1760, copyrighted 1960 by
Minneapolis-Honeywell

bave specifically swthorized the use of this material in whole or in part, in the

COBOL mpecifications. Such authorization extends to the reproduction and wse of
COBOL specifications in programming manuals or similar publications.

iy

Preface e e et e ke e e e jii
Ackmowkdgement L L L L e e e e iv
Ackoowledgement: American National Standards Institute iv
1. Tutorial Bxamples« . oo 3
LY Inwodustion e e e e 3
1.2 Introductory Examples., 4
.21 A Minimum Program. . . - - L0000 0L 4
1.22 Display a neme. it e e e e e - 3]
1.2.3 Accept Dats from the Terminal. 9
124 The Perform Verh. 0000 oo 12
1.2 The Undd Claise. o v 0 e e e e o e e e 15
t.2.6 Read a Number of Fields from the Terminal. k]
1.2.7 Define a Simple Data Structare. 0 0L L 22
1.2.8 Create an Output Data Stuetwre., 25
1.2.9 Produce a Simple Report. e e e e e 29
1.3 Reading and Writing Files. 33
1.3.} Qetting Preparsd To Use Files. 33
132 Create a Simple Fike. 3%
1.3.3 Readand PrintaFile. 40
1.3.4 A Stendard Method for Hendling Eed of File. 43
1.3.5 At End ard High-valaes. 45
1.3.6 Use the File Provided with the System. 48
1.3.7 Print a Report Using the Student File. 52
1.38 Inpumng a File Name. 58
1.3.% Printer Contro]l Characters. 64
1.4 Selection. e e 0
14.1 Selection Using the If Wetb. 70 .
1.4.2 Apother Vesionof If. T4
143 The Ele Option. - . . . - . . .« it v v v cun 78
1.44 Multiple Cholce, Lo 000 e 82
1.4.5 Logical Operators - And apd Or. &8
1.4.6 Combined Useof Andand O 31
1.5 Arthmetic. o v it 95
1.5.1 Integer Arthmetic 95
152 Decimal Places 0 0 0 i v v e e e . og
1.5.3 Nepative Numbers, 102
1.5.4 Expressions and the Compute Verb. LD5
1.6 Printing and Editing Numeric Values. 104
1.6.1 Decimalsin Qutput., 108
1.6.2 Suppress Leading Zeros and Printing Minus Signs. 11
1.6.3 Dollar Sigos, Commas, and CR., L4

Tabde of Comtents

Table of Contents

1.6.4 Combining Edit Characters 116
1.7 Two Examples Using Files and Arithmetic. . .,, 113
1.7.1 Smudent Averages L 113
1.7.2 School Algebra Averages. 123
[.B Subscripted Date-names. [27
1.8.1 Subscripted Date-names., ... 127
1.8.2 Perform Varying. 132
1.8.3 The Redefines Clanse with Subscripted Data-names. 137
1.8.4 Tables with Two Subseripts. 141
1.9 Relative Fikes 146
1991 Create s Relative Fibe. 146
192 Read a RelativeFile., 49
1.9.3 Create s Relative File withan Index,, 153
1.9.4 Extract Records from aRelatve Fibe, 156
110 Miscellapeous. o e e e 161
1.10.1 Create the Student File. 161

. Structure of a COBOL Program 167
21 Overview e e e e 157
22 Divisions L e 168
23 Columns ina COBOL Progrem 169
24 COBOL NAMESo .u.. 169
2.5 Comment Stabements 170
2.6 Figurative Copstants,, 17
IDENTIFICATION DIVISION L73
D Overview L e e 173
32 PROGRAM-ID 174
33 AUTHOR e e e s e s e 174
34 INSTALLATION e i e 174
33 DATE-WRITTEN 174
36 DATE-COMPILED 175
A7 SECURITY e e 175
. ENVIRONMENT DIVISION 177
41 Overview . . . L e e e e 17
4.2 CONFIGURATION SECTION 17
421 SOURCE-COMPUTEE 178
4.2.2 OBIECT-COMPUTER 1728
423 SPECIAL-NAMES 179

Table of Contenta

4.3 INPUT-OUTPUT Section 179
4310 FILE-CONTROL i i e e i 130
43.1.1 SELECT Clause i v i o s v v 180
S.DATADIVISION e e e 183
1 Owerview L e e e e e e e e 183
5.2 FILE SECTION e e e e e ee e e 183
T S 1 84
52,1.1 BLOCK CONTAINS 185
5.21.2 RECORD CONTAINScu 18%
5213 LABEL e 185
3214 VALIUEOQF s e e e 185
5215 DATA e e e e 186
52,18 CODE SET i i it i e e ($:1]
522 Record Descriptons 186
5.3 WORKING-STORAGE SECTION 187
5.4 Data Descripion, 187
541 Level Numbers andd Records 87
542 Qualification e e 188
543 PICTURE SIogs 0 o v it it e e e e s 1940
5.4.4 Describing Dataftems, 201
544.1 BLANK WHENZERD 2
5442 TUSTIFIED @ i vt e e e 203
5443 OCCURS Clanse v v i i e v e n 203
5444 PICTURE Clause 203
5445 REDEFINES . _« ..., 204
5446 SIGN L e e 205
5447 SYNCHRONIZED v v v v v v e 206
5448 USAGE 0 M
5449 VALUEee... 207
545 66level Daaltems 208
546 B2 leveltData Ttems i

6 PROCEDUREDIVISION« 2E1
6.1 Overview e e 2t1
6.2 Declaratives 213
63 Common Taxms e 214
6.3.1 Arithmetic EXpressions v v i v e a . 214
6.3.2 Conditiopal Expressions - 26
6.3.2.1 Simple Conditions, 216
6.3.2.1.1 Relation Condition 217

Tablke of Contents

6.3.2.1.1.1 Comparison of Numeric Operands
6.3.2.1.1.2 Comparison of Nonnumeric Operands

5.3.2.1.2 Class Condition
6.3.2.1.3 Condition-Mame Condition (Conditions Variable) . . .
63214 SignCondition
6.3.2.2 Complex Conditions
6.3.2.2.1 Negated Simple Conditions, .
6.5.2.2.2 Combined and Negated Combined Conditions
6.3.2.2.3 Abbreviated Combined Relation Conditions
6.3.2.2.4 Condition Evaluation Rules

6.4 CORRESPONDING Items
6.5 Undefined Values

7. Interacting with the Tesminal

T Owerview L e

9. Arithmetic Satements e e e e e
Q1 Owerview

921
9.2.2
9.213
9.2.4
9.2.5
9.2.6
927
9.2.8

ROUNDED e
SIZEERROR
Composite of Operandds, .
ADD Staterment L Lo

DIVIDE Statement
MULTIPLY Statement v e e e e e e
SUBTRACT Statement _ ...

10. Sections and Paragraphs
10,1 Owerview L L L
10.2 Procedvre Names
103 ALTER Swatement e
10.4 EXIT Statement v e e o
10.5 GO Statement
t0.6 PERFORM Statement, uu....

217
218
219

22X
221
222
223
224

227
229
229

229
23

211

Table of Contents
- 0.7 STOP Stalement« v v i f ot e e e e et 252
oo TLIF Stapement L . L e e e e e e e e e e e e 253
11,1 Owerview L e e e e e e e e e e e e e 253
1.2 Simple IF e 254
1.3 BLSE Clause - . . e e s e e s e e e 235
- 114 Mested [F e i i e e 156
11,5 Muldple Choice e pht
12. Sequential Files 261
12.1 Introdection e Fibes, 261
i2.2 ENVIRONMENT DIVISION _ _ 262
123 DATADIVISION e i e e e 263
124 PROCEDURE DI¥VISION 263
12.4.1 CLOSE Statement . . . _ e 263
- 1242 OPEN SIMEMED+« v v v e v v e e e 264
1243 READ Statement e e e e 265
12.4.4 REWRITE Statemetit 2 v - v n n e v 266
_ 12,45 USE Seatemenl @ f b e e e 266
1246 WRITE Sttement v i v v 267
L3. Relative Files, 27
13,1 Overview s s e e e e e e e e e e 271
1.2 ENVIRONMENT DIVISION 271
- 133 DATADIVISION e e e e 172
134 PROCEDURE DIVISION 272
1341 CLOSE Statement v v v v v n e e e e 272
— 1342 OPEN Statement . - v v v s n e r . 273
1343 READ Swatement v vttt i aaaa 214
13.44 REWRITE Stmtement - . . . & v v v omm v v v o n s 276
13.4.5 USE Statement & v n e e e 277
- 1346 WERITE Stalement - - -+t & v v v v v s a s 278
— M Tables . . L L L e e e e e e e e 28t
4.1 Owerview e e e e e 281
142 OCCURS e e e e e e e 283
43 Indexing o L e e 284
144 BET SmIemenl v v v vt e e s e e e e e e e . 285

ix

Tabie of Contents

15. Swing Manipulation 289
IS.1 Owverview . . . L e e e 289
152 INSPECT Sttemento 290
153 STRING Statement v v v e e 293
15.4 TINSTRING Statement0 ... 205
15.5 Formahting Example 297

16 Interactive Debugger, 30t
16,0 Owerview L 301
16.2 Continue (c) Command v v v v e m
163 Execute {g) Command, 0z
164 Quit{q) Command 03
165 Step(syCommand KTty
16.6 Where-am-I {w) Commamd 303
167 ENTER DEBUGGING 303

17 CALL SIatement . . , v e e e e e 303

i8. Systemn Dependencies: L. L L., 307
1B.1 Owerview e 307
182 Pomwmbiliey 'L

18.2] File Names e s
1822 Used Files 308
18.23 Code Set, 308
18.3 Commodore SupesPET 309
18.3.1 Code Bex e k1)
18.3.2 Date Support e 9
1833 Fikes, 09
18.3.4 Listing Files ER[4]
183.3 Call Interfaceo in
184 ¥YM/CMS e EDE]
1841 Code Set 313
1IR42 Files 313
1843 Listing Files 313
18.4.4 Call Interface 3ia

A. Language Skeleton 7

Al IDENTIFICATION DIVISION. n7
ALY Skeleton - L. L 7

Table of Coptents

A2 ENVIRONMENT DIVISION, Js
A2l Skeleton L e 318
A2 SELECT Clause« .. v i v it i 39

AJ DATADIVISION E) L
AL Skebeton L L e e e EN L
AJI FDentTy o i e e e e e e e 320
A.3.3 Data-description estry; Level 86, 3X0
A.3.4 Dutp-descripion entry: Level 88 320
A.1.5 Dats-description entry: Levels 0149 kg

Ad4 PROCEDURE DAVISION 322
Adl Skelston L. Lo, 322
Ad2 Procedure Body e 3
A43 Statements L L L L L Lo e KAL)

B. Reserved Words kXX |
Index L e e e e e 3136

Waterloo microCOBOL

Tutorial Examples

Much of the material in the tutorial portion of this text is the resubt of experience
accumulated over many years of presenting courses on the subject of file processing

at University of Waterloo. In particular, the suthors wish to scknowledge the work
done in the following text.

An Intreduction o COBOL with WATBOL,

A Structured Programming Approach
D.D.Cowan, P.H .Dirksen, and J.W.Graham,
WATFAC Publications
Box 807,

Waterloo, Ontarie, Canada.

Waterloo Computing Systems Newsletter

The software described in this menuval was implemented by Waterloo
Cemputing Systems Limited. From time-to-time enhancements to this system or
completely new systems will become avaiiable.

A newsletier is published periodically o inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating up-
to-date information to the various users. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systents Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

Chapter 1

Tutorial Examples

1.1 Introduction

The following tutorial is & sequence of examples meant to introduce the reader to
the *flavow” of Waterloo microCOBOL. They do not present a complete or rigorous
treatment of any topic, as this detailed informaticn is available in the reference
mianial in the latter part of this document. This twtorial could be useful in the
fallowing simaticns:

i Someone already familiar with COBOL can determioe some of the major
differences between Waterloo microCOBOL and the dialect already
knpwn.

(2} Teachers may find the examples useful as a progressive inroduction of
the material 1o their students.

(3 People who already know some other language can get an appreciation
for Waterloo microCOBOL before reading the reference manual.

(4 Complete noviees could run the various programs, and possibly learn
some of the material by exploring the varicus language features in
conjunction with the reference materal.

In order that the examples be fully appreciated, it is important that they be entered
into the computer and executed.

1.2 Introdactory Exampies.

1.2.1 A Minimom Progtum.

Every COBOL program requires & certain number of basic statements. These re
presented in this example.

identification division.
program-id. EXAMPLE-1.
covironment division.
configuration section.
source-compuier. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.
procedure division.

stop rum.

MNotes

(1) CQOBOL is # programming language which was first developed in the
carly 1960z to be used to solve business data processing problems.
COBOL in fact stands for COmmon Business Oriented Language.

) In order to run any COBOL program a number of staternents are
required. These siatements must be present for the program to work
propetly.

(3) Example 1 contains these basic necessary staiements. Al future
cxamples will also contain these statements with some possible slight
modifications and additions.

Hint The reader shoukd enter these lines exactly as they appear. This
set of statements can then be saved in a file. Thus they need not
be entered for each program but instead can be retrieved using
the get comumand. In future cxamples, this file will be referred
o as "texta”. The following notes should be read before one
eiters the above lines.

{4 COBOL statemnents are usually entered beginning in either column 2 or
column 6.

Tuatorial Examples 5

{3)

(&)
(7

(8

9

The first seven statements io this example sre entered in column 2 while
the Inst siatement is entered v column 5.

Column 2 in called margin A and o column 6 is called margin B.
Each line ends with & pericd.

Users who have used COBOL before will notice thal the programs are
entered in lower case ktters. Waterloo microCOBOL permits the use of
both upper and lower case letters; the rules when upper and lower case
letiers are both used are described in the reference manugl.

If the reader wishes 1o know more sbout these statemnents, he should
refer to the reference manual portion of this text. As more examples are
preseolted, these statements will be described in more detsil. However,
the following notes about these statemends arc appropriate.

Motes

(1} A QOBOL program consists of four divisions. These gre the
identification division, the environment division, the data
division and the procedure division. Note that each of these
appears once in this example.

{2) The use of 'EXAMPLE-1' as a program-id is for
documentation purposes only.

(3} Users will recognize "CBM-SuperPET' as the name of a
cormputer. If programs are run on a different system, it is oot
necessary to change this name as it is omly used for
documeniation purposes.

1.2.2 Dinpiny » name.

One of the first things we want $o do in a program is to display information. This
program demonstrates oie simple way to accomplizh this.

E]

* Diisplay a Mame on the Terminal.
[]

identification division.
program-id. EXAMPLE-2.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-5uperPET.
data divigion.
procedure division.

display ‘James'.

lop run.

Sample Program Execwtion

run

Execution begins...
James

...Execution ends.

MNotex

(1 In this examgle and all future cxamples the output produced by the
program is displaysd following the program. A line appearing in falics
represents a line entersd by the user; non-italicized lines have been
displayed by the COBOL processor. When 8 program is run , at feast two
lines are digplaysd, mamely that the program has staned and that the
program has stopped. This is indicated by the lines

Execution begins. ..
amd

...Execution ends,

Tutorial Examples 7

(2)

(3)

(4}

(3)

(6)

("

(8)

9

(10}

The line containing the name
Jamies

is displayed between the ahove two lines. It iz the outpul producad by
the program. Any output will always appear hetween these two lines.

Three lines have been inseried at the beginning of the program. These
lines, comtaining Bn * {asterisk) in column 1, are called comments.
Comments have no offect on the program; they are uwsed for
documeniation parposes only. Comment lines may be entered anywhere
in the program.

The line
display 'James’.

has been inserted in the procedure division portion of the program. When
the program is nin, this causes the lie containing the name James to be
displayed.

The characters to be displayed sre enclosed by quotation marks.

The procedure division now contains two statements which are more
commonly referred to as senteaces. Each sentence begins with a verb
which indicates the desired action to be performed. Each sentence emds
with a period.

The display vertr causes the string of characters 1o be displayed on the
screen,

The stop verb indicates that no more actions are required.

The program-id line has been used to give a different name to this
program. It is vsed for documentation purposes only.

It is important to note that every program proceseed goes through two
distinct phases, one following the other in time., First the program js read
by the sysiem to determine certain types of errors, in particular syntax or
grammar errors are detected. Then the system actuslly beging executing
the statesnents.

(L)

Chapter 1

This program could be casily entered by using the following steps:

i} Use the pet command to Joad a copy of the previous program.
if) Add the thiee commenst lincs at the top of the program.

id) Add the dsplay stetement.

Use of this technique results in less time to enter the program and also
reduces "entty” errors. As we will see in fumre examples, it is ofien

casier to modify an existing program thao to enter completely & new
program.

Tutorial Examples _ 9

1.2.1 Accept Dain from the Terminal.

Another common requirement is to input some information into B program. This
program accepts some data and then displays it on the screen.

* Accept Diata from the Terminal.

»
identification division.
program-id. EXAMPLE-13.
environment division.,
configuration section.
somrce-computer. CAM-SuparPET.
object-compauter. CBM-SuperPET.
data division.

working-storage secton.

procedure division.
display 'Emer a name of 5 charscters’.
ccept DAME.
dizplay name.
stop run.

Sample Program Execotion

run
Execution begins. ..

Enter 8 name of 5 characiers
James

James

- Exscution #nds.

MNores

i When this program is run, a line is displayed asking that 2 name
containing cxactly 5 characters &¢ enterad. The next line, which appears
in italics, is the reaponse entered by the user, namely the name James.
The following line: is the output produced by the program. In this and alt
future exemples, all lines entered by the user are displayed in italics.

10

(2)

3

(#)
&)

{6)

N

(8)

9

Chapter 1

The data read from the terminal is placed in working-sterage sectisn of
the data dividom. Working storage can be thought of a large piece of
paper within the computer. Information is “written” .or placed into
working storage.

For this particular example, working storage consists of an area large
enough to contain a S-charecter string which will be called "name”. It is
defined as follows:

working-storage saction.
01 name picture xxxxx.

The 01 is & fevel aumber and is entered in margin A. "Name” is the name
of the area and is entered in margin B. The pictwre clause defines the
characteristics of the area. In this case, an area capable of holding 5
consecutive characters is defined by using fve x's.

Level numbers will be explained more fully in future exampies.

"Name" is referred to a5 & daie-neme and js chosen by the programmer.
The rules for choosing such pames are describad in & later note.

The accept verb is used %o input the degired string of characters,
specifying it shoutd be placed in working-storage tn the ares called
"name”,

The accept verb takes the charscters that are entered and places them in
the ares called “name”. If more than 5 characters are entered the left-
most 5 characters are placed in "name”. If less than 5 characters are
entered, the characters are placed left-justified in "name”. The remaining
characters are left unchanged. Thus the user should enter blanks or
spaces if the name contains dess than 5 characters. The next example
shows another way of accepting varisble length namwes.

Blank lines are inserted before and after the working-storage section to
make the program easier to read.

A dats-name consists of not mote than thirty characters chosen from the
letters, the digits, and the hyphen; it must contain at least one letter. The
hyphen may be used anywhere except at the beginning or end.

Tutorial Examples L1

(10}

(1n

COBOL. reserves a aumber of words for its own use. These are called
reserved words. For example, all COBOL. verbs are reserved words as
are mont of the words in "texta®. COBOL s researved words are listed in
the refarence section of this text {see RESERVED WORDS).

