Final Design Specificstion For theMCS65E4 Microprocessor

Written by: Yan3 / Goodman / Mathys
Revision 1l 1*1
Date Released: 10-MAY-82

This document 1is submitted with the understanding that
it contains information which is confidential in
nature and is not to be revealed to anyone without
written permission from MOS Technologyf Inc.

FHRAKAXXFAXCONFIDENTIAL> MOS TECHNOLOGY >1NC e**Hxxxstix Pa2e-

Revision History

Rev t Date Description of Revision
0 0 2-Gct-31 Original release
1,0 1-MAY-32 General clean-up arid reorganization*.

Rewrite of software architecture description

FrrAAXXXXCQOQNFIDENTIALF MGS TECHNOLOGY >INC . MX*****=* Fade-

Final Design Specification for the MCS65E4 Microprocessor

Table of Contents

1*0 Introduction* *=*

* K X

* * *x ‘*

1*1 Review of Project Goals* LX e

1*2 Summary
1*3 Terminology* **
1*3*1 1Introduction
1*3*2 Process* **
1*3*3 Op Code* * =*
1*3*4 Operand* **
1*3*5 Instruction™*
1*3*6 Descriptor™

1*3*7 Ordinal * x

1*3*8 Static Data? Dynamic Data* *

* * *

**x *

,**

* * *

* X *

* * *

* X *

1*3*9 Physical Address *

1*3*10 Logical Address ¢

1*3*11 Pa”e Address* * *

1*3*12 Offset Address?

1*4 Example of Addressing

2*0 Description of the MCS65E4 Pin

2*1 Introduction* *

2*2 Address

2*3 Address

of MC365E4Capabilities™

* * X X X

* * X * %

* X * X *

* * * X X X X *

* * X * X

* **x * *x

¢ F 4 6 6.6 06 06 0 0 0 0

* * X * *

in the MCS65E4 System*

* * X X *

Bus Middle / Address

Bus / Data Bus / Bus

2*3*1 Interrupt Acknowledge* * *=*

2*3*2 Hold Acknowledge

2*3*3 Last Instruction Cycle * * =*

2*3*4 1/0 Reset

2*3*5 Processor Instruction Fetch*

2*3*6 Processor Data Fetch Fxkok ok

*xkxxkxx*x**CGNFIDENTIAL>

MOS TECHNOLOGY >[INC > xaskkaaskox

Functions *

¢ ¢ * * *

* X X X *

Relative Address* * =*

* * X X *

* * X X *

* * * * *

* * * * *

* K * K *x

* * * *

*

* *

* X X *

*

*

*

*

*

*

*

*

*

* * * * * X X K X X * X * * *

* X KX KX KX KX KX X X X X X *

*

*

*

Page-

12

12

14

14

14

15

15

15

16

16

16

16

17

17

20

22

22

22

22

23

23

23

23

23

23

Final Design Specification for the MC365E4 Microprocessor

2.3.7 Refresh Cacle. e . . e - . e - ..

2.3.8 External Microcode Fetch
2.4 Row Address Strobe
2.5 Column Address Strobe.
2.6 Chip Power. 8 - e T
2.7 Oscillator _._.......
2.8 Bus Clock -
2.9 Valid Memory Address

2.10 Memory Ready. . . i aa- e .

2.10.1 Read Cycle o it o et e e

2.10.2 Write Cycle o o o o o o . . .

2.11 1Interrupt Input o o o o o o o . . .

2.12 Reset e ee e mmmmmaaaaa

2.13 Write Enablescc cieiiiinn an- e e

2.14 Bus Error. - —- - . L L e T Ty o » »

2.15 Hold. o o . . L i eeieaeaiaao- -

2.16 Instruction Intercept . .
3.0 Internal Architecture. _____...... e

3.1 Introduction . - o - .. R

3.2 Execution Unit

3.2.1 ABL/ABM Registers. . . . _ . . . oiiaaiaaaia--

3.2.2 Register Array - - - o o < o+ . o .

3.2.3 Arithmetic Logic Unit. . . _ * _ _ _ _ . »
3.2.4 Input Queue. T
3.2.5 ABH/DB RegQISTerS .. acaaae ce immmeacaaaan
3.3 Execution Control Logic. R
3.3.1 Control Registers. . AR

3.3.2 Microcode Array

*axkxxkxxCQNFIDENTIALT MOS TECHNOLOGY j INC. **#sxsxsx

«

»

»

«

Page-

24

24

24

24

24

24

24

24

25

25

25

25

25

26

26

26

26

27

27

28

28

28

28

28

28

Final Design Specif icst-ion for the MCS65E4 Microprocessor

4*0 Software
4

4

4*2*6 Top

4*2*7* 1

4 %2 %7 *2

4 %2 *7 *3

452 *7 *4

4 %2 *7*5

472 *7*6

4 %2 %7 *7

4*2*7*3

A4F*2*7*7?

4*3 Process

4*3*5* 1

4 *3 *5 *2

*xxkxxAxxX*CONFIDENTIAL>

MOS TECHNOLOGY?INC . **gxHxxsx

PsSe-

30

30

30

30

30

31

31

31

31

31

32

32

32

32

32

32

33

33

35

35

35

35

35

36

36

36

Final Design Specification for the MCS65E4 Microprocessor

4»3*5*3 Process Stack™* i ZIER R IR oA B

4*3»6 Process Software * * * 6 46 & * e *F *

4*3*7 Process Vectors* e % * * x4 ¢ F e o

4*3*8 Kernel Reset

Vector* * e **x & x % 4 o

4*4 