A date-name cannot be a COBOL reserved word. For example, it iz oot
prmaible bo pee the dats-name “input” inatead of *name” since "input” is a
reserved word. However, it is possible to use "impai-place™.

12 Chapter 1

1.2.4 The Perform Verb,

Programs can be written in such a way that they arc essier to read and
understand. Thie clarity is schicved by organizing the program into modules or
parts.

*

* Introduce Perform Ve,

[]
identification division.
program-id. EXAMFLE-4,
environment division.
configuration section.
sowte-computer. CBM-SuperPET.
object-compiter. CBM-SuperPET.
data division.

working-siorage section.

procedure division.
perform get-name.
perform display-name.
stop run.

get-name.
display 'Enter a name up to 5 characters’.
mave spaces 10 name.
accept name.

display-name.
display name.

Sample Program Execution

run
Execution begins...

Enter a name up to 5 characters
Jim

Fim

...Bxecution ends.

Tutorial Examples 12

Notes

(1)

(2

(3

(#)

(3)

(6)

N

(8)

(%

This program is & slight modification of the previous example. The
procedure division is organized differently.

The two actions of accepting the name to be read and displaying the
name have been separated inio two distinct parts or moduoles.

In COBOL, these parts are called paragraphs; cach paragraph is
identified by s paragraph-name. The paragraph-name is entered in
margin A and the paragrapha are placed following the step rum.

Paragraph-names are formed in the same way as data-pames. When a
peragraph-name is used to signify the beginning of a paragraph, it must
be followed by & peried.

Blank lines have been inserted to make it easier to identify the
paragraphs.

The perform verb in the sentence
perform get-name

acts exactly as one would expact, namety it causes the sentences in the
paragraph named “get-name” 10 be execueed.

When the "get-name” paragraph is completed, control passes to the
semience following the

perform get-name
namely the
perform display-name.

The two performs cause the two paragraphs o be exscuied in the
appropriate sequence.

The two paragraphs can be placed in any onder following the stop rom.
Of cowrse, the two performs must be placed io the coorect sequence in
order for the program to functico properly.

14

{10)

A new sentence
MOve SpAces Ly AAME

has been inserted befor: the actept sentence. This will canse five spaces
or blank characters to be placed s “name”. We can now cater 8 name of
aoy length up to 5 characters. The move verb will be described in more
detail in & fotuie example.

Tutorial Examples 15

1.2.5 The Untll Clanse.

One of the most important features of computers is to perfornn certain tasks a
number of times. This program introduces ome method of doing such tasks
repetitively until a signal is encountered o stop the process.

-

* Perform Verb with Until Clanse,

[]
identification division.
program-id. EXAMPLE-5S.
environment division.
configuration section.
source-computer. CBM-SuperPET.
objeci-computer. CBM-SuperPET.
data division.

working-sorage section.

procedure division.
perform get-name.
perfonn process-name
until name = ‘stop *.
stop roa.

get-Dame.
display 'Etter a name wp to 5 charncters’.
move SPACEs 10 name.
Scept nAme.

Process-name.
display oame.
perform get-name.

16

Chagrter 1

Sample Program Execution

rkn

¥ 4

Execution begins. ..
Enter & name up to 5 characters

Jamex
James

Enter a name up o ¥ chareciers

Jim
B

Epter a name up to 5 characters

Mary
Mary

Enter a name up to 5 characters

sop

...Execution ends.

(1)

(2}

(3}

(4)

This program asks the user to enter a name. Afier the name is displayed,
the program asks that another nume be entered. This process continbes
until the characters “stop ° are entered at which time the program
terminates.

The program is written to accept and then display an unknown number of
names. The two actions of displaying and reading the name, are placed
in a paragraph called "process-nams”.

The "process-name” paragraph makes use of the previously written
paragraph “get-name’, which displays the prosnpt message and then
reads a name. Paragraphs can contain performs of other paragraphs.

The program now works as follows:
1) An initial name is read using the “get-name” paragraph.

ii) The "process-name” paragraph is then performed. This causes
the name to be displayed and another name 1o be read.

iii) Control returns 1o the perform-unti] sentence which determines
if the newly emtered string is ‘stop *. If not, the "process-name”
paragraph is executed again. If the name is 'stop *, control
passes to the sentence following the perform-until.

Tutorial Examples 17

(3)

8

(7

(8)

We refer 10
oame = “stop '’

&5 & condition , in this case the equalr condition. The condition compares
the valus of “name” with the characters 'stop . If they are equal the value
of the conditon is true; otherwise it is false. A more general form of
condition is discussed io a Lster section.

While the clause
uotil name = 'stop '

could have heen entered on the asme line as the perform, it has been
ctered a8 & scparate line and indented to make the program more
readable,

A COBOL sentence can be written on more than one line. Sometimes
thiz occurs because a line is too long but moee often it is done to improve
readability. The continued line is usually inderied in onder that the
confinuation can be clearly ssen.

The condition could have baen written as
name = ‘stop’

In this case, the blank character has been omitied from the end of the
string. Befure comparing two fields COBOL checks that the two strings
have the aame length. If one string is shonter, it is padded on the right
with blank characters o make it the same length ae the longer string.
Thus ‘stop” would be set o "stop ' before the comparizon is done.

1% Chapier 1

1.2.4 Read s Number of Fields from the Termimal,

On many occanions we wish (¢ enter 4 nomber of items of infornation about a
particular person or thing. For example, we might wish to also enler such items as
8CX, AgE, EIC.

* Read 4 Number of Fields from the Termiral.
*

udentification divisicn.

program-id. EXAMPLE-6.

environment division.

configuration section.

sowrce-cotrputer, CBM-SuperPET.
object-computer. CBM-5uperPET.

data divizion.
working-storage section.
1 swdent-no pic xXXX.
Gl name pic xxXXXX.
Gl age PiC XX,
Of sex e x.
procedure division.
petform get-id.
perform process-student-data
until student-no = ‘9999
sop rvo.
process-sudent-data.
perform get-name.
perform get-age.
perform get-sex.
display student-no name age sex.
perform get-id.
get-id.

display ‘Enter student number (9999 to stop)’.
move spaces 1o student-na.
accept student-no,

Tuwtorial Examphes

get-name,
display ‘Enter name’.
move spaces Lo name,
Accopt name.

Ret-age.
display 'Enter age’.
mMOve Spaces 10 age.
accept age.

get-nex.
display 'Enter sex (M or FY'.

accapl SEX.
Sample Program Execwtion

Fan

Exccution begina. ..

Enter student number (9999 to stop)
1234

Enter name

James

Enter age

15

Enter s2x (M or F)

M

1234 pimes 1 S

Emver student number (9999 to stop)
2345

Enker name

Marie

Enker age

is

Enter zex (M or F)

F

2345Marie 15F

Enter student number {9999 10 stop)
2000

...Execution ends.

19

Notes

(1)

(2)

(3)

4

{3)

(6

This program prompts the user to enter 4 quantities, namely a student
oumber, name, age, abd sex and then displays thix data on the kxminal.
This sequence is repeated undi] the student nomber 99997 is entered.

Three lines have been ndded to the working-stomge section to define the
areas for the three new jtems of dats. The new data-names are "student-
number”, *age” and "sex” and they have a nize of 4, 2 and 1 characters
tespectively.

The reserved word picture is used quite frequently in COBOL
programs. To save time and space, a short form, pée can be used.

This program uscs the student number ‘9999 to taminase processing
instead of the name ‘stop’ as in the previous example. Thus

perform get-id
i3 used at the stant of the procedure division instead of

perform get-name.
The "process-oame” paragraph has been teplaced by the paragraph called
"process-student-data®. It causes the number, age, and sex to be read,
displays the appropriate line and then reads the next student number. The

sentence

pecform process-shudent-data
until student-number = '9999%°

controls the reading and displaying of the stadent date,
The sentence
display student-no name age sex.

displays the linc on the termina). The data-names in this sentence are
separated by a blank.

Tutarial Exemples 2]

{7

()

9

(10}

For each record read, a line is displayed. It is somewhat disturbing thai
there are no spaces between the four items of owtput. This can be
remédied by using

display student-ne © ' pame * ' age '’ sex.

which inseris the blank character between esch item,

The sentence which displaeys the student data could be replaced by the
Two schtences

display student-no.
display name " * age ' © sex.

which would cause two lines 1o be digplayed for each student.

More blenks could be placed between any of the items oo the output line
by increasing the number of spaces between the quotes.

display student-no ' name ...
would place 4 spaces between the number and the name.

The four data items are quite often refacred to a5 falds.

22 Chapter 1

12T Dellwn » Simple Data Straciure.

In mamy caces it is more convenient 1o represent and deal with a sumber of data
itets of Fiehds a5 a single entity. This collection of information abowt a particular
person or thing is called a record.

L

* Read & Number of Fields from the Terminal,
|]

identification division.

program-id. EXAMPLE-T,

environment division.

configuration section.

source-computer. CBM-SuperPET.

object-computer. CBM-SuperPET.

data division.
working-storage section.

01 student-data.
02 student-no Pic LIXX.
02 nanne pic XXXXX.
02 age pic xx.
02 zex pic x.

procedure division.
perform get-id.
perform process-stuwdent-data
until student-no = 909’
stop run.

procaas-amdent-data.
perform get-name.
perfonn get-age.
perform get-sex.
display student-dats.
perform get-id.

Ect-id.
display 'Enter student number {9999 10 stop)’.
move spaces to siudent-ne.
accept shudent-no.

Taterial Examples

get-name,
display 'Enter name’.
MmOYe BPaces 0 name.
BCOCpt marne.

gci-age.
display ‘Emter age”.
mOYe Speces ko age.
accEpt age.

Ret-sex.
display 'Enter sex {M or FY'.
accept 5o,

Sample Program Execution

tin
Executicn begins...

Enter student number (9999 1o stop)}
$321

Enter pame

4321Fred 16M

Enter shdent number (9999 to stop)
6543

Enter nane

Bev

Enter age

4

Enter sex (M or F}

F

65438ev 14F

Enter stadent number {9999 10 stop)
Do

Nojes

(1}

(2)

(2)

4

{3)

(6)

]

This program is another version of the previous example which creates a
dara-struciwre containing the fowr ficlds.

The data structure iz defined as follogws;

01 student-dats.
02 stwdent-nio pic xxxx.
02 name pic AXXXX.
02 age Pic xx.
02 sex Pic K.

A mew O1-level data-name is introduced, namely “sdent-data”. The
four 0]-leve] items from the previous example have been changed 10
02-level items and have been entered in margin B.

The data structure can be described as follows:

i) The four data-items can be considered as a collection of
information abowt a particular smdent. This collection is called
a record amd the Ul-level data-name permits the program to
refer to the entire record.

ii) The onginal four dats-items have the same dats-names and the
same sizes a5 before but they pow have been defined with
02-kevel numbers. They can be used in the same way as they
were used in previgus examples.

The Ck-level iem ends in 8 period.

The O1-level item does not have a plctare clause if it is subdivided into
02-level items.

The Ot-kevel item in this exemple is considered to have 12 charscters i.¢.
the sum of the sizes of the fislds at the 02-level.

The user should again oote that some or ali of the output fields are not
separated by blanks. A future example will remedy this situation.

Tutorial Exampies

25

1.2.8 Create an Owtpwt Duta Structure.

Often when displaying a oumber of fickis, we want to semp or format the line
with appropriate spacing and then to refer to the line as an output recard. An owmput
data structure is defined and used in this cxample to allow more flexibility on output.

* Create an Output Data Structure.
*

identification diviston.

program-id, EXAMPLE-8.

environment division,

source-computer. CBM-SuperPET.
object-compwter. CHM-SuperPET.

daty division.
working-storage section.

01 smdent-data.
2 student-no
02 name

02 age
02 sax

01 display-record.
02 out-gtudem-no
02 filler
02 owt-name
02 filler
02 owm-age
02 Filler
02 out-zex

procedure division.
perform get-id.

pic xxxx.
pic XXXXX.
pic xx.
pic x.

pic xxxx.

pic xxx value s spaces,
Pic X000,

pic xxx vahie is spaces,
[

pic xxx valse is spaces.
pic x.

perform process-student-data
until sudent-no = '999%.

SOp run.

process-siudent-data.
petform get-name.
perform get-age.
perform gei-sex.
perform edit-and-display-recond.
perform get-id.

get-id.
display 'Enter student niumber (9999 to atop)’.
move spaces 1o stadent-no.
accept student-no.

gel-name,
displey ‘Enter name’.
TOYE Spaces (D A
accept name.

get-nge.
dizplay 'Enter age’.
move Epaces (o age.
accept age.,

gei-Bex,
display "Enter sex (M or F)'.
RCCEpt 56X

edit-and-disptay-record.
move smdent-no o oul-shudent-no.
move name (0 Out-NAME.
move Bge (o owt-age.
move sex 10 Oul-Sex.
display display-record.

Tutorial Examples

Sample Program Execution

run
Execution begins. ..

Enter student number (9999 to stop)}
3555

Enter name

Eliza

Enter age

27

i5

Enter sex (M or F)

F

5555 Eliza 15 F
Enter stndent number {9999 to stop)

HIf

Enter name

Paul

Enter age

14

Enter sex {M or F}

M

1111 Paul 14 M

Enter studemn number {9999 to siop)

2000

...Execution ends.
Notes

{1

{2)

&)

{4)

Each student record is resd and then displayed with sach field separated
by at least three spaces.

A pew date structure called "display-record” is defined. It contains four
ficlds with the newly defined data-names "out-student-no®, “out-name”,
"out-age”, and "out-sex”’. These will be used 1o contain the four fields for

output.

Each of these fields is separated by a field which ix called Oller. Filler is
a COBOL reserved word and i used to *fill™ or insert space in a record.
The picture clause indicates how much space is to be inserted.

The valoe is ¢lause specifies the particular character or cheracters we
wigh to insert in the field. In this case, the COBOL reserved word spaces
indicates that the field is to contain spaces or blanks.

(5)

(6)

)

(8)

Chapter 1

If the vadwe I8 clause is omitted in the filler, the ficld 15 snid 1o be
undefined. If such a field were displayed, it would contain one or more
question marks (7).

The mere varb is nsed to move an item from one place in working-
storage o another. Thus

move student-oo to out-student-no.

causes the d-character number Lo be moved from *studens-dets” to “out-
studeat-no” in “dizplay-record”.

There iz no difficulty with moving data from cne field to another if the
feclds are the same size. However, if the receiving field is larger than the
sconding ficld, the data is inzerted left-justified and an appropriake
numbear of blanks are inserted on the right. The first two lines of dhe
display record could be replaced hy

02 out-student-no pic XXXXXXX.

and the output would be the same since the four character name would be
moved to the lefi-most four positions and blanks would be inserted in the

remaining three positions.
If the receiving ficld is smaller thao the sending feld, the data sgain is

ingperted left-ustified. However, the ‘extra’ characters om the right are
quncated.

Tutarial Examples o'

1.2.9 Produce a Simple Report.
Definition of phctwire clauses can made simpler eapecially when 'long’ fields are

required.

* Resd & Number of Fields from the Terminal
* and Pript a Small Report.

identification division.

ptogran-id. EXAMPLE-9.
environmend division.
configuration section.
source-computer. CBM-5uperPET.
object-computer. CBM-SuperPET.

data divizion.

warking-storage section.

01

L

a1

ol

1]

stdent-data,

02 student-no pic XXXX.

02 pame piC XAXXX.

02 age Pic XX.

02 sex pic x.

heading-line.

02 filler pic x(12) value iy 'Stodent Data’.
first-iine.

02 filler pic x(8) valoe is “numbes *.
02 owt-student-no pic Xaxx.

second-line.

02 filler pic x(5) value is ‘name’.
02 cm-name pic x(5).

third-line.

02 filler pic x(4} value is "age ',
02 out-age pic xx.

02 fller pic x5 value is ' sex *,

02 out-sex pic x.

procedure division.
perform gel-id.
perform process-student-data
potil student-no = "9,
stop rum.

process-studemt-data.
perform get-name.
perform get-age.
perfonn get-sex.
perform edit-and-display-record.
perform get-id.

zet-id.
display ‘Enter student number (9999 to stop)’.
move spaces to studant-no.
accept student-no.

get-name.
dizplay ‘Enter name'.
Move $paces t0 DAME.
accepl name,

gct-age.
display ‘Enter age’.
move Spaces o age.

accept age.

Eet-sex,
display ‘Enter sex (M or F)Y'.

BOCEPE SEX.

edit-and-display-record.
move student-no (o out-student-no.
move name o oul-name.
move age to out-age,
mMOve 52X (0 O-32K.
display hesding-line.
display first-line.
display secomd-line.
display third-line.

Tutoria]l Examples

Sample Program Execution

Fun

Exgcuticn begins...
Enter student number (9999 to stop)
987E

Enter name

Bab

Eneer age

17

Enter sex {M or F}
M

Student Data
number 9R7H
name Bob

age 17 sex M
Enter student number (9999 to stop)
5786

Enter name

John

Enter age

16

Entsr sex (M o¢ F)
M

Smdent Data

number 5786

name John

age 16 pex M

Enter student number (9999 to stop}
QU9

...Execution ends.

32

Notes

{n

(2)

(2

&

Chapier 1

The cxample contains most of the material that has been presented io the
previous examples, The program prompis for 8 number, name, age, and
sex and displays & small report for each student,
A beading is placed &t the béginning of cach student report.
The "hesding-line” defines a ficld of 12 characters by wsing the clause
02 filler pic x{12} valoe is “Student Da'.
which is equivalent to
02 filler pic xxxxxxxxxxxx valoe is 'Stodent Daty'.

The former method of defining pietures is often more convenient than
the latter.

Both methods of defining pictures can be used in a particular data-
structure definition.

Tutorial Exemplea 33
1.3 Rending and Writing Files.

1.3.1 Getling Prepared To Use Files,

In each of the previous examples the user has been required to re—cikes the
student data - & somewhat tiring and boving situation. It would be prefarable if the
data could be entered once and then saved away for future use. {We have already
done something similar when we saved our progrems away for fture use.} A
collection of records, in this cage the student records, is referred to as a fife. This
example shows how a file is definedt. The next example wses the ik,

*

* Dafine & File to Hold the Student Records.
]

identification division.

program-id. EXAMPLE-11),

environment division.

configuration section.

source-computer. CBM-5SuperPET.

object-computer. CBM-SuperPET.

mgut-outpul section.
file-contml.

select student-file

assign to 'students’.

data division.
file section.
fd student-fike

label records are starwlard.
01 student-record.

02 filler pic {500,
working-svorage section.

Ol studeni-daia.

02 smudent-no pic XXXX.
02 name pic xxxxx.
{12 age pic xx.

02 sex P X,

procedure divinion.
stop man.

run
Exacuticn begins. ..
v+ BAGSCUtON ends.

Motes

(1 COBOL requires certain jnfornwtion io order to handle & file. A pumber
of new statements are introdeced in this example in ordes to define o file.

(2) The lines

input-output section.
file-control.
select student-fike
assign to ‘stodenis’.

are placed in the environment division. They specify the fle-mame used
by the program, "stadent-fike", as well as the system-name of the file,
"atudents”,

(K3} The daa division has been modified to include the lines:

file section.
fd sadent-file

label records s standard.
01 stwdent-record,

02 pic x{60).

This section is used to describe some of the anributes of a particular fite.
Itis alen used 10 set-up an intermediate area into which data will be resd
or from which data will be written.

{4 The file definition, fd, defines the name of the file, namely “student-
file". It is also necessary to tell the system how to deal with the label of
the file. In this example, we indicate that labels will hapdled in &
stendgrd fashion. The refarence manual expands on the concept of
labels.

Tutorisl Examples 35

(5)

(N

The lines

01 stodent-recond.
02 pic x{60).

define a record-name for the file namely, "student-record” and specify
thet it contsing 60 charsciers. The purpose of this ares is t0 act & ap
input-puipur anes to receive dats from from the file or to send deta to the
file.

When the recond is mad or written, 50 characters of informatdon will be
transitied.

Record-names and file-names are formed in the same way s data-
rames. System-names also consist of characters chosen from the letters
and digits. The number of characters varies from system to system. Use
of "short” system-names is usually safer, cspecially if one wants to use
Programs on a varicty of systems,

Hint Sioce the student fike will be used in many of the future
examples, it iz suggested that "texia” be modified to include the
input-output and file section siaterpents inbroduced in this
cxample.

36 Chapter {

1.3.2 Create a Simple File.

Having defined the file in the previous example, we now accept student data and
write it into the newly defined file,

*

* Write Studemt Records into a File.

]

identification division.

program-id. EXAMPLE-1].
environment division.
configuration section.
source-computet. THM-SuperPET.
cbject-computer. CRM-SuperPET.

iRput-output section.
file-comdrol,
select student-file
assign to "students’.

data division.

file zection.
fd sudeni-file

label records are standard.
01 student-record .

02 filler pic x(50).

working-storage section.

01 student-dats,
02 student-no pic XXX,
02 name Pic EXXXE,
02 age pic xx.

02 sex pic x.

- Tutorial Examples

- procedure division.
open output student-file.
perform get-id.
perform process-student-data
until student-no = "9,
move "9999 1o student-no.
write student-record from student-data.
close student-file.

SI0p run.

process-student-data.
perferm get-name.
perform get-age,
perform get-sex.
write student-record frem student-data.
perform get-id.

pet-id.

display 'Enter student number {9999 to stop)’.

move spaces 10 student-ne.
accept studem-no.

gel-name,
display "Enter name’.
MEVE Spaces 1o name.
acospt name.

get-age.
display "Enter age’.
Move Spaces Lo BEeS.
accept age,

get-sex.
displey 'Emter sex (M or FY'.
scoept SeX.

kY]

Sample Pregrams Exerution

run
Execution begins...

Enter student nomber (9999 o stop)
4326

Enter name

Doug

Enter age

F

Entersex (M or F)

M.-

Enter student number (9999 to stog)
3758

Enter name

Jans

Enter age

16

Eoter sex (M or F)

F

Enter student number (9999 to stop)
6420

Enter name

Par

Enter age

16

Enter sex (M or F

F

Enter student numbex (9999 10 stop)
paog

... Execution ends.

Notes

(L) The previous example defined the required file. This example will accept
date 8z before and wtite it into the file.

(2) A file must be apened before it can be used. The statement
open gutput student-file

it the main paragraph of the procedure division specifies that the fite i
to be made available for output purposes.

Tutorial Examples)

(3

(4)

(5)
(6)

(7}

{8)

(9

The program again requests the user to enter student number, name, age,
and sex.

The display verb cannot be nsed to write the data to the file. The
statement

write student-record fromn student-data

causes the recond to be written to tha file. In effect this statementis
zaying, "Write the record as defined in the file definition and obtain the
data from the arca called sndent-dats in working-storage.” In fact, the
dats in working storage is moved to the file section and then it is written
to the file.

Thix process continues umtii the student pumber 99499 is entered.
Future examples will want (0 resd the file that hos been created. In order
te do this some means has to included in the file w0 recognize that we

have read the kast record i.e. we are at the end of the file, In our previous
examples, eptering 9999 accomplished this.

A special end-ofHfile or seatinel record containing che studeni number
9999 is written afier the last student record is accepied from the terminaf.

The statement
close studemt-file

releanes the file indicating that the program no longer needs the file. It is
pot valid to specify "output” in 8 clese senience,

The dezcription of open and close is somewhat vague and omits many
detnils about these two verbs. The description of the complete actions of
opem and close arc described in the reference manaal.

) Chaptar 1

1.3.3 Read and Print a Flle.

In the previous cxample we created & stwdent file. It would seem appropriate
that we read this file and display the reconds 10 assure ourselves that they were
wtitten correctly.

-

* Read and Print the Student Recosds.
[]
identification division.
progmm-id. EXAMPLE-12.
environment division.
source-computer. CBM-SuperPET.
ohject-computer. CBM-SupesPET.

input-gutput section.
file-control .
select student-file
acRign to ‘shudernts’.

data division.
file section.
fd student-file

label records are standand.
01 student-record.

02 filler pic x(60).
working-storage section.
01 studem-data.
02 student-no piC XXXAX.
02 name pic XxXxX.
02 age Pic xx.

02 zex Pic x.

Tutorial Examples 41

procadure divisipn.
open input studet-file.
perform resd-student-record.
perform process-studsm-data

until student-no = 99997,

close student-file.
atop ron.

process-audent-data.
display smudem-data.
perform read-student-recond.

resd-sadent-record.
resd student-file into stodent-data.

Sample Program Execution

run
Execution begins. ..
4326Doug 14M
3158 ane L6F
6420 at I6F
...Execution ends.

MNeoles

(1) This program reads the file created in the previous example and displays
each recoed as it appears in the file.

{2} The statement
open input student-file
specifies that the "student-file” is to be made available for input.
{3) The aceept verb canaot be used 1o read a file, The statement
read stmdent-file into studemt-data
causes & record to be read from the file and to be placed in working
storage in the area called "student-dats”. In fact, the datn is read into the

file section and placed in the area called "student-record”. It is then
moved to working storage.

42

4

(3)

(6)

(M

Chapter 1

Exch record read is displayed cxactly as it i3 comained in the file i.e.
spaces may not be present between fields of the displayed recond.

When the last record containing a student number of 9999 is read, the
teading and dicplaying process termipstes.

The close semtence releases the file,

The file used in this and the previons examplk is refered 10 as a
sequenticl file. Writing a sequential file mesns that sach record is written
immedistely following the previons record. Reading a sequential file
means that after a record has been read, the next record is then svailable
to be read.

Tworial Examples 43

1.3.4 A Standard Method for Hamiling End of Flle.

In the example in which the fle was created, we had 10 go to extra effod to
create the sentined recond. Recognition of the end of a fils is & common problem in
file processing, and it should be no surprise that there is a standard method of
dealing with the problem. If this were not the case, cach program would require
different and special tests to determine when the end of file was reached.

* At End Clause.

*
identfication division.
program-id. EXAMPLE-13.
enviromment $vizion.
configuration section.
sowrce-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.

file-controd.

select student-file

assign to ‘stdents’.

data division.
file section.
fd student-file

lebel records are standard.
01 snedent-record.

02 filler pic x{60).

working-stocage section.

01 student-data.
{2 smdent-no piC XXXX.
02 name pit KAXKX.
02 age pic xx.

{2 sex pic X.

procedure division.

open input student-file,

petform read-student-recornd.

perform process-student-deta
untl aiudent-no = 9099’

close student-file.

stop ron.

process-student-data.

display student-data.
perform read-ghident-record.

read-student-record .

read stadeni-iile into student-data
gt end move 9999 o stadent-na. -

Sampies Program Execation

run

Execution begins. ..
4326D0ug 14M
3758Janc L&F
H6420P 3t 1&F
...Execution ends.

Nores

(1)

(2)

(3)

(4

As a matier of course, whenever a fike is created, a special end of [l
record is written. When examining a file. this record does oot appear to
be there as it is never displayed. The end-of-file record is automatically
written wien the file being created is closed using the close verb.

This special record is recognized automaiically whenever it is read by the
system. This is accomplished by adding an extrs clause in the read
sentence which caukes special processing when the end-of-file is read.

When the end-of-file is encountered, po record is transferred to working
storage. However, the at end claose js executed and in this case the
constant 999% is moved to the *student-no” field. This has same effect as
reading the dummy or sentinel record. Recall that the pevform-unti
checks this field to detexming if there are any more records.

The at ed clause is execuied oniy when the end-of-file record is read.

Tutorial Examples 45

1.).5 At Eod and High-valoes.

Using 9999 a3 the signal for an cod-for-file might cause soie potential
problems. For example, scimeone might inadvertently assign a student the numbet
99,

£

* At End and High-Values.

]
identification division.
program-id. EXAMPLE-14.
environment division.
configuration section.
source-computer. CBM-5uperPET.
object-computer. CBM-SuperPET,

input-output section.
file-control.
sekect student-file
ansign io "studeniz’.

data division.

file secton.
fd student-file

label recornds are standard.
01 student-record.

02 fller pic x{60).

working-storage section.

Gl sudent-data.
02 student-no pit XXKX.
02 name pic XXXXX.
02 age pic xXx.

02 sex pis x.

46 Chapter 1

procedure division.
open input student-file.
pecfiorm read-student-record.
perform proceas-student-dats
until amdent-no = high-values.
cloze studemi-file.
StOp rum.

process-student-daty.
display student-data.
pecform read-student-recond.

read-student-recond,
read student-file into student-data
at end move high-values to student-no.

Sample Program Exscution
run
Execution begins.. .
4326Doug 14M
I758)ame 16F
6420Fat I6F
2990 Pat 16F

..Execution ends,
Mores

{1} COBOL has a special constant known as high-valoss which can be used
inateadd of 9999. In mathematical term this quantity can be compared fo
infinity, in that no larger quantity can be assigned to the field.

(2 Both the perform-ontil and ke st ¢od clauses have been modified
s hlgh-valner,

13} When the program is run an extra line is printed, namely the sentinel
record with 9999 a5 the student number, Recall that this record was
inserted by the program that created the file. Note also thet the name,
age, and sax are the same as the previous record. Recall that we only
¢hanged the student number before we wrote the sentinel record. This
can be remedied by modifying the program that crested the file.

Tutorial Exemples 47

{4)

5

COBOL also hes a constant called low-valoes which is the smallest
possible value,

High-valnen and low-valmes arc called fZpurative constaniy. Spaces and
2ero are alse figurative conatants.

48

1.3.6 Use the File Provided with the System.

To save time and to provide some consistency, a version of the soadent file is
provided with the systemn. This section describes the file and displays an unspaced
listing of the file.

* Introduce the Student File.

*
identification division.
program-id. EXAMPLE-135.
environment division.
configuration section.
source-commputer. CBM-SuperPET.
object-computer. CBM-SuperPET .

input-output section.
file-comtral.
select scudent-file
assign to 'textfile’.

data division.

file section.
fd sodent-file

label records are standard.
01 smdent-recond.

02 filler pic x{(60).

waorking-storage section.

01 student-data,
02 swdent-no pic 1xxX.
0Z pame pic x(20).
02 age pic xx.
02 sex pic x.
02 class pic x.
02 school pit x.
02 algebra pit XXX.
02 peometry pic xxx.
02 physics P XXX,
{2 chemistry pic xxx.
02 english HC XXX,

Tutorial Examples

procedure division.

open input studeni-file.
perform read-stadent-record.
perform process-student-data

until spadent-no = high-vahes.

close stodent-File.
Stop run.

process-student-data.

display student-data.

perform read-student-record.

tead-student-record.

read student-file mio student-data
at end move high-valpes 1o student-no.

Sample Program Exscution

Fun
Execution Begins...
12345mith
1236Jones

L 238Winterbourne
1239Harrison

1 240G raham
1242Welch
1243D4rksen
1245Covan
12495ullivan
1256Kiichen
1265Taylor

1268 Allen
1270Xerxes
1272Zimmerman
L3TSQuantas
1388Beatls

1390 mikshank
1393Hopper
vo-Execution ends.

EAPHAEXISE"EREE7ESY

14m £ 307510007 5065084
Hm22E0TR05 503078
L4m3107808805606 7088
14m4 202 208706508 TO6R
L4dm2 t DODOGROTSO6TORT
14m3 167 5075076075075
[4md 7408 50540568084
15f 1305506607 HIRRDY
L5F 4204405506607 7088
14m4 174049 100057056
13f 33053083072066055
13 2105808407 165039
13 [309908 BOTTOS0055
131 32095085073061057
15m22066066066066066
15F 1106506207 3076087
15f 335506407 HT608 5
15f 2304 5069037026035

49

Notes

(1

2
(3)

Chapter 1

In order to make the file available, the wser is requested o run the

program called "CBLAT". A copy of this program appesrs as the last
example in the totorial section of the text.

The student file cogtains 15 records.

Each record in the file is &0 characters long and is composed of the
following Gelds;

Student Number
The sudent number Geld is 4 digits in bength and contains 8
4-digit number.

Name
The oame feld is 20 charsctess in length and contains both
surname and initiaks. The surname occupies the first 17
positions and the initial: occupy the last 3 positionn of this fisld.

Age
The age field i3 2 characiers in leagth and contuing tumbers in
the range 12 to 19,

Sex
The sex ficld is ! character in bength and contains either an M or
an F.

Clasg
The clask fieM is 1 charucter in length and containe numbers in
the mnge 1 t0 4.

School
The school fickd is 1 character in length and contains numbers in
the range 1 to 3.

Aigebra, Geometry, Physics, Chemisiry, and English
These five ficlds are all 3 digits in length and comtain roarks or
grades for each of the subjects. Possible grades range from 0w
100,

Tutorial Examples 51

Space Reserved for Funire Use.
The student record is dafined to have 60 characters. The sbove

fields ocoupy 44 charscters of the record; the remaining 16
charscters are reserved for famre use.

{4) The syntem-oamy: for the student file is "rextfile”.

(5 Ifﬂumﬂphnstumthssmdemﬁle.itissuuuudmuthsdnﬁniﬁm
for "student-data” be entered a3 u get file.

5 Chapter 1

1.3.7 Print a Report Using the Student File.

In all the examples presented to this poist, we bave used the display verb for
producing output to the screen. It is more traditionat in COBOL o define a special
file for screen output and to use the write verb for displayimg records.

]
* Print 1 Report Using the Student File.
E
identification division.
program-id. EXAMPLE-16.
environment division.
configuration section,
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-outpuk section.
file-control.
select student-file
assign to "textfile’.
select soreen
assign to "terminal’.

data division.

file section.
fd student-file

tabel records are standard.
01 student-record.

02 filker pic x(60}.

fd sermen

label records are standard.
01 display-recond.

02 filler pic x(80).

0l

ol

o1

01

02 filler
02 filler

first-line.

02 out-smodeat-oo
02 filler

12 out-initials
02 Rller

02 ow-surnane

second-line.

02 filler

02 out-algebra
02 filker

02 out-georetry
02 filler

02 put-physics
02 filler

02 oul-chemistry
02 filler

02 out-englizh

blank-line

Pic XXxX.

pic x{17).
¢ XX,
pic xx.
pic x.
pic x.
pi x.
pic XXX,
pic xxX.
pic xKx.
pic xxx.
pic XKX.

pic x(20) value is spaces.
pic x{20) valae it "Student Reponis’.
pic x{4) valuc is spaces.

pic x(4}.

pic x{10) value is spaces.
pic xxx.

pic x value is spaces.

pic x{17).

pic x(5) value iz ‘ aly’.
pic XXx.
pic x(5) value is * gmt’.
pic Xxx.
pie x(5) value is ' phy'.
pic xax.
pic {3} value is ' chm’.
pic xxx.
pic x(5) value is ' eng’.
pic xxx.

pic x(80) value in spaces.

52

procedure division.
open inpot student-le.
Open CULPLL SCreen.
write display-record from report-heading.
write display-record from Blank-line.

perform read-atudent-recond .
perform process-student-data
until siudept-no = high-values.
close student-file
screed.

stop Tun.
process-stident-data.

perform display-student-duta.

perform read-student-record.
dizpley-student-daia.

move student-ng o out-student-no.
move initials to out-initials.

MOVE SUTNATE EC {A- SUITATE,

write display-record from first-line.
move algebra to out-algebra.

MOve GEMMETY 10 OUL-FEOMETY .
move physics o out-physics.

move chemistry to out-chemistry.
move english to cut-english.

write display-record from second-line.
write display-record from blank-line.

read-student-record.
read student-file into snadent-data
Bt end move high-values 1o student-no.

Tutorial Examples

Sample Program Execution

un
Execution begins...
Stuedent Reports

1234 SA Smith
alg 075 gmt 100 phy 075 chm 065 eng 0B4

123& TO Jopes
alg 076 grne 078 phy 055 chen 057 eng 073

1238 MS Winterhourne
alg 078 gmt 038 phy 056 chm 067 eng 0BS

1239 K Hamison
alg 022 gmt 087 phy 065 ¢chm 087 eng 063

1240 IW Graham
alg 000 gmt 068 phy 075 chm 067 eng 087

1242 W Welch
alg 075 gmt 075 phy 076 chm 075 eng 075

1243 PH Dirksen
alg 074 gt 083 phy 054 chm 068 eng 084

1245 DD Cowan
alg 055 gmt 066 phy 077 chia 088 eag 099

1249 I Sulliven
alg 044 g 055 phy 0566 chm 077 eng 088

1256 MP Kitchen
alg 074 gmt 049 phy 100 chm 097 cng 036

1266 YO Taylor
alg 095 gmt 083 phy 072 chm 066 eng 055

1268 TT Allen
alg 098 gmt 084 phy 073 chm 065 eng 959

1270 X Xerxes

alg 099 gmu 088 phy 077 chm 066 eng 055

1272 AB Zimmerman
alg 095 gmu 085 phy 078 chm 061 eng 057

Ly FL Quantas
alg 056 gt 066 phy 066 chm 066 eng 066

(388 RA BHeatle
alg 065 gmt 062 phy 073 chm 076 eng 087

1390 TR Cruikshank
alg 055 gt 064 phy 077 chm 076 eng 085

1393 BU Hopper
alg 45 gmt 069 phy 037 chm 026 eng 035

...Execution ends.

Notes

(1)

(2)

(3)

4

This example displays & report wsing the studet file described in the
previous example. The report consists of & heading followed by two lines
for each student containing sebected fields of the file. A biank line is
displayed between cach student report.

While use of the display verb is appropriate to display records, it 15 more
traditional to use the write verh. This, of course, requires the proper file
definition, The file-pame is called “screen” and the record-name defined
in the File section is called *display-record”. An area of 80 characters is
defined gince most soreens can contain an B0 character line. However, it
should be nowed that some systenm because of their hirdware design will
cause an sdditional line conisining blanke to be printed if the BOth
character is not a blank,

The file "screen” is opened and closed in the appropriate places in the
program.

Pecords are displayed using the write verb in the form

write display-record from ...

Tutarial Examples 57

(3}

{6)

{7

(%)

(9}

A record containing spaces is defined in working storage and is used to
display blank lines.

The pame Geld of the student record consists of & 17 character sumame
followed by 3 characters for the inidels. In this example we wish 1o
display the initials before the sumame. In order to o this we must define
twe fields for the npame.

COBOL permits us to subdivide a field funther by introducing new level
numbers and by using new data-names. The ficld “name” is divided into
two fHields "surname™ and initials” a5 follows:

02 name,
03 surname pie x(17).
03 initials pic xxx.

The pictore clause has begn reowved from the 02-level item and two
pew items are defined at the {3-level; these new items are elementary
items. Mow the name can be referred to by using "name” or by using
"surname” and/or “initials”,

The 03-level number items have been indented to improve readabilicy.

COBOL permits us to use up 1o 49 levels; the reference manual describes
the rules of how these can be used.

58 Chapter |

118 Iupuiting a File Name.

We ofeen want 1o change the system-name in & progrun. For 2xample instead of
directing output to the terminal, we might wish to display it on the printer. This
cxample shows how this could be accomplished under program comtrod.

*

* input » File Name.
[]

identification division.

program-id. EXAMPLE-17.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer, CBM-SuperPET.

input-output section.
file-conirol.
select gudent-file
assign o “textfile’.
select screen
assign to *'.

data division.

file section.
fd stadent-file

1sbel records are standard.
01 student-record.

02 filler pic x{60).

fd screen
label records are sandard
vajue of ** is output-file-name.
0t display-record.
02 filler pic x(80%.

01 output-fike-name pic x(12).

01

1]

a1

o1

ansdent-duta,

02 stdent-no pic xxxx.

02 nams pic x(20.

02 ape pic xx.

02 sex pic x.

02 class pic x.

02 schoal pic x.

02 algebra pic XXX,

02 geometry pic xxx.

02 physics Pic XXX,

0 chemistry pic xxx.

report-heading .

02 filler pic x{20) value is spaces.
02 fitler pic x{20) value is 'Student Reports’.
02 fillar pic x(40) value is spaces.
firsi-line.

02 out-student-no pic x(4).

02 filler pic x(10} value iz spaces.
02 out-name pic x(20).

second-line.

02 fitler pic x5y valoe is ' alp’.
02 out-algebra pit XXX,

02 filler pi X(5) value is ' got’.
02 out-geomeiry pic Xxx.

02 filler pic x{5) value is " phy’.
02 out-physics pic xxx.

02 filler pic x(5) valuc is * chm'.
02 out-chemistry pic xxx.

02 filler pic x{5) value is * eng'.
02 out-cnglish pic xxx.

blank-line pe x(30) value is spaces,

Chapter 1

procedure division.
display ‘enter owtput file name - serminal or printer’.
move apaces 0 output-file-name,
acoept owtput-file-name.
open input student-file.
OpET OULDLE SCreen.
write display-record from repott-heading.
write display-record from blank-ling.

perform pead-student-record.
perform process-student-data
until student-no = high-values.
close student-file
SCTCEM.
stop run.
process-siudent-data,
pecform display-student-data.

perform read-student-record.

display-stdent-data.
move stodent-no o aut-student-no.
MOve DAME 10 CUT-DAIDE.
wiite display-record from first-line.
mave algebra to out-algebra.
move grometry 0 oul-geomelry.
move physics to oul-physics.
move chemistry to out-chemistry .
move english to out-english.
write display-record from second-line.
write display-record from blank-line.

read-student-racord.
read student-file inte student-data
at end move high-values to student-no.

Tutorial Examples

Sample Program Exccution

run
Execution begins. ..

enter output fike name - terminal or printer
printer

Student Reports

M Smith SA
alg O75 gow 100 phy 075 chm 065 eng 084

236 Jones TO
alg 076 gmt 078 phy 055 chm 057 eng 078

238 Winterbourne M5
alg 078 gt 088 phy 056 chm 067 eng 088

239 Harrison K
aig 022 gt 087 phy 065 chm 087 enyg DG

240 Graham W
alg 000 gmt 068 phy 075 chm 067 eng 087

42 Wekch w
alg 075 g 075 phy 076 chmn 075 eng 075

243 Dirksen FH
alg 074 gmt 083 phy 054 chun 068 cng 084

245 Cowan non
alg 053 gmt 066 phy 077 chm DB8 eng 099

249 Sullivan I
alg (d4 gmt 055 phy 066 chm 077 eng OBR

256 Kitchen MP
alg 074 gmt 049 phy 110 chm 097 eng 036

265 Taylor YO
alg 095 gmt 083 phy 072 chm 066 eng 055

2658 Allen TT
alg 098 grat 084 phy 073 chm 065 eng 059

62 Chapeer 1
0 Xerxes X
alg 099 gmt 088 phy 077 chm 066 eag 055

272 Zimmerman AB
alg 095 gt OBS phy 078 chm 061 eng 057

375 Quantas FL
alg 066 gmt 066 phy 066 chm 066 eng 066

388 Beatle RA
alg 065 gmt O62 phy 073 chm 076 cog 087

390 Cruikshank TR
alg 055 gmt 064 phy 077 chm 076 eng ORS

393 Hopper BU
alg 045 gt 069 phy 037 chm 026 eng 035

+.Execution ends.
Noves

{1} This cxample prompis the user to coter the syslem-oame, cither
“terminal” or "prigter”, and then displays a report similar to the previcus
example on the chosen device.

{2) Before running this example, the user should check Jocal imstallation
rules of printing. These will vary from system to system and from
location to location.

(3 The asskgm clawse for the “screen” has been changed to

assIEn screen o °
i.e. the system-name has been made a oull string.
(41 & npew clause hae been added to the fd statement, nameby

valoe of *" is output-file-name.

where "output-file-name” is a data-pame which is defined in working
storage. The period has been placed following the new clause.

Tutorial Examples 63

(¥

(%)

Before the file in opened, the user is prompted 1o enter the proper oatput
system-pame, cither "printer” or "terminal”. i “termingd” is entersd, the
program functions exactly the same a3 the previous example. However,
if "printer” in entered, the outpat will appear oo the line-printer,

Om examining the putput produced on the printer, the user may be
somewhat surprised at the resulis. The style and format of the owpat
will depend on the type of aystem and printer that are used. One possible
result will be that the first charscter of each line will not be privted. A
second rezult may be that the vertical spacing of the output seems
somewhat bizerre. The pext example will ory to correct these tmusual
results.

64 Chapter 1

1L.3.9 Prinier Conirol Characters.

In the previous example, the first character of each line was not displayed when
the output was directed to the printer. Engineers have designed many printers 50
that the first print position is a code which provides the printer with information
about vertical spacing. This position is st printed and must be sopplied by the
programmer. This special cheracter ie often referred to as the primfcomirol-
character.

* Print a Report on the Printer.

]
identification division.
program-id. EXAMPLE-18.
environment division.
configuration section.
source-computer. CHM-SuperPET.
object-computer. CEM-SuperPET.

input-output section,
file-control.
select student-fike
atsipn to “textfile’.
select screen
assign tg .

data division.

fle section.
fd student-file

Label records are standard.
01 student-recond.

02 filler pic x(50).

fd screen
label records are standasd
value of * i5 outpot-file-name.
01 display-record.
02 filler pic x(80).

working-storage section.

M output-fle-namme pic =(12},

a1

o1

a1

0]

02 out-chemistry
02 filler
02 out-english

blank-line

e XXXX.
pic x(20).
pic xx.
pic x.
pic X.
pic x.
pi¢ XXK.
P %X,
pic XEX.
pic xxx.
pic xxx.

pic x value is spaces.

pic x(20) value is spaces.

pic x(20} value iz 'Student Reports’.
pic x(39) value is speces.

pic x value iz spaces.
pic x{4).

pic % 10) value is spaces.
pic x{20).

pic x value is spaces.
pic x(5} value is ' alg'.

pic xxx.

pic x{5) value is ' gmt’.
pic xXXX.

pic x(5) value ia * phy’.
pi¢ XXX,

pic x{5) value is ' chm’.
pic xxx.

pic x{5) value is " eng’.
Pi¢ xxx.

pic x(80) velue is spaces.

Chapter |

procedure division.
display 'enter output file name - terminal of prioter’ .
move spaces to outpat-file-name.
accept output-file-name.
open ioput student-file.
OPET: OUIpUE KCTCED.
write display-record from report-heading
after advancing | lines.
write display-record from blank-line
after sdvancing 1 lines.
perform read-student-record.
perform process-student-data
until smdent-no = high-values.
close student-file
screen.

Siop run.

process-student-data,
perform display-student-data.
perform read-student-record,

dizplay-student-data.

move student-ne to out-student-no,

mMCVE NAME 10 Out-name.

write display-record from frst-line
after advencing 1 lines.

mave algebra to out-algebra.

move geomeiTy (o out-geomeiry.

move physics to cut-physics.

move chemistry 1o out-cheamigtry.

move english to out-english.

write display-record from second-line
after advancing 1 lines

wtite display-record from blank-line
aftet advancing [lincs.

read-siudent-record.
real stodent-file into stadent-data
at end move high-values to student-no.

Tutorial Examples

Sample Program Execution

iR
Execution begins...

enter output file name - terminal of printer
primier

Student Reports

1234 Smith SA
alg O75 gt 100 phy 073 ¢chm 065 eng 934

[236 Tones TO
alg 076 gt 078 phy 035 ¢hm 057 eng 078

1238 Winterbowne MS
atg 078 got B3 phy 036G chm 067 eng 033

1239 Harrison K
alg 022 gmt 087 phy 065 chm 087 eng 068

1240 Graham w
alg 000 gmt 058 phy 075 chm 067 eng 087

1242 Welch L
alg 075 gmt 075 phy 076 chi 075 eng 075

1243 Dirksen PH
alg 074 gmt 085 phy 054 chm 068 eng 084

1245 Cowan DD
alg 055 gmt 066 phy 077 chm 088 eng 099

1249 Sullivan]
alg 044 gmt 053 phy 066 cho 077 eng 0B3

1256 Kitchen MP
alg 074 gomt 049 phy 100 chim 097 eng 036

1266 Taylor YO
alg (95 gmt 083 phy 072 chm 066 eng 055

1263 Allen TT
alg 098 gmt 084 phy 073 chm (65 eng 059

1270 Xerxes X
alg 099 got O3B phy 077 chm 066 eng 055

1272 Zimmeyian AB
alg 095 gont 083 phy 078 chun 061 cng 057

1375 Quantas FL
alg D66 gmt 066 phy 066 chm 066 eng 066

1188 Beatle RA
alg 065 pmt 062 phy 073 chen 076 eng 087

13%) Cruikshank TR
alg 055 gmt 064 phy 077 chm 076 eng 085

1393 Hoppet BU
alg 045 gme 069 phy 037 chm (26 eng 035

-.Execution ends,
Notes

(1 COBOL provides us with & number of ways of handling the print-
control-character. This example shows ope method; others are deacribed
in the mference manual.

(2) Another field is added to each of the record definitions for lines to be
displayed. In each case, a feld of one character is defined as the fust
character in the record. It is initialized to contain the blank character.

{3) Now when the program is run, the report is printed with “proper” spacing
and containing all the desired characters.

{4) The use of the "blank” as the print-control-character indicates thet we
wish to do “single” spacing. Other characters are used for “doubic” and
"triple” spacing. Another cheracter is used to space the printer to the top
of the page. These characters depend on the type of system and printer
being used and are described in the reference manual.

(5} When this program is run with output directed to the screen, a blank
character may be displayed at the start of each line. This mesns that for
some screens, we will be limited to 79 characters.

Tutmial Examples 69

(&)

If the user plans to use both the terminal and the printer imerchangeably
in programs, it will be wise to plan for the wie of the print-control-
character. The remaindéer of the examples in this wtorial deat with
output directed to the terminal.

T0 Chaptet 1

1.4 Selection.

1.4.1 Selection Using the If Verb.

In previous examples which nsed the student file, we always displayed a line for
ench record in the file. Clearly on occasion we wish to displey 4 sub-set or selection
of lines from the file. The i verb gives us & way to make dacisions in our COBOL
programs and in particufar to select and Jisplay cettain reconds.

L

*If Senterce.

L
identification division.
program-id. EXAMPLE-19.
enviromment division.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

Input-ouipat section,
file-control.
select student-file
assign to "textfile’.
aslact soreen
aggigm te “terminal’.

data division.

file section.
fd stedent-file

Jabel records are standard.
01 student-record.

02 filler pic x{60).

fd screen

label records are standard.
0i display-record.

02 filler pic x(80}.

Tutorial Examples

working-storage section.

M smadem-data.
02 student-no PiC KXXX.
(2 name pic x(20.
{2 age pic xx.
02 sex pic x.
(12 class pic x.
02 school pic x.
02 ulgebra pic xxx.
0} geometry pic Xxx.
D2 physics Pic XXX,
02 chemistry pic XxX.
02 english pic xXxx.
M report-heading.
02 filler pic x(20) valus is spaces.
02 filler pic x(25} value is 'Algebra Repont’.
02 filler pic x(40) value iz spaces.
01 display-line.
02 out-student-oo pi: x{4).
02 filler pic x{10) value is spaces.
02 ouw-pame pic xC30).
12 filler pic x{5) value is spaces.
02 ouw-algebra pic xxx.
01 hiank-line pic x(BD) value is spaces.
procedure division.
upen input student-file.
Open OWtDUE soTeen.

wtite display-record from report-beading.
write display-record from blank-line.
perform read-stadent-recond.
peeform process-atudent-data
until student-no = high-values,
close stdent-file
BOTCCN.

sop rum.

71

72 Chapter 1

process-sindent-data,
if algebra = '049°
perform display-student-data,
perform read-stident-record.

display-shndent-data.
move studeni-pa to put-student-no.
move Name 10 out-Tamse,
meve algebra o out-algebra,
write display-record from display-line.

read-gtudent-record.
read student-file into student-datx
ai eod move high-values to stisdeni-no.

Sample Program Execution
rin
Execution begins. ..

Algebra Report

1234 Smith 5A 075
1236 Jones TO 074
1238 Winterbourne M5 078
1242 Welkch W 075
1243 Drirksen PH 074
1245 Cowan DD 055
1256 Kitchen MP 4
1266 Taylor YO {95
L2568 Allen T 0ha
1270 Xerxes X 099
1272 Zimmerman AB 095
1375 Quantas FL GGG
1388 Beatle Ra 065
1390 Cruikshank TR 055
...Execution ends.

Notes

(b This example produces a report comtaining the student number, name,
and algebra mark of those students whose atgebra mack is 50 or greater.

Tutorial Examples 713

(2)

(3

{4)

(3}

(6)

(7}

This can be accomplished by changing the "process-student-dats”
paragraph as follows:

process-siudent-data.
if algebra > '(49’
pexform display-studeni-data.
perform read-studenat-record.

Mote that we have introduced a new COBOL verb, namely if. When the
M sentence is encountered during sxecution, the conditinn

glgebra > ‘049"

is evaluated. If the condition is true, the paragraph "display-atudent-
data” is exccuted. Tf the condition is falre, control proceeds to the next
sentence, and ancther record is read.

The If sentence always contains a condition. These conditions are
similar to those used with the perform-umtil sentence.

The symbols ‘> and "=" used in conditions in this exsmple are called
relational operators. Actually there is & third coe namely, <. The
word mot can be included with each of the three conditions as follows:

not =
not =
not =

giving a total of six relational operators. It is alsn possible to use equal
or even equals instead of ‘=". A complete list of alternarives can be
found in the reference manual,

The i sentence ends with a periodt. It is important to note that there is
only one period, and this period terminates the sentence. The
importance of this will become evident in the next example.

The reader might be tempted to omit the O(zere) from the "049° portion
of the condition and write it as ‘49" or even * 497, If the program were
run. it would be nnlikely that one would obtain the comrect results. Thus,
it is usually necessary to include the O(zero) in the '049°. The reader is
referced to the reference manual 1o determine the reason for this.

The perform portion of the if is indented for easier readability.

74 Chapter 1

1.4.2 Another Version of If.

It is sometimes convenient to group a number of COBOL statements as » single
cotity. This examplke demonmrates how this can be done,

*If Sentence (Anothér way).

*
identification division.
program-id. EXAMPLE-20.
environment division.
configurution section.
source-coniputer. CEM-SuperPET,
object-computer. CBM-SuperPET.

input-output saction.
file-control.
select stwdent-file
aseign to ‘texifile’.
select screen
ansign to "terminal’.

data division.

file section.
fd student-file

lawbel records are standard.
3 smdent-record.

02 filker pic x{60}.

fd scresn

label records are standard.
01 display-record.

02 filles pic x(80).

Tutorial Examples
working-stotage section,
01 student-data.
02 mudent-ro pi¢ KXXX.
(2 name pic x(20).
02 age pic xx.
02 sex pic x.
02 class pic x.
02 school pic .
02 algebra pic Xxx.
02 geometry pic XXX.
02 physica pic xxx.
02 chemintry PiC KKX.
02 english pic x0ox.
0 report-heading.
(2 filler pic x(20) value is spaces.
0% fller pic x(25) valve is ‘Algebra Report’.
02 filler pic x{40) valoe in spaces.
01 dizplay-lipe.
02 out-stdent-no pic x(4).
02 filler pit x{10) value is spaces.
02 out-name pic x(2).
02 filler pic x(5) value is spaces.
02 out-algebra pic xxx.
{1 blank-line pic x(80) value is spaces.
procedure division.

open inpur studert-file.
Open OWpuUt SCreen.
write display-recond from repon-heading.
write display-record from blank-line.
perform read-srudemt-record.
perform process-smdent-data

until student-ne = high-values.
close student-file

screcn.

stop run.

T5

T6

Process-student-data.
perform display-student-data,
perform read-studeat-record.

display-student-daty.
if algebra = ‘049
maove stndent-no to out-student-na
Move name tg oul-pame
move algebra to out-algebra

write display-record from display-line.

read-student-recopd.
read student-fike ino student-data

art end move high-valuen to student-no,

Sample Program Execution
Fun
Execution begins. ..

Algebra Raport

1234 Emith 5A
1236 Jones T
1238 Winterbourng M5
1242 Welch Iw
1242 Dirksen FH
1245 Cowan DD
1236 Kitchen MP
1266 Taykor YO
1268 Allen TT
1270 Xerxes X
1272 Zimmerman AB
1378 Quanias FL.
1388 Beatle RA
1350 Cruikshank TR

--.Execution ends.

Notes

075
076
78
07s
074
055
o4
{95
098

095

065
a55

Chapier |

(This example is another version of the previous exampie. It presents the
concept of the range of the il and shows how a series of COBOL

statements can be executed when the condition is troe.

Totoriel Examples 77

(2)

(3}

4

(5}

(%)

The if sentence has been moved to the “display-student-daty” paragraph.
The pechods have boen removed from each of the sentences except the
last in this paragraph. The i is followed by the four ststements and is
terminated by a pariod to form the i sentence. The statements in the
range of the if are executed if the condition 1% true.

All statements in the range of the i are indented for readability.

The importance of the period cannot be over-cemphasized. It terminates
the #f and po other periods should be placed in the range of the If.

The word siatemens has been and will be used to refer to w COBOL
sentence without a period.

Whilke the versions of the H in this and the previous exainple both
function properly, it is suggested that one avoid, if possible, "large” If
sentences.

78 Chapter |

1.4.3 The Ele Option.

In the previow two examples, we &id oot require a line to be displayed if the
alpebra mark was leas than 50. It i3 sometimes the case that we wish to perform one
action if & condition is true and an ahernative action if the condition is fadse; for
example, one action if the mark is kess than 50 and anotber if the mark is greater or
equal o 50,

* Else Option.
]

identification division.

program-id. EXAMPLE-21.
eovironment divigion.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output sectign.
fike-control.
select sadem-file
assign to ‘textfike’,
select screen
asgign 10 "terminal’.

data division.

fike saction.
fd smdem-fils

lzbel recomis are standard.
01 student-record.

02 filler pic x(60),

fd screen

Iabel reconds are standard.
0t display-record,

02 filler pic x(80).

Twtorial Examples

working-storage section.

01 shwhent-cata,
02 wudent-na e XXXX.
02 pame pic x{20).
02 age pic xx.
02 sex pic x.
02 class pic X.
02 achool pic x.
02 algebra pic Xxx.
D2 geometry pi¢ KXX.
02 physica pic XXX.
02 chemistry pic xxX.
02 english pic xxx.
01 repon-heading. :
02 filler pic x(20) value is spaces.
02 filler pic x{20) value is ‘Pass - Fail Report’.
02 filler pic x(30) vahue is spaces.
01 digplay-line.
02 out-student-po pic x{4).
02 filler pic x(10) velue is spaces.
02 ou-name pic x(20).
02 filler pic x{5) valoe is spaces.
02 out-algebra pic xxx. :
02 filler pic x{5) value is spaces.
(2 paas-fail pic x{10).
01 blank-line pic x(80) value is spaces.
procedure division.
open input student-file.
Open P SCTECH.

wrine display-record from report-heading.
wrise display-record from blank-line,
perform read-stadent-record.
perform proceas-student-data
until student-no = high-valoes.
close student-file
screen.

stop run,

79

procass-student-data.

perform display-student-data.
perform read-student-recond.

display-student-data,
if algebrs < Q50"

else

move 'failed’ o pass-fail

move ‘passad’ w0 pass-Fail.

thove student-no (o out-shadent-mo.

MOv¥E name Lo out-name.,
move algebra to cul-aigebrs.
write display-record from display-line.

read-student-recond.

read geudent-file into student-data
at end move high-values 1o sindent-no.

Sataple Program Execution

FHR

Execution begins. ..

1234
1236
1238
1239
1240
1242
1243
1245
1249
1256
1266
12568
L270
1272
1375
1388
1390
1393

Pass - Fail Report
Smith 54
Jones TO
Winterbourne M5
Harrisen K
Graham W
Welch W
Dirksen PH
Cowan DD
Sullivan J
Kitchen MP
Taylor YO
Alken T
Xerxes X
Zimmerman AB
Quantas FL
Beatle RA
Cruikshank ™R
Hrppes BRU

-..Execution ends.

075
076
078
023

075
074
{55
074
098
095
065

055
045

passed

i

failed

PHEEE

passed

FLERREE

£
2

Chapter 1

Tutoris) Examples 81

n

(2)

{3)

(4}

3

In this example a report is produced displaying student pumber, name,
ad algebrs mark for all students as well as a fickd indicating if the

atwdent passed ot failed algebea.

A new field has been included in “display-line” to contuin the pass-fail

The "display-student-dats” paragraph has been altsred 8o include the
senience

if algebrs < "050°

move 'failed’ 10 pass-fail
else

move 'passed” to pass-fail.

The condition is tested and if it is trae, ‘failed’ is moved 1o the display
record; if it is false, 'passed” s moved. We refer to the two actions as
being contsined in the irue range and false renge of the if sentence. The
true range cnds with the eise and the false range ends with the period.

The elae is placed oo 8 scparate line and both the truc and false rmnges are
indented for readability.

82 Chapter t

1.4.4 Mutiple Choice.

In the previous example we cavsed cither "passed” or "failed” to be displayed in
the record. This can be thouwght of as two ceses. However, many sitaations arise
where more than two cases are invoived.

[]

* Multiple Choice.

[]
idenuification division.
program-id. EXAMPIE-22.
environment division.
configuration scction.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.

file~-comtrol.
select student-file
assign to "texifile’.
select screen
assign 10 "terminal’,
daia dvision.
file section.
fd student-file
label records are standand.
61 student-record.
02 filler pic x(60}.
fd scresn
label records are siandard.
01 display-record.

02 filler pic x(BO).

Tutorial Examples

working-siorage soction.
Ol student-data,
02 soadent-t Ac XXXX.
02 name pic x{20).
02 age pic xx.
02 pex pic x.
02 class pi¢ x.
2 school pic x.
02 algebra pic xXxx.
02 geometry pic xxx.
02 physica pic xxx.
02 chemistry pit Xxx.
02 english pic xxx.
01 report-heading.
02 filter pic x(20}) value is spaces.
02 filler pic x(25) value & ‘Latter - Orade Report’.
02 filler pic x(35) valuc is spaces.
01 firet-line.
02 out-shudent-no pic x{4).
02 filler pic x{ 10} value is spaces.
02 out-name pic x{20),
02 filler pic x{5) value is spaces.
{2 out-glgebo pit XXX.
02 filler pit X{:5) value is spaces,
02 grade pic x.
01 blank-tinc pic x(830) value is spaces.
procadure division.
open input student-file.
OpEn OULPIE ScToen.
write display-recond from blank-fine,
perform read-snadet-record.
perform process-student-data
until sudent-no = high-values.
close student-file
SCPen.

stop run.

23

process-studet-data,
perform dizplay-studeni-date.
perform read-student-record.

display-student-data.
if algebra < OS50
move 'F' 1o grade
else if algebra < 'D6D’
move "D’ 1o grade
clse if algebra =X 'DOS’
move 'C" 10 grade
clse if algebra < '075'
maove 'B' to grade
alge
move A’ w grade.
move student-no W on-shxdent-na,
Mmove name to Out-nAme.
move algebea to out-alpsbra,
write display-record from first-line.

read-student-record.
read stident-file into stodent-data
at end move high-values tn smdeni-no.

1234 Smith

1236 Jones

1238 Winterboume

1239 Harrisaon

12440 Giraham

1242 Welch

1243 Dirksen

1245 Cowan

1249 Sullivan

k256 Kitchen

L1266 Taylor

1268 Allen

1270 Xerxes

12712 Zimmerman

L1375 Cuantas

L3848 Beatle

1390 Cruikghank

1393 Hopper

...Execution ends.
Nales

(n

075
oG
a78

Lk
04
055

074
095
098
095

035
45

TONWRE>ErETOETH >

8S

The example produces a report which includes letter grades as well as the
oumerk vahies, The letter A, B, C, D, or F is displayed in the

Bppropriate siGuation.

(2

E);

(4

Chapser 1

The "display-student-data” paragraph now containg the more complicated
i which handles the pecessary cases.

if algetwn < ‘05
move 'F o grade
clse if algebra < 060"
move 'T¥ to grade
else if algebra < 066
move "C’ to grude
else if alpebea <2 *075°
move 'B’ to grade
else
move ‘A’ o grade.

Here we have a number of i's with the entire if sensence ending with 5
single period. If the algebra mark is bess than 50, an F is moved ko the
display lioc and then condrod passes o the next sentence. If the mak is
not less than 50 conrol pazses to the clause

else if algebta < ‘00
Here the program asks in the mark ix leas than 50 and if that is the case, a
I» is moved to the display line and then cootrol passes o the next
sentence. If nod control passes to the next elme I clanse. This process
cootiowes until the comrect condition i3 found.
The else i clavse

else if algebm < ‘06’

determines if the mark is in the mnge 50 w 59 sioce the previous
condition

algebra < 050"

eliminated the cesc of all marks less than 50. Similarly, at cach of the
other edse ¥ clavses, the program checks for the covmxt range of marks.

Tutorial Examples 87

5 The if sentence covkd have been written as follows:

if algebra < 05
move ‘F' to grade
elee
if algebra < '0G0
move ‘0¥ o grade
el
if algebra < (66’
move 'C’ to grade
clsc
if algebra < ‘(7%
move 'B’ to grade
clse
move 'A' 1o grade.

Either style of the if sentence is acceptable. However, the authors prefer
the stylc uaed in the program.

88 Chapter 1

1.4.5 Logical Operators - And and Or.

OUn many occasions we wish to test more than one condition. The logical
operators amd and or ¢an be used to accompliah this.

* And and Or.

]
identification division.
program-id. EXAMPLE-23.
environment division.
configuration section.
source-computer. CBM-SoperPET.
object-computer. CBM-SuperPET.

input-oulpi section.

file-control.
select stwdemt-file
assign to "textfile’.
select screen
assign 1o "terminal’.
data division.
file saction.
fd smdem-file
label records e standand.
H student-recosd.
02 filler pic x{60).
fd screen

label records are standard.
0l display-recond.
02 fller pic x{B80).

Tuterial Examples

working-storage section.
0l student-data.
02 stdenl-no piC KXKX.
02 name pic x(20).
02 age pic xx.
- 02 sex pic x.
02 class pic x.
02 school pic x.
02 algebra pic xxx.
B 02 geometry pic xxx.
02 phyaics pic XXX,
02 chemistry pic xxx.
(2 english pic xxx.
01 report-heading,
_ 02 filler pic x(200 velwe is spaces.
02 filler pic x{30)
value is 'Class 2 - Algebra Repont’,
02 filker pic x(40) value is spaces.
01 first-line.
0} out-student-no pic x(4).
02 filler pic x{10) value is spaces.
02 ouwi-pame pic x{20).
2 fller pic x(%) valuc is spaces.
02 out-alpeben pic xXxxxx.
D1 blank-lipe pic x(80) vulue i3 spaces,
procedure division.

open inpat student-File.
Open outpul screen.
write display-record from report-headiog,
write display-record from blank-line.
perform read-studeni-recond.
perform process-sondsat-dac

uniil student-no = high-valoes.
cloze student-fike

SCreen.

stop run,

Chapter 1

process-student-data.

if algebra > '074" and class = '2'
perform display-snadent-data.
perform read-student-record.

display-siudent-data.

move student-00 bo ow-studem-oo.
move name o out-name.

move algebra to out-algebra.

write display-recond from first-line.

read-student-record.

regd sudeni-file into student-data
at end move high-values to student-no.

Sample Program Execotion

FHA

Execution begins...

1236
1268

Class 2 - Algebra Report

Jones TO 076
Allen TT 093

...Execution &nds.

MNoies

(D

(2

(3)

This example produces a report of students in the second class whose
algebra mark is 75 or greater.

In this case the if sentence

if alpebra > '074" and clags = "2’
perform display-studeni-data.

vses a compound cordition with the logical operator and. If both
conditions are tue the record is displayed. If either or both of the
conditions are false, the record is not displayed.

If the logical operator oF were used instead of mad in this exampie,
records would be displayed for all students in the sacond class as well as
all those in other classes whose algebra mark was 75 or greater.

Tutorial Examples 91

1.4.6 Combined Use of And and Or

On occasion we wish to combine the logical operators and and or in n
compound condition.

[]
* Compound Conditions.
[]

identification division.
program-id. EXAMPLE-24.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CEM-SuperPET.

input-output section.
file-control. .
select student-file
assign to "textiile’,
select screen
aseign to ‘terminal’.

file section.
fd stodem-file

Iabel records are standard.
{f studemt-recond.

02 filler pic x{60).
fd screen

labe] records are standard.
01 display-record.

Q2 filler pic x(80).

Chapter |

working-storage section.
01 smdent-dats.
02 stwdent-no pic Xxxx.
02 name pic x(20).
02 age PiC XX,
02 sex pic x.
02 class pic x.
02 schoo pit X.
02 algebra pic XXX.
02 geometry piC XXX.
G2 phynics pic xxx.
02 chemistry pic XxX.
02 english pic xxx.
01 report-heading.
02 Ailer pic x(20) value iz spaces.

02 filler pic x{30)
value is 'Class 2 & 4 - Algebra Report'.

02 filler pic x(40) value is spaces.
ot firgt-line.
02 ont-student-no pic x(4).
02 filler pic x{10) valoe is spaces.
02 out-nmme pic x(20).
02 filler pic: x(5) valuc is spaces.
02 out-class pic x.
02 fitler pic xx vaiue is spaces.
02 owt-algebra MIC XXXXX.
Ot blank-line pic x(80) valuc is spaces.
procedure division.

open input student-file.
opan {utput screen.
write display-record from report-heading.
wriwe display-record from blank-line.
perform resd-student-recoed.
perform process-student-data

until student-no = high-values.
close smdent-file

SCOEED.

top Tun,

Tutorial Examples o3

process-Hixent-data.
if (algebrn > '074" and clase = '2’)
ar
(algebra < “030" and class = '4')
perform display-student-deta,
perform read-student-record.

display-student-data.
move student-no tn ow-student-no.
Move OAME Lo GIN-NAME.
mave clags to out-chags.
move algeba o owt-algebra,
write display-record from first-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Samiple Program Executien

ruf
Execution begins. ..
Clags 2 & 4 - Algebra Report

(b] Jones TO 2 0

1239 Harrizon K 4 022

1249 Sullivan I 4 (44

1258 Allen TT 2 1098
Notes

(1 This example produces a report for students in the second class whose
algebra mark is 735 or greaser as well as studemts in the fourth class whose
algebra mark is leas than 50.

{2 The compound condition
(algebra > '074° and class = '2")

or
(algebea < 'D30° and class = '47)

3

C)

(3

(6)

Chapeer 1

performs the required tast. It determines if the class 2 - algebra condition
15 frue and then if the class 4- alpebra condition is oue. If sither is e
the record is displayed.

Parentheses have been introduced in order that the conditions are
evaluated in the desived order and to make the compound condition
casier o understand. Quantities enclosed in parentheses are evatuated
first.

If parentheses are omitted, and's are cvaluaed first, followed by or's.
Thus in this example the parenthwses could bave been omitied. However,
they were included to reduce possible ambiguity.

The following compound condition illustrates the use of parentheses.

{class = "2’ or class = "4")
and
{algebra < "050" oc algebra > "075")

In this case, the repont would contain students in the second or fourth
class who had marks less than 50 or greater than 75. If parsntheses were
omitted the report would contain all students in class 2, stwdents in class
4 with algebra marks less than 50, and students whose algebra mark was

greater than 75.

Finally, this new compound condition could be written somewhat more
compactly as

{class = "2 or '4")
and
(algebra > "075" or < "050")

The reader is referred to the reference manual for a more complets
presemtation of implied subjects in compound comditions.

Tutosial Examples 95
1.5 Arithreetic,

1.5.1 Integer Arithmetic

One of the major uses of computers is to perform arithmetic. This example
introduces the vetbs used for arithmetic operations. It also presents a new ficld
definition for defining numbers to be used in arithmetic operations. The program
itself has little meaning; it is used to demonstrate arithmetic operations.

[]
* Simple Arithmetic (Integer Mumbers).
E]
identification division.
prograny-id. EXAMPLE-23,
environment division.
configuration section.
source-computes, CBM-SuperPET.
objectcomputer. CBM-SuperPET.
data division.

working-storage section.

a1 a pic 9(4) value is 1234
a1 b pic H6) value is 123456,
M e pic H7).

oL 4 pic W6},

0oL e pic W10,

aL f pic A3).

procedure division.
add a b giving c.
subtract 4 from b giving d.
multiply a by b giving €.
divide a imto b giving f,
dizplay "a’ a,
display 'b * b.
diaplay * *,
display "¢ * <.
display 'd * d.
display e * e.
display 'f * f.
stop run.

Saneple Program Execution

ru
Execution begins. .,
a 1234
b 1231456

0 24690
122222
0153344704
100
...Execution ends.

- 8 A n

Notes

{1) This example defines two fiekds “a” and ™", assigns the values 1234 and
123456, and then finds the sum, difference, product, and quotient of the
two values. The answers of the four operations are stored in four fislds
and are then displayed.

{2) A different plcture clause is required for fields which are used to siore
numbers which will be used ic enter into arithmetic operations. The twn
definitions for "2 and "b* are written as

a pic 9(4) vatue is 1234,
0! b pic X%6) value is 123456,

Tutorial Examples 97

(3)

4

(5}

(6)

{7

(8}

Here "a" holds & 4-digit number with the value 1234 and *b* holds a
f-digit number with the value 123456, The two definitions could have
been written as:

0 a pic 9999 vahue is 1234,
0l b pic 999999 value is 123456,

It is & basic rale of COBOL that fields that arc to eoter into arithmetic
operations musé be declared using pleture’'s with %s inseead of x's.
These new phchare’s are referred to a5 numeric pictures.

The integer vahues, 1234 and 123456, are not enclosed by quotation
marks. They sre referred to as rumeric literals.

The four basic seatences used in this exemple for doing arithmetic
operations are:

add a b giving <.

subtract a from b giving d.
multiply a by b giving <.
divide a imo b giving f.

The meaning of cach of these sentences is faily obvious. In ench case
the contents of the fields *a" and "b" enter into an grithmetic operntion,
and the answers are stored in "c®, "d", "¢", and "f* respectively.

The fields “c", "d", “e", and " are the receiving fickls for the four
computations. When these ficlds have more pesitions than needed 1o
hold the answer, zeros are padded on the Left.

When division is performed the result is stored in "f giviag a value 100,
The remainder, camely 56, is lost. Later we will see how the remainder
can be retained.

A number of other forms of the arithmetic verbs exist in COBOL. These
are described in the reference manual. Several are presented in future
examples.

98 Chapter 1

1.5.2 Decimal Places

In the previous example, the decimal point was assumed to be to the right of the
fight-most digit. This example introduces decimal values in arithmetic operations.

]
* Simple Arithmetic {With Decimal Placas).
[]
identification division.
program-id. EXAMPLE-26.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
datn divigion.

working-storage saction.

01 a pic ¥%9v00 value is 12.34,

o b pic 999v999 value is 123 456,
0l ¢ pic %7).
M d pic 999vH99,
or = pic H{5)vo99,
M f pic 999v999G.
procedure division.
add a b giving c.

sublract a from b giving d.
multiply a by b giving e.
divide a into b giving f.
display 'a * a.

display 'h ‘ b,

display * *.

display 'c ' ¢.

display 'd * d.

display 'e¢ ' e,

display 't * F.

Stop run.

Tutorial Examples 9

— Sampls Frogram Execution

iR

— Execution begins. ..

a
b

LT T -+]

1234
123456

Q000135
111116
01523447
(H0D04

...Execution enda.

Notes

(1}

(2)

To indicate a decimal poiot in the field, we use a v’ in the appropriate
place in the pictare clause. For exemple,

01 apic 9999 value is 12.34,
01 b pic 999v999 value is 123.456.

defines a 4-digit field which has two decimal places, and a 6-digit field
which has 3 decimal places. The valuea 12,34 and 123.456 are assigned
to the two fields.

Consider the statement
add a b giving ¢.

Here the computer lines up the decimal points and performs the addition
as follows:

12.34
123.456

135.79%6

The result is stored in "™ However, "c” has a pletare of %{(7) meaning it
can hold a 7-digit imeger. Hence, the portion of the result 1o the right of
the decimal is dropped or tuncated. Only the 135 is stored with four
zeroes insetted on the left to Glk out the fisld.

100

3

(4

(3)

(6)

Chapter 1

In the case of the subtract operation, we were pot satisfied with the
truncation of the result 1o an integer. The pleture clause for *d* is
defined as

01 d pie 999v909,
and the appropriate value is stored in “d* namely [11116. Note that no
decimal poiot is displayed i.e. we have 10 remember where it is. In a
similar way, we have incloded decimal places for "c” and *f~.

There is no decima? point physically recorded in working storage. The
symbol “y" is used o indicate its position.

Numeric literals can contain decimal points, as illustraied by the vatues
12.34 and 123.456.

Consider the staternent

#dd a b giving ¢ rounded
and assume that the picture clause for *c* bas been definad as

01 ¢ pic $9990v09,
Here the value displayed would be 0013580, Since the picture clause is
defined 10 have 2 digits to the right of the decimal, the third digit after
the decimal is examined and if it is five or greater, the result is rounded.
In this example, the third digit after the decimal is a 6 and hence the

value is rounded. The rounded option can be used with the other
arithmetic verbs,

Tuterial Examples ' 101

N

(8}

Assume that the pleture clause for "c® had been written as
Dl ¢ pic 999v999.

In this ¢ase the result for "c” would have been 523447 i.e, the 1 has been
dropped from the tesult. COBOL does nor check if the result is too large
for the receiving ficld; it merely truncates the result to it in the: receiving
field. This can be remedied by using the on slre error option. For
cxample,

multipty a by b giving &
on size crror display ‘zrithmetic overflow’.

would tel] the user that an crror had occurred and an appropriate action
could be taken. This option can also be used with sl the arithmetic

verhs.

The reader is referred to the rederence manual for 8 more complets
description of romnded and on size error.

102 Chapter 1

1.5.3 Negative Nambers

The previous two cxamples used only positive values. This example shows how
ncgative values can be defimed and used.

]
* Rimple Arithmetic (With Decimal Places and Negative Muombers).
]

identification division.

program-id. EXAMPLE-27.
cuvironment division.
configuration section.
source-computer. CBM-SuperPET.

object-computer. CBM-5uperPET.
data division.

working-slorage section.

Gl a pic $99vo9 value is -12.34.
01 b pic 2999v999 value is 123.456.
4l ¢ pic s94poan,
o d pic 5N4v99,
Of e pic s 6WISI9,
01 f pic sHIvo9,
procedure division.
add » b giving c.
subtract a from b giving d.

multiply a by b giving e.
divide a into b giving [.
display ‘a ' a.

display ‘b " b.

display * *.

digplay ‘¢’ ¢.

display ‘d " d.

display ‘e ' e.

display f ' F.

stop run.

Tutorial Examples ' 103

Sample Progrum Execution

Fln
Execution begins, ..
a 123M
b 12M5F

O1111F
013571
00152344 T0M
01000M
...Execution ends.

B O n

Noles

1N We wish to assign the vahse -12. 34 (o “a" rather than 12.34. This is done
by changing the plcture for "a" io

02 a pic 399v99 value is -12.34.
(2) The wumeric literal is written ax obe would expect, namely -12.34,

{3) The pleture has been changed to 39%9v99 from 99v99. The character 's’
i$ included to indicate that the field may contain a negative valuc and that
provision must be made to store a sign,

{4) The other picture clauses have also been changed in anticipation thai the
respective fields may contain negative vahies. Clearly the definition for
"o need not have been changed since "B contains a positive value.
However, without doing the actual arithmetic operations, we cannot be
sure if °c", °d7, "¢, or "* will contain positive or negative results.

{5 If the 's’ is omitted and the result of an arithmetic operation is negative,
the result will be stored an & positive value. Hence it 35 safer to include
the ‘s’ for all fields unless ope is cerain that the vahue 1o be stored is

pasitive.

(6) Upon examination of the output, the user i3 probably somewhat
disconcerted to find that the right-moat characeer of sach of the results
may be a letter instead of 8 digit. In fact the output produced by your
systemn may differ from that shown in this example. This depends on the
particular coding or collating sequence used by your system. You
should refer to the reference manual if your owtput differs.

1M

{7)

Chapter 1

In COBOL the sign is ntored as part of the right-most digit in the field.
This results in unexpected letters being displayed. The letiers A - 1
represent the positive integers 1 - 9 and the letters J - R represent the
pegative integers 1 - 9. Thus, 1ZIM is -12.34 (the 'v' phaces the
decimal) and 12345F is 123 456. Poaitive zero is represented by { and
negative zero is }. A fumre example will show how to display nepative
vahies in a more appropriate fashion.

Tutorial Examples

1.5.4 Expressionn and the Compute Verb.

In the previous examples, we were Emited to one arithmetic operation for sach
verb. Muthematicians have provided us with a language for expressing arithmetic
computations, namely algebra. COBOL has a facility to incorporate certain aspects
of this language by permitting onc to Jefine 2 mathematical expression and to then

cosapirie the required vatue.

[

* Compute Vetb.
»

identification division,
program-id. EXAMPLE-28,
environment divisiona.
source-computer. CBM-SuperPET.
object-computer. CEM-SuperPET.
data division.

working-storage section.

O a pic s99v09 value is -12. 34,

01 b pic 5995999 value is 123.456.
aL e pic s999v999,

or d pic sSHEIVH6).

0ol e pic s99v09,

o1 f pic 593}

procedure division.

compute ¢ = a3 + b,
compute d = a4 + b * ¢ + 4252,
compte e = b/ a*(b-a)
compute f m 4 *% 3
display 's " a.

display 'b " b.

display " *.

display ¢ ' ¢.

display ‘d ' d.

display 'e " ¢.

display ‘f * f.

stop ron.

106 Chapter 1

Sample Program Execution

it
Executicn begins...
a 123M
b 12345F

11111F
01413079689F
s8sp

06D
-..Execution ends.

L IR 1 B =T]

Notes

(1) This example containg a aumber of arithmetic cxpressions listed below,
A few others are includad for compisteness,

a+b
a+b*c + 4252
blfa*(b-a)
4--3

a

-a+bh

1.9

b*e_2

Each example consists of one or more numeric guantitics, combined
with the symbols +, -, *, /, and **, which represent addiion,
subtraction, multiplication, division, and exponentiztion respectively.
The numeric quuantities arc data-names representing nutmeric ficlds or
numeric literals. Parentheses are used to dencte operatioas which are to
be evaluated first.

Tutorial Examples 107

2

)]

{4}

(3}
(6}

)

Just as in algebra, priovity tules are uwsed to determine the order of
computation of the items in an expression. Quantities in parencheses are
considered sub-cxpressions and arc cveluated first, inoer-most
parentheses receive priority over outer parentheaes. The priority of
operators is s follows, amanged in descending order.

- UTMATY mMious

il exporntiation

*{ muldply and divide

+ - add and subiract

Whenever any ambiguity exists, zuch as in the third example, the left-
most operation is performed first.

The expressions are emtered with a space on either side of the operator. IF
spaces were not the rule, it would be difficult to determine if a-b were a
data-name of 80 EXPression.
The compute verb in the staterment

compute d = & + b *c + 4522
canses the expréssion tg be evaluated and its value is assigned to "d°.
Spaces must appesr on gither side of the equal sign.

The data-name to the lzft of the equal sign may appear in the arithmetic
expression. Consider the exampie

compute a = a + L.

Here the expression "a + 1Y is evaluated first. Then the result is assigned
to "a”,

Expressions may also be psed in conditions. For example in the
condition

a+4=>b-234

both arithmetic expressions are evaluated and then the comparison is
oade,

108 Chapter i
1.6 Printing snd Editing Numeric Values.

L.6.1 Decmals s Ouipat.

The previcus several examples introduced how one can do arithmetic
operations. However, the output produced left much t be desired in that it
contained high-order zeroes, oo decimal points, and cven dispiayed letters instead of
digits in the case of signed vahes. This example shows how decimal points can be
included as pari of the output. Future examples will show various ways of editing
output values to have a more reasonable appearence.

* Displaying the Decimal Point,
[

identification division.

program-id. EXAMPLE-29.
environment division.
configuration section.
sourcc-computer. CBM-SuperPET.
ohject-computer. CBM-SuperPET.

data division.

working-storage section.

0f =& pic YOVOD vohae in 12.34.

0L b pic 900VH00 value in 123.456,
01 ¢ pic HI.99,

01 4 pic 95).999.

o1 e pic %(7}.99999,

L I pic 9(3).999,

Tutotial Examples 109

procedure division.
add u b giving c.
subtract a from b giving d.
multiply & by b giving e.
dwul:amwbpm;f
digplay ‘a
display b b.
display * °.
dizplay ‘¢ * ¢.
dupln;r"d d.
display ‘¢’ ¢.
display *f ' £.
stop run.

Sample Program Execution

run
Execution begins. ..
1 1234
b 123456

00135.79
o0111.116
(001523, 44704
010004

L B | -y]

MNoles

(1} The four lines of owtpt for "c”, "d", *e", and " now inchude the decimal
point in the corect positlon. This is sccompliahed by changing the four
pleture clames to contian a *.’ instead of a 'v'.

{(2) Because the decimal points are insertad, an extra charscter appean in
each of the fields that ere displayed.

110

3

(4)

Chapter 1

By wmiting ‘.’ instead of v’ the decimal poitt scwally appears in
working storage. (Recall that in the case of ‘v’ only the position was
recorded and no physical decimal point was inseried.) Since the decimal
point is presant, the field is nor a legitimate mowerde fisld, and cannot
therefore enter into arithmetic operations. Thuk it would be incorrect o
change the definition of *2* as follows:

01 a pic 99.9% valuc is 12.34.

Pleture clauses containing the *." are called ourpur picmres and the data
stored in them are called aumeric edited dats. They cannot be used in
arithmetic operations. They can be used only to receive results from
arithmetic operations and are used salely for display purposes.

Tutoriel Examples 111

- 1.6.2 Suppress Lesding Zeros and Printing Minns Sigms.

Lending zeros mre waually not considered necessary when displaving numeric
- reaubts. This example shows bow they can be climinated.

[]
* Suppress Leading Zearnes.
*
identification divigion.
program-id. EXAMPLE-3.
- ceonvironment division.
source-compier. CBM-SuperPET.
— object-computer. CBM-SuperPET.
data division.

working-storage section,

pic YOV value is 12.34.
pic YOV value is 123.456.

ol
01

oo

01
0l
ol
ol

pic 2(%).99.
pic 2(5).99.
pic z(7).99999.
pic (3)9.999.

procedure division.
add 8 b giving c.
subsrect 4 from b giving d.
multiply a by b giving ¢.
— divide a into b giving [.
display 'a * &
display 'b * b.
display ' °.
display ‘c ' c.
display 'd * d.
display ‘e ' ¢.
- display 'f' E.
S0P rhn.

Lo B -

12 Chaper 1

Sample Program Execotion

Fun

Execution begins. ..
124

123456

o B

135.79

Hi Ll
152344704

10,004

... Execution ends.

S R0

Motes

{1) The output no longer hez leading zeroes. The symbal 'z’ acts precisely
like & "9 cxcept that if the digit to be displayed is a ‘0, and 0o non-2ero
digit appears to the left of it, it is replaced by 8 blank character.

(2) It is common practice to have '9's' after the decimal place in output
pictures. If " had been defined to have 2 z's after the decimal and the
value to be displayed were 00000.00, all that would be displayed would
be spaces. By using 9's we are assored that .00 would be displayed.

(H [f a vaiue to be displayed is negative, we will wish 10 display a minus
sign 1o the deft of the value.

Tutorial Examples 113

)

The '-' charscter bebaves as a "' with one exora festure. Should the
number be negative, £ Mminus sign is placed immediately to the left of the
first non-blank character to be displayed. If the pheture clauses for were
writicn Bs

01 a pic 59999 valoe is -12.34.
01 b pic 999v99% value is 123,436,
DI ¢ pic (5.9

01 d pic 5.9,

01 e pic ~(7).99999,

01 f pic-(3.99m

and the output displayed would be

123M
123456

-

111.t1
135.79
-E52S 44004
-10.004

L B 1 =" -]

114 Chapter |

1.6, Dollar Sigws, Comimes, and CE.

Cn many occasions the values we wish to display represent some form of
maoney, usually dollars. In this cese we may wish 10 display the § sign us well as
inserting commas to make the output more readable. Finally, sccountants rarely
display & minus zign if & value is negative. They usually use the CR. symbol. These
featurea are incorporatad in this example.

* Printing Dollar Signs, Commes, and CR.
»

identification division.

program-id. EXAMPLE-31.

environment division.

configuration section.

source-compater. CBM-SuperPET.

object-computer. CBM-SuperPET.

data division.

working-storage sectiodn.

01 =» pic 59999V 99 value in -123.40,
ol b pic 3999990V9%9 value is 12345.60.
01 ¢ pic H7).99.
01 d pc 333,555,555 99CR.
01 e pic 333,555,555 99CR.
01 f pic $58,555.555 99CR.
procedure division.
add a b giving ¢
subtract a from b giving d.

multiply & by b giving e.
divide a into b giving f.
dizplay 'a ’ a.

display 'k’ b,

display ' *.

display 'c * ¢.

display ‘d ' d.

display ‘e * &.

dinplay 'f ' F.

stog rum.

Tutorial Examples 115

Sample Pregram Exeention

run
Execution begins. ..
a1 01234}
b (123458{

$12222.20
$12,460.00
$1.523, 447 04CR
$100.04CR
...Execution ends. .

- 0 -

Notes

(1} The '$* charecter also behaves like a 'z with one cxtra feature. A '$' is
inserted immmediasely to the left of the leR-most non-blank character.
Examine the value displayed for "c”.

(2) In the last three lines of owtput, commas are inserted in the picture
clawses. This canses commas to be displayed whemever thete arc
significant digits to the left of L.

(3 The values 1o be displayed for "™ and *f" arc negative and imuead of
displaying & minws sign to the left of the vatue, e symbol CR is
displayed to the right of the value.

(4) Finally, note that as exira characters such as comma. CR, °.' etc. are
incladed in the pictwre clauses, exira characters appear in the displayed
values. Note also that when displaying “d” no CR is present bak it should
be poted that two blank spaces have been inserted.

tis Chapter 1

L.6.4 Combining Edit Charscters

in order to achieve the desired form of outpat, it is often pecessary to combine
snnwnflheaditchlncwrs;Thistxlmpleshuwsafew:muphofhwthismbe
done.

]
* Combining Edit Symbols.
n

identification division.

program-wl. EXAMPLE-32.
environment division.
configuration section.
source-computer. CBM-SuperPET.
oltject-computer. CBM-SuperPET.
data division.

working-storage scction.

1}
01

pic 29999v99 value 15 - 123,440,
pic s999999v09 value is 12345.60.

TR

{111
m
01
01

pic $2(6).99.

pic $z2.2¢z,z22. 99CR.
pic $zz,zz7,779.99CR.
pic $zz.zzz, 229 9OCR.

Lo - B -

procedure division.
add a b giving ¢.
subwract a frotn b giving d.
muitiply & by b giving ¢.
divide a imto b giving £,
digplay 'a ’ a.
display ‘b ' b.
display " *.
display 'c ' ¢.
display 'd ' d.
display ‘e ' a.
disptay ‘f ' f.
stop Tun.

~Tatorisl Exsmples 117

Sample Program Execution

run
Execution Begins. ..
01234}
0123456{

- 2]

1223220

3 12,4589 00

5 1523447 04CR
3 100 04CR:
...Execution ends.

-0 oo

Notes

(1) The 'S’ and 'z’ symbol can be combined in one plctere clause s in the
above cases. In these cases the 'S’ gigns all occur in column one of the
output. In previons cxample the ‘$° signs floared to be mmedistely left
of the moet significant digit.

{2y In the last two cases a 'Y has been inserted to the left of the decimal.
This would causc a value, say .25, to be displayed an 0.25 instead of .25,

{3 The use of vmious edit characters to prodoce different forms of outpot
depends very much on the user's particular preferences. It may wlso
depend on installation stanciards.

118 Chapter 1

1.7 Two Examples Using Files and Arithmetic,

1.7.1 Student Avernges

This and the next example use some of the materia] presented in the previous
examples to demonstrate how erithmatic can be used.

* Calculate Student Averages.

L]

identification division,
program-id. EXAMPLE-33.
environment division.
configuration section.
source-computer. CBM-SuperPET,
object-computer. CBM-SuperPET.

input-output section.
file-control.
select studem-file
nssign to ‘textfibe’.
select screen
BESign to berminal’.

data division.

file section.
fd smdent-file

label pecords are standard.
0! sudent-recond.

02 filler pic x(60).

fd sceen

label records are standard.
01 display-record.

02 filler pic x{80).
working-storage ssction.

{1 smudent-total pic W 5.

Tutorial Examples

01

ol

H

L]

student-data.
02 gtudent-no
{2 name

02 age

02 sex

02 class

02 school

D2 algebrs
02 geometry
02 physics
02 chemistry
(2 eoglish

report-heading.
02 filler
02 filler
02 filler

first-line.

02 out-grudent-ne
02 filler

02 out-name

02 out-algetra

02 out-geometry
(2 gut-physics
02 ouwt-chemistry
02 out-english
{2 oul-average

btank-tine

procedure division.
open input student-file.

open output screen.

Pic xXxX.
pic x(20).
pic xx.
pic x.
pic x.
L X,
pic 999,
pic 999.
pic 999.
pic 395,
pic 999,

pic x(20) valuc i spaces.
pic x{H) vale is ‘Seudent Averages’.
pic x{30) vahie is spaces.

pic x(4}.

pic x(5) value in spaces.
pic x(20).

pic H4)9.

pic 2(4)9.

pic z(413.

pic z(4)%.

pic z(4)9.

pic z(5).9.

pic x(B0) value is spaces.

write display-record from report-beading.
write display-record from blank-line.
perform read-student-record .
perform process-student-data

unptl stwdent-no = high-values.

close shucdent-file
BCTCED .

RtOp 1un.

119

120

proceas-student-data.
perform process-siudent-marks.,
perform display-student-dats.
perform read-student-recond.

process-smdent-marks,
move zero o sudent-total.
add algebra to student-total.
add geometry to student-total,
add physics to student-total.
add chemisiry 1o stodent-totel.
& english to student-total.

divide soudent-total by 5§ giving out-aversge.

display-studeni-data.
move student-no to out-shudent-no.
mMOVE LAMS L0 DIE-NADT,
move algebrs 0o out-algebra,
MOVE EEUDETY (O CALE-FEnetry.
mave physics 10 out-physics.
move chemistry to cut-chemistry.
move english to mut-english.
write display-record from first-line.
write display-record from blank-line.,

read-student-racond.
read student-file into smsdent-cata

st end move high-valuza to student-no.

Chapter 1

Tuterial Examples
Sample Program Execution
rEn
Execution begins. ..
Student Averages

1234 Smith SA 75 100
133 Jomes TO 76 78
1238 Winterbourne MS 74 88
1239 Harrison K 22 87
1240 Gewham W 0 68
1242 Wekh Iw 75 15
1243 Dirksen PH 74 &5
1245 Cowan DD 55 66
1249 Sullivan] 44 53
1256 Kitchen MP 74 49
1266 Taylor YO 9% B3
1268 Allen T 98 34
1270 Xerxes X 99 38
1272 Zimmerman AR 95 &5
1375 Quantas FL &6 66
1388 Beatle RA 65 62
390 Cruikshank TR 55 &
1393 Hopper BU 45 &

...Execution snds.

73
55

56

75

76

54

17

72

73

78

T3

37

76

76

78
B8
6B
B7

T8

88

55
59
35

57

87
BS

33

7.8

63.4

75.4

65.8

59.4

75.2

73.0

T1.0

66.0

71.2

T4.2

75.8

1.0

75.2

66.0

12.6

1.4

42.4

121

12

MNotes

(1)

()

3

(4}

(5}

(6)

h

Chapter |

This example caleulates the average mark of the five coursea for sach
student and displays a report of this information.

A heading is displayed foe the report and then one line is displayed for
each student containing the marks and the calculated average.

An erea called "stdent-total” is defined in working storage o contnin the
totel of the five marks.

The definitions for the five marks in "student-data” have been changed
from pic xxx w plkc 999. These values will be used in arithmetic
operations and bence must be defined with 9's instead x°s.
The calculstion of the student average is done in the “process-student-
marks” paragraph using & number of sentences each with onc verb. A
slightly different version of the add is used, namely

add algebra 1o student-toal
instead of the longer and more complicated

add sigebr student-total giviang student-total.
The required computation ¢ould bave been done in the following manner

compute cit-averapge = (algebra + geometry + physics
+ chemistry + english) / 5.

or alkermatvely ax

add algebra peomeary physics chemistry snglich
giving student-total .
divide student-total by 5 giving out-average.

If for aome reason any particular mark in the fike conteined pon-numeric
characters, an crror would ocour when the value was repd and the
progratn would terminage,

Tutorial Examples

1.7.2 School Algebra Averages.
This exampie calculstes school algebrs averages.

¥
* Calculate Class Algebra Averages.
]
identification division.
progrun-ikl. EXAMPLE-34.
environment division.
sonrce-computer. CBM-SupesPET .
object-computer. CBM-SuperPET.

input-mrtput section.

fibe-control.
select sindent-file
assign to 'textfile’.
select screen
agsign to “erminal’,
date division.
file section.
fd studeni-file
labed records are standard.
01 stodent-recond.
02 fller pic x(60}.
fd screen
label records are standard.
Ol display-recard.
02 filler pic x(30).
working-storage section.
a1 totals.
02 tokal-1 pic W 5).
02 total-2 pic %(3).
02 totai-3 pic %(3).
02 count-1 pic 9(35).
02 count-2 pic 9(5.

02 coum-3 pic W,

14

0l stodent-data.
02 student-no pic XxXXX.
02 name pic x(20}.
02 age pic xx.
02 gex Ppic x.
92 clasy pic x.
02 school pic x.
02 algelsn pic 999,
02 geometry pic 900,
02 physics pic 999,
02 chemistry pic 999,
02 english pic 999.
01 repont-hesding.
02 filler pic x(2)) value 5 spaces.
02 fitler pic x{30) value is ‘Algebra Avernges’.
02 filler pic {3 vale is spaces.
01 school-line,
02 filler pi¢ x(8) value is ‘School’,
02 oul-school pic 9.
02 Aller pic x{(12) value is ' Average is *.
02 out-average pic 2(51.9.
01 blank-line pic x(80% valuc is spaces.
procedure division.
opers input student-frle,
open sutput BCrech.
wiite display-record from report-heading.
write display-record from blank-line.
perform read-stivdent-record.
mMoveE zeros 10 totals,
perform process-studeni-data
until student-ne = high-values.
perform display-averages
elose student-file
ScTEen.
stap run.
process-shadent-data,

perform process-sudent-marks,
perform read-smdent-record.

Tutorial Examples 125

proceas-smident-marks.

if achool = "1’
add algebra to total-1
it 1 o count-1

else if school = "2
add algebra w tota)-2
add ! to count-2

clse
add algebra to total-3
add | to coum-3.

display-averages.

move | to out-school,

divide total-1 by couni-! giving out-average.
write display-record from school-line.

move 2 to put-school.

divide total-2 by count-2 giving omt-average.
write display-recond from school-line.

move 3 to out-school.

divide sxal-3 by count-3 giving out-average.
write display-record from school-line.

read-student-record.
r¢ad student-file into student-dats
at end move high-values to student-no.

Sample Frogram Execution

HiH
Execution begins. .,
Algebra Averages

School | Average is 63.2
School 2 Average is 618
School 3 Average is 71.1
-..Execution ends.

126

Notes

(N

(2}

(3

(4

(5}

{6)

Thin example calculates the algebes average for each of the three
schoois.

In this case, three areas are defined 10 contain the total of the algebra
murks for each school. Three other areas are defined 1o contain the
number of students in each school.

The six totals have been defined as a data storacture called *totals”. This
permits us to store zeres in esch of the six areas with the one sentence

move zcros (o totals
instead of requiring six separaie msove sentences.

The "process-stwdent-marks” paragraph determines the school of the
current record and then adds the algebra mark to the appropriate wotal. It
also adds 1 to the appropriate "count” toial.

After all the records are read, the averages ere calculated and displayed
in the "display-averages” paragraph.

The eeader might be ternpted to use value k8 clawscs to st the six totals to
zerey. This would work comnectly in this example. However, it oot
considered good programming practice to initialize values in working
storage unless they are to remain unchanged by the program, In this case
the totals were changed and hence were zeroed by the appropriate move.

Tutorial Exarmples 127

1.8 Svbacripied Data-names.

1.3.1 Sohucripted Dists-names.

Most data processing applications in some way involve the wse of tables of
information. This section introduces featwres of COBOL which permit the casy
handling of table date, and in particular subscripted date-names are imtroduced,

* Number of Students at each School.
]
identification division.
program-id. EXAMPLE-35.
environment divigion.
source-computer. CBM-SuperPET.
object-computer. CBM-SupetFET.

input-gutput section.
file-control.
select stodent-file
assign to ‘textfile’,
select screen
assign to ‘terminal’,

data division.

file section.
fd stwdent-fije

label records are standard.
0] stuedent-record.

02 filler pic x(60).

fd screen

tabel records are standand.
01 display-record.

02 Filler pic {807
working-stomage section.

0F i pic 9.

128

01

a1

0

0l

a1

couni-table.

02 counts pic %35} ocours 3 tmes.
studert-data.

02 student-no pic XxxX.

(2 name pic x{20).

02 age Pic Xx.

02 sex pic Xx.

02 class Ppic x.

02 school pic x.

02 algebea pic 999,

(2 geomewry pic 999,

02 physics pic 999,

02 chemistry pic 999,

02 english pic 999,

repori-beading.

02 filler pic X209 value is spaces.

02 filler pic x(30) value is 'Enrellment Numbers'.
02 filler pic x(} value is spaces.
school -line.

02 filler pic x(8} value is "School *.
02 out-school pic 3.

{2 fller pic x(3) valoe is ' has .
02 out-coun pic zz9.

02 fitler pic x(9} value js ' Smdenis’.

blank-line pic a(B0) velue is spaces.

Tutorial Examples

procedure division.
open input student-filke.
Opén OVIpUL acTeen.
write display-record from repon-heading.
write display-record from blank-lipe,
perform read-stodeni-recoed.
move Teros to count-tatle.
perform process-student-data
until student-no = high-values.
move [te i
perform display-totals 3 times.
close student-file
SCreen.

giop run.

process-student-data.
perform process-student-marks.
perform read-student-record.

process-student-marks.
move school to i
add 1 to conms{i).

dizplay-totais.
move i tg out-gchool.
move countali) to oat-count.
write display-record from school-line.
pdd 1 toi.

read-student-record.
read sudem-file into shwdent-cata
at end move high-values 1o student-no.

Sample Program Execution

ruh
Execution begins. ..
Enrcllment Numbers

School 1 has 5 Students
School 2 has 6 Swdents
School 3 has 7 Students
...Execution ends,

130

Motes

(1)

{2)

(0

4)

This program reads the student file and determines the number of
students in each of the three schools. Note that a previous cxample
nesded this information in order 1o caleulate achool algebra averages. In
Mw,ﬂmmmdeﬁmdmhddmaﬂweemqﬂmdcmm,h
this example we introduce a new way of defining the three counters.

A new definition appears in working storage, namely,

0i count-table.
(2 counts pic H5) occurs 3 times.

We have introduced the oceurs clause on the 02-level tabie entry jtem.
This means that the data-name "counts™ i3 defined 3 times, cach hme
withﬂwsam:Mudmnfﬂ(ﬁ}.m3cuuiuintbeublem
referred to as follows:

courts(1)

coums(2}

counts{3)
The integers contained in parentheses are known as subscripis,
The data-name “counts” must be associsted with one of the valid
subscripts to be mesningful, The value of the subscript must be in the
range 1-3 i.e. by using the clause

ocours 3 times

we promise that we will not use a subscript greater than 3. COBOL does
wot penmit 8 subscript of zero or any negative value.

The data-name "count-tabie” can be used to refer to all the items in the
table. Thus the statement

Move ZeT0s 10 connt-table

sets each itemn in the table to zero,

Tutcrial Examples 131

&)

(8

)

(8)

(9

The paragraph

process-studet-marks.
move school o i.
add 1 o comis(i).

causes 1 to be added w the appropriate table item. The data-name “i* is
defined a5 a numetic item and the valus of "school™ is moved to "i".
Recall that the school field of the stadent record contains either a 1, 2, or
3. Subscripts must be defined as numeric ficlds and must contain
numeric values.

We could have defined "school™ with a pheture of *9' instead of 'x' and
then the paragraph could have boen writtan s

process-student-marks.
add 1 to counts{school).

In order to display the calculated values, "i* is initialized 10 1 and the
*display-totals” paragraph is executed 3 times; cach time the appropriate
line is displayed and *i* is incremented by 1.

The power of the use of subscripts should be self-evident. For example
if the number of schools were increased from 3 to 9, the "process-
student-marks” paragraph reguires no modification. Of course, the
occurs clause would have to be changed to define nine items. We would
also have o modify the part of the program that displays the results.

The user may have been tempied (o use the value bs clanic Lo sct the
initial table values to zero. This is not possible as COBOL does nof
permit ;ne to use the value Is clause to initialize sabscripted dats-names.

132 Chaper 1

1.8.2 Perform Varyiag.

Whenwingmbmiptuddah—nm,wequiteofﬂnwi;hhexmtclpunpaph
mpcﬁﬁvdr;ﬂmm]ydiﬁmhtbﬂw:ﬁ:hwchnpthuubmipﬁvﬂu,m
wuﬂ:cnminthcpuﬁmu:nmphﬂwnwemdinphﬁugtb:mﬂmm
mvﬂﬂhmmupdmgivuusﬂismpabiﬁq.

L 2
* School Algebra Averages using Subscripted Data-names
* und the Perform Verying.
%
identification division.
program-id. EXAMPLE-3.
environment division,
source-compuater. CBM-SuperPET,
object-computer. CBM-SuperPET,

input-output section.

file-controf,
select shxdent-file
assign 10 ‘textfile’.
select screen
assigm to ‘terminal’.
data division.
file soction,
fd student-file
Label records are standard.
0F aademt-record.
02 filler pic x(60].
fd screen

label records are seandard.
01 display-record.
02 Gller pic x{80).

working-storage section.

01 i pic 9.

Tutorial Examples

Ul

o1

Ot

01

M

01

totals-table.
0 totel
02 counts

school-table.
02 school-dma

student-data.
02 student-no
12 name

02 age

02 zex

0 class

02 xchood

02 elgebra
02 geometry
(2 physics
02 chemistry
02 english

report-heading.
02 filber
02 filler
02 Filler

schonl-line.
02 fiflar

02 out-school
02 filler
02 out-average

blank-line

pic ¥5) ocoors 3 Wmes.
pic N3 occwrs 3 times.

pic x(10) occurs 3 times.

pic XXXX.
pie x(20).
pic xx.
pic x.
pic x.
Pic x.
pic 999,
pic 999.
pic 999,
pic 999,
pic 999.

pic x(20) value is spaces.

pic x{(3P value is *Algebra Averages’.

pic x{}}) value is spaces.

pic x(13) value is * Average for *

pic =(10).
pic x{4) velue is " is ',

pic Z5.9.

pi x{B0Y value is spaces.

133

procedure division.
open input student-file.
apen matput sCTee.
write display-record from report-beading.
write display-record from blank-line.
move ‘Central’ to school -data{1).
move 'Western' to school-dats{2).
move ‘Southern' to school-data(3).
perform raad-student-recaord.
move zeros (o totals-table.
perform process-student-dsts
uotil student-no = high-valses.
perforn display-averages
varying i from [by 1
until i > 3.
close student-file
SCTECD.

BtOP MM,

process-student-deta.

perform process-student-marks.
performn read-soadent-recond.

process-student-marks.
mave school o i.
add algebra to total(i).
add 1 to counts(i).

display-averages.
move school-datadi) to cut-schonl.
divide w4al{i) by counts(i} giving out-average.
write display-record from schooi-line.

read-stodent-recond.
read stident-file into student-data
at end move high-values to student-no.

Tutorial Examples 135

Sample Frogram Execation
il
Execution begins...
Algebra Averages
Average for Central s 832
Average for Western is 628
Averape for Southern is 7L1
... Execution ends.
Notes

(1)

{2)

(3)

(4}

(5)

This example calculates sverage algebra mark for each of the three
schools. It also displays a school pame instead of 8 school number.

Another table is imroduced to hold the sum of the grades for each school.
While it could have been defined as a scparate table, it has been defined
an part of the totals-tahle. This permits us o 2210 both tables with one
move Sentenee.,

The program resds cach record and accumulates the algebra mark for the
appropriate school as well as incrementing the appropriate Cownter,

The "display-averuges” paragraph cakculates the average for each school
and displays the desired values.

The sentence

perform display-averages
varying i from 1 by 1
ootil i > 3.

ceuses the "display-averages® paragraph to be executed repeatedly as
long 85 i is not greater than 3. Before the paragraph is executed, the
valvue of "i” is set to 1 and the condition is evaluated to determine if it is
true or false. I it is true the paragraph is executed; if false control passes
to the next sentence. Each successive time, "i" is incremented by 1 and
the condition is teated o detenmine if the paragraph should be executed.

136

(6)

)

()

(9

Chupter 1

We could bave displayed the results in the reverse onder by changing the
perform as follows:

perform display-averages
varying i froma 3 by -1
until i = &

In thizs case, "i* will start with the value 3, and each time will be
decremented by 1 until *i* is zero.

A complete description of the perform verb can be found in the
reference manual.

Another iabls has been defined to coneain the names of the three schools.
This table is initialized with threc moves of ‘Central’, 'Western’, and
‘Southern’ respectively. These names are mwved to the display line in
the "digplay-averages” paragraph. The pext example will show how to
define these initial valwes in working storsgs.

Note that tables can be defined using x's as well a& 9's in the pleture
clanses.

Tutorial Examples 137

1.5.3 The Redelines Chwase with Subscripted Date-tasses.

While COBOL does not permit the initialization of tables directly uning the
valoe b clause, an indirect method is available.

* Redefines Claune,

[]
identification division.
program-id. EXAMPLE-37.
environment division.
configuration section.
source-cornputer. CBM-SuperPET.
object-computer, CBM-SuperPET.

input-output section.
file-control.
select studemt-file
assign to "textfile’.
select screen
assign to ‘terminal’.

cata division.

file section.
id student-fbe

label records are standand.
01 stwdent-record.

12 filler pic x(G1).

fd screen

Inbel récords are standand,
{1 display-record.

02 filler pic x(80).

wrHking-storage section,
01 pic 9.
01 iotals-table.

0 total pic H5) occurs 3 times.
02 counts pic H3) ocours 3 timves.

138

01

a1

01

a1

01

0]

gchool-table-data.

02 filler pic x{10) value is "Central’.
02 fillex e x(10) value is "Western'.
02 fller pic x(10) value is ‘Sowthern'.

school-table redefines school-table-data.

02 school-data pic x(19) occurs 3 times,
student-data.

02 student-no p¥ XKKK.

02 name pic x(20).

02 age pic xx.

02 sex pic x.

02 class pic x.

02 school piC X.

02 algebra pic 999,

02 geometry pic 999.

{12 physics pic 999.

02 chemistry pic 999.

02 english pic 999.
report-heading,

02 filler pic x{2(0) value is spaces.
02 filler pic x(30) value is 'Algebra Averages'.
02 filler pic x{30) velue is spaces.
school-line.

02 filler pic x{13) vaioe is ' Average for ’.
92 out-school pic x(10}.

02 filler pic x(4) value is ' is "
02 out-average pic z(5).9.

blank-line

pic x{B0) value is spaces.

Tutorial Examples 139

procedure division.
open inpat studend-file.
Open QUEPLL ScTEe,
write display-record from repornt-heading.
write display-record from blank-line.
perform read-student-record.
move zeros to totals-table.
perform process-student-data
uniil student-no = high-values.
perform display-averages
verying i from 1 by 1
until § > 3.
close studemt-file
SCTCCN.
stop un.

process-student-data.
perform process-student-marks.
perform read-student-recond.

process-shudent-marks.
move school to i
wid algebra to fotal{i).
a1 1o counts{1).

display-averages.
move school-datali) to owt-school.
divide total(i) by counts(i) giving owt-average.
write display-record from school-line.

read-stndent-record.
read stdem-file into student-date
at end move high-values to student-no.

140 Chapter |

Sample Program Execution
rien
Execution begins...
Algebra Averages
Average for Central is 632
Average for Western is 628
Average for Southemn it 7.1

...Execution enda.
Notes
(1} This example also cakujates and displays school algebra averages.

(3) An erea called “school-table-daw® is initialized to copiain the three
names of the schools.

(k)] Immediately folkowing the definition of the *school-table-dats”, we have
inserted the following description of “school-table”,

31 school-table redefines school-table-dats.
02 school-data pic x(10) occurs 3 times.

This differs from the previous example io that the redefines clause is
inmroduced. This means that the item "school-table™ occupics the same
arca in working storage as the em “school-table-data”,

(4} Both areas are defined to have 30 characters; COBOL does not require
that they same length if both are 01-Jevel items.

{5 In sssence, the redefings permits the user to give two or more definitions
to the same area in working storage and then to refer to the area with the
appropriate data-name.

[{J)] There are many other applications of this feature, but the assignment of
initia values in a tabie of subscripted data-names is an important gne.

Tutorial Examples 141

1.8.4 Tables with Two Subscripts.

Consider the problem of fiting the number of stdents in each of the four
clagses st each of the three schools. In this case it is more convenient to set up &

table contnining three rows representing the schools and four columns representing
the classes. This example introduces tablex with two sabscripts.

* School Course Averages
* Dita-namcs with Two Subscripta.
L}
identification division.
program-id. EXAMPLE-38.
environment division.
configuration section.
source-compiter. CEBM-SuperPET.
object-computer. CBM-SuperPET.

imput-output section.
file-conerof.
se¢lect student-file
assign to texdfile’.
select screen
asyign to 'terminal’.

data division.

file section.
fd stodent-file

label records are standard.
01 sndent-record.

02 filler pic x(600,
i screen

label reconds are standard.
01 display-recosd.

02 filler pic x(B0).
working-storage section.
1Y pic 9.

0 j pic 9.

142

01

Gl

ol

01

|

01

a1

school-table—data.
02 filler pic x(10) value is "Central’.
02 filler pic x{10) valwe is “Western'.
02 filler pic x{ 10) value is ‘Scuthern’.
school-1able redefines school-table-data.
02 school-data pic x(10) occurs 3 tnes.
smmary-table.
02 count-by-school occurs 3 times.
03 count-by-class pic %5) occurs 4 times.
student-data.
02 student-no pic AXxx.
02 name pic x{20).
02 age pic xx.
02 zex Pic x.
02 class pic x.
02 schoo pic X.
02 algebra pic 999.
0 geometry pic 999,
02 physica pic 999,
02 chemistry pic 999,
02 english pic 999.
report-heading.
02 filler pic x{20) value is spaces.
02 fillex pic 2300 value is ‘Enrollment Table'.
02 filler pic x{30) value is spaces.
school-line.
02 oat-school pic x{10).
02 cut-counts pic 2(4)9 oocurs 4 times.

blank-line pic {80 value in gpaces.

Chapter 1

Tutoriel Examples 143

procaduce division.
open input studeot-file.
Open OWpUL scTeen.
write display-recond from repont-heading.
write display-recond from blank-line,
perform read-studest-record.
mave Z&ts (G summary-table,
perform proceas-stadent-dats
inti] student-ne = high-values.
perform display-averages
varyiog i from 1 by 1
until i > 3.
close student-fibe
screcn.
#top run.

process-student-data,
perform process-student-rnarks.
perform read-studemt-recond.

process-atudent-marks.
mave school to i.
mave class o j.
add 1 o count-by-class(i, j}.

display-avernges.
move school-datali) to ow-school.
perform move-couns
varying j from 1 by |
unti j > 4.
write display-recond from school-line.

mMOVe-Coots.
move sound-by-class{i, j) to sut—counsi).

read-student-record.
read studem-file into studept-data
at end move high-velues 1o student-no.

144

Sample Program Executien

Execution begins. ..

Central
Westzrn
Southern

Enrollment Table

L
L e hJ
— i 2

Notes

(1}

{2

(3

A more involved definidon is required to zet up a iable with two
subscripts, namely

01 summary-table.
02 count-by-school occurs 3 times.
03 count-by-class pic %5) occurs 4 limes,

Note thet "count-by-school” is defined to occur 3 times because there an
3 schools. Thess three enivies ane referred to as:

count-by school{1)
couni-by-school(Z)
cout-by-school(3)
For each class. we have "count-by-class” which occurs 4 times, wnce for

exch class. A problem arises when we wish to reference the dats-names
"coumt-by<class”, If we consider the cxemple

count-by-class(3)

we have a8 vague reference; we know it meaos the thind entry, but for

" which class? The problem is solved by introducing a second subscrips as

Jollows
count-by-class(3, 2)

The: First subscript eefers to school 3, and the second one refers to class 2,

Tutorial Examples 145

)

(5

(6)

{7}

(8)

Every reference to the data-name "coumt-by-class” must have two
subscripts and in referred to as 4 donbly-swbseripied data-name.
“Summary-table” is often referred to a8 8 two-dimensional lable or an
arrey.

The above definition can be thought to have created 12 items cach with &
pictere %(5). The rwelve items can be zeroed with the sentence

move Zeros o summary-table,

The paragraph “process-student-marks” assigns the school to *i" and the
class to “j*. Then "I" and “f" are used s row and column subscripts
respectively and ooe is added to the Gorrect iable entry.

After all the records are processed, the table is displayed. The area
"school-ling” was modified to coatain a fable to bold the four class
counts. The values from & row are obtained from the “summary-tabie
snd then the record is displaved. This action is repeated for each row.

COBOL sllows up to three subscripts to be used.

146 Chapter 1

1.9 Relutive Files

1.9.1 Create a Relative Flle.

Suppose thar a teacher wished 1o display the record for a particular student from
the student file in order to look et the student’s marks. It would not be difficult 10
write & program to accomplish this. However, consider now that the teacher wished
to cxamine a sacond student’s record. If this record occurred after the one just
examined, there would be no major problem to retrieve it and display it. However, if
it occurred before, we would have to go to some extrs effort to rettieve the new
record. The difficulty lies in the fact that the srudent file is & sequential file. Relative
files permait us to access any tecord @ casily es eoy other record. This section
introduces relative files.

L]

* Create 8 Relative File.

-
identification division.
programn-id. EXAMPLE-39.
envirprment division.
configuration section.
source-compiter. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select stodent-file
aseign to "textfile’.
select student-inguiry
aspign to 'dirfile,rel’
organization is retative
RCCESs 15 sequentisl.

data division.

file saction.
fd student-file

labet records are standard.
01 shedent-recond.

02 filler pic x(60).

Tutorial Examples

fd student-inguiry
label records are standard.

01 direct-recond.
a2 filler pic x(60).
working-storage section.
 sudent-data.
02 ztudent-no pic xxxx,
02 name pic x{20).
0 age pic xx.
02 sex pic x.
02 clags pic x.
{2 schoal pic x.
02 algebra pic 999,
02 geometry pic 999,
02 physica pic 999,
02 chemistry pic 599,
02 english pic 999,
procedure division,

open input ztudent-file

outpart student-inguiry.
perform resd-student-recond.
perfomn process-stdent-data

upti] student-no = high-values.
close student-fila
student-inquiry.
stop nin.
process-studem-data.

write direct-record from student-data.
perform resd-student-record.

read-student-recornd .
read student-file into student-data

Bt end move high-values to Mudent-no.

Sampie Program Execution

run
Execution begins. ..
...Execution ends.

147

148

Notes

(t)

(2)

3

(4}

(3)

(6)

This program resds the student file and creates & bew version of the file
as n relative file.

A pew file called "sudent-inguiry” is defined as & relative flla. [ts
system-name is “dirfike,rel”. The ref is required by the CBM-SupaPET
o indicate that the file is relative. The chapter comtaining system
dependent information shoold be consulted reganding the format of file-
names ¢ other systems.

Two extra clauses

argaiization is relative
access is sequential

are added to the select statement. The first indicates that the file will be
used in the future as & relative file. The second indicases that for this
program we will be writing the records in a sequential fashion. Thin may
seem somewhat confusing but we wish o remd the records from the
sequential file and write them in the zame order, sequentially, ax 2 new
relavive file. The peat example will nse thiz new file as a relative file,

The fd for the new fiie is the same aa the fd for the student file, except it
bhas a new file and record name.

Opening and closing the relative Gle is done in the same manner as
opening and closing sequential files.

Writing records o a relative file in also done in the same manner as
writing records 1o a sequential file.

Tutorial Examples 149

1.9.3 Rad a Relative File.

Having written a celative file, we now wish 1o assure ourselves that the file cxist
and further that we can wse it in a ‘relative’ fashion,

*

* Read a Pelative File,

*
identification division.
program-id. EXAMPLE-40.
environment division.
configuration section.
source-computer, CBM-SuperFET.
object-computer. CBM-SuperPET.

ingnat-output section.
file-control.
sebect student-inquiry
assign to “dirfile,rel’
organization is relative
access is random
relative key iy gtudent-key.

data division.
file section.
fd student-inquiry

lahel reconis are standand.
01 direct-cecond.

02 filler pic x(60).
working-storage section.

Ot student-key pic 999,

01 student-data.
02 stadent-no pic xxxx.
02 name pic x{200.
02 age pic xx.
02 sex P X,
02 clans pic x.
02 szhool pic X.
02 algebra pic 999,
02 geomesry pic 999,
02 physics pic 999.
02 chemisiry pic 995,
02 engligh pic 999,
procedure division.

open input student-inguiry.

move 1B 1o studemt-key,

perform read-student-record.

perfortn process-student-data
until sudent-key = 999

close smden-inguiry.

FOop run.

process-student-data.
display studemt-daia.
subtract 1 from student-key.
perform read-student-record.

resd-siudent-record.
read student-inguiry into student-daty
invalid key move 999 to student-key.

Tutodial Examples " 151

Sampie Program Execntion

THR

Execution begins. ..

1393Hopper BU 15f23045069037026035
1390Cruikshank TR I5£330550640770T6085
1368 Beatle RA EX11065062073076087
1375Quantas FL 13m22066066066066060
1272 Zimnerman AB 1313200508 5078061057
1270X erxes X I3f13099088077065055
1268Allcn TT 13f21098084073065059
1266Tayloe YO 13£3309508 My7 2066055
1256Kitchen MP 14md3074049 100097036
12498 ullivan } 1¥3204405506607 7088
1245Cowan DD 15£3305506607 K)83000
1243Dirksen PH 14m42074085034068084
1242Welch JW 14m3107507 5076075075
1240Geaham FW 14m2 100006807 567087
1239Harrison K 14m4202208 7063087068
1238 Winterbourne M5 14m3107T808R056067088
1236Tomes TO 14m2NFI607805S5057078
13345mith SA 14m]1307510007 5065084
-..Exeruton ends.

MNotes

(1) This exmmnple rexds and digplays the 18 records of the relative file in
reverse order i.e. the last one first, and the first ope last,

{2} The sedect cluose is modified o indicate that
Bécess in ramdom

instead of sequential i.e. we cim now access the records in any onder.

152

(3)

(4)

(3)

(6)

(7}

Another clause
relative key is student-key

is adlded to the sedect clause. “Student-key” in a data-name which will be
used to indicate which record we wish 10 read. Note that ia defined in
working storage and must be defined uning a plotare with 9°s. The value
of *student-key’ must be an integer value lying in the range 1 to the
‘number’ of records in the relative fils, o gur cage 1R,

This value is used o read the desired record in the flle. If the value of
*student-key” were 7, then the seventh record would be read.

The read sentence has also been changed to reflect that we are reading a
relative file.

rem] stwdent-inquiry into atudent-data
invalid key maove 999 o studeni-key.

The at end clanse is not used when reading 8 relative file, The clause
invalid key move 999 to student-key

is executed only if an invalid key is used, in our case outside the 1-18
range.

When the program is executed, the value of 18 is assigned to “student-
key” which will resoht in the Jast record to being read. Then “stodent-
key™ iy decremented by one end the second-iast record is read. This
process continues until "student-key™ is one and the first record is read.
“Student-key is again decremented and now has a value of zero. When
we anempt to read the zero'th record the invalid key clause 15 executed
and 999 is amsigned to "student-key” which in tum causes the "process-
student-date” paragraph bg terminate.

Earlier we suggesicd that one should use highevaloes instcad of a
constant such as 999 to signal that there were no more records or in this
case that an invalld key was cocountered. High-vaduen can ooly be
assigoed to a field whose pletare clause comains x's; "student-key” must
be defined using %'s. Hence, we use 999 to signal that the use of an
imvalid key. It is suggested that the "stodent-key” field be made at least
one position larger than the number of records in the Ffile.

Tumrial Examples 153

1.%.3 Create 3 Relative File with un Index.

in order to use a relative file, we have to know the position of the record in the
file. It would seem more appropriate to use the student number o identify records.
In arder to do this we must create an [adex o the file,

* Read a Relative File.

[]
identification division.
program-id. EXAMPLE-41.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-outiput section.
file-conirm.
select student-inquiry
assign to “dirfile, rel’
organization is relative
Becess is random
relative key is student-key.
select index-file
assign to "indfile’.

data division.
file section.

fd smdent-inguiry
label records are standard.

0l direct-record.

02 filler pic x(60}.
fd index-file

labe] records are standard.
0 index-record.

02 filler pic XxXX.
working-storuge scction.

0l smdent-key pic 999.

154

01 smdent-data.
02 sdent-no pic xxxx.
02 name pic x(20),
02 age pic xx.
02 sex pic x.
02 class pic x.
02 school pic x.
02 algebra pic 999,
(2 geomeiry pic 999,
02 physics pic 999,
02 chemistry pic 999
02 english pic 999,
procedure division.
opet inpwt student- inquiry
output index-file.
move ! to student-key.
petform read-siudent-record.

pecform create-student-index
until student-key = 999,
close student-inguiry
index-file.
stop run.

cTeate-student-index.
write index-record from student-no.
add 1 to student-key.
perfonn read-student-record.

read-student-record.
read student-inquiry into stisdent-data
invalid key move 999 to student-key.

Sample Program Execntion

run
Exccution begins. ..
...Execution &nds.

Tutarial Examples 135

Notes

(1)

2

Thix example reads the “student-inquiry” fite and creates a new file called
"index-fike". This new file will also contaim 18 records with each record
conteining only the student number.

The program causes sach record starting with the first to be read, and »
néw record containing the student number is written,

156 Chaper 1

1.9.4 Extract Recerds frem 2 Kelutive File.

Having created an index, we now wish to nse it retrieve records randomly from
the studedt file using the sadent number as the key.

* Rend the Index and Selective Racords.
»
identification divirion,
program-id. EXAMPLE-42,
environment division.
configuration section.
source-computer. CBM-SuperPET.
object<computer. CBM-SuperPET.

input-cutput section.
file-control.
select index-file
assign to ‘indfile’.
select sradent- inguiry
assign to "dirfile,ret’
organization is relative
access iz random
relative key is student-key.

dats division.
file saction.

fd student-ingwiry

lnbel records are standard.
0] dmect-record.

02 filler pic x(60).
id index-file

Latwel records xre standard.
0 index-record.

02 fillex pic xxxX.

Tutorial Examples

working-storage section,

01 smdeni-key pic 999,
01 smdent-found pic xxx.
01 stodent-id pic xXxX.
M index-exists pic XXX
{1 number-of-keys pic 99.
o i pic 999.
Ol swdent-icdex.

02 index-key pic xxxx occurs 18 times.
0l student-data.

02 stdent-no pic XXxX.

(02 pame pic x(20).

02 age pic xx.

02 sex pic x

02 class pic x.

02 school Ppic x.

82 algebra pic 999.

02 geometry pic 999,

02 physics pic 999,

02 chemistry pic 799

02 english pic 999.
procedure division.

perform read-index.

if index-exists = "yes'

perform display-student-records.

stop run.
display-sindent-records.

open input student- inguiry .

perform pet-student-id.

perform process-student-records

untl] student-id = ‘stop’.
close student-inquiry.

57

158

process-stdent-records.

perform find-stadent-key.

if student-found = "yex'’
read student-inquiry into smdent-data
display student-data

else
display ‘invalid sadent id. * student-id.

perform get-student-id.

get-student-id.
display ‘enter student id - stop to stop®.
accept stodent-id.

find-student-key.
meve ‘o0’ 1 student-found.
perform find-key
varying i from 1 by |
ontil i1 > number-of-keys o student-found = ‘yes'.

find-key.
if student-id =index-key(i)
mave i to student-key
move "yes' to stodent-found.

read-index.
open input index-file,
meve ‘oo’ to index-exists.
move (o i,
perform read-index-record.
perform store-and-read-index
unti] student-id = high-values.
ifi=q
move i to number-of-keys
move 'yves’ to index-exists,
close index-file.

store-and-read- index.
add 1 to 1.
move student-id to index-key{i)
perform read-index-record.

Tutorial Exemples

read-index-record.
1ead mdex-file o shudent-id

at end move high-values to student-id.

Sample Program Exscution
run
Execution begins. ..
enter gudent id - stop to stop
7234
12345 mith SA 14ml3075100075065084
enter student id - stop Lo sop
1393
1393Happer BU 1502304506903 7026035
enter student id - stop to stop
5427

invalid student id. 5427
enter student id - stop to stop
stop

159

...Execution ends.

Nates

(1)

(2

£l

{4

This example asks the user to enter a stindent number. Then the record
for that srudent iz displayed. The program terminates when a veloe of
"stop’ is entered. IF a student number which is not in the file is entered, a
message indicating thie is displayed and the program requests another
student number to be eniered.

The program initially resds the “index-file” and creates a table with one
entry for each record in the file. If no reconds exist in the "index-file”,
the program terminates.

The user i then requested to enter a stodent number and this oumber is
successively compared to each value in the table. When an equal
comparison is found, the position of the item in the table is used as the
position of the record in the relative file. If the number is not found in the
table, a signal is se1 and a message will be displayed.

The method of searching the table is called a sequential search. If the
table were quite large, it would probahly be better to vse some other
searching meethod or algorithm. These methods are described in many
computer scisnce textbooks.

160

{3)

(6}

(7

Chapier 1

If the number of records were quite large, there might ot be enough
menory to hold the entire index table. In thin case, one would have to
st up & scheme to porsibly have an index to the index.

It would be possible in this example to re-write the siadent record if, for
example, we wished to change a mark or even add a field with a new
mark. Thus we could read the record, make any changes, and then re-
write the record in the same place using the same vabue of "student-key”;
the value is not changed by the read. In this case, the file should be
opened using the 1-0 option instead of the inpwt optioa.

It is alzo possible to add new records to the file. However, the method to
do this is 'system dependent’. The user is referred o the reference
manugl ko determine how this can be done.

Tutorial Examples 161

1,10 Miscellsneous.

1.10.1 Creste the Student File.

This program creates the student file used in many of the examples in the tutorial
section of this text.

®

* Create Demonstration File.

w
identification division.
program-id. EXAMPLE-43.
covironment division.
configuration section.
sowce-computer. CBM-SuperPET.
object-compuier. CBM-SuperPET.

input-output section.
file~-conivel.
sctect student-file
assign to "texdile’.

deta divizion.
file section.
fd student-file
label records are standard.
0! studem-record.
2 fiiler pic x(60).
working-storage section.
01 rec-pumber pic 999,

01 student-dats.
02 filler pic x{60).

t62

a1

demo-file,
02 demo-data.

03 fller pic x(60) value is
12345 mith

02 filler pic x(60) value is
"1238]ones

03 filler pic x{60) value is
"1238Winterbourne

03 filler pic x(60} value is
"1239Harrison

03 filler pic x(60) value is
1 240Graham

03 filler pic x(60 valus is
"1242Welch

02 filler pic x(60} value iy
" 1243DMrksen

03 Aller pic x(60) value is
"1245Cowan

03 filier pic x(60) value is
"12495ullivan

03 filler pic x(60) value is
'1256K jichen

03 filler pic %(60) value is
*1266Taylor

03 filler pic x{60) valoe is
*1268Allen

03 filler pic x(60) value is
"1270X erxes

02 filler pic x(60) value is
127X Zimmenman

03 filler pic x{&0) value is
"1375CQuantas

{3 filler pic x(60Y value is
'1328Bcatle

03 filler pic x{60} value is
* 1 390Cruikshank

03 filler pic x{60) valoe is
"1393Hopper

0% demo-info redefines demo-data.
pic x(60} occurs 18 times.

03demo-rec

5A 14m13075100075065084",
TO 14m2207607805 5057078".
MS 14m3 107808 8056067088 .
K 14ma 202004 76508 7068" .
JW 14m2 100006B0T 5067087 .
IW 14m3 107507 5076075075 .
PH 14m4207408 5054068084 .
DD 15£3305306607 7088099 .
T 15f42044055066077088° .
MP 14m4 3074042 100097035,
YO 1313309508307 2066055,
TT 13t21098084073065059",
X 1311309908807 7066055,
AB 131209508 3072061057
FL 15m2X)660660660860466° .
RA 15611065062073076087
TR 15f33055064077076035",

BU L5f2304506903 7026035,

Twtorial Examples

procedure division.
open output student-file.
peform write-demo
varying rec-namber from 1 by 1
umtil rec-nutmber > 18,
close student-file.
&top run.

write-demo

move demo-recirec-oumber) (o student-data.

write student-record from stadert-data.
Sample Program Execution
FhA

Executicn begins. ..
...Execution ands.

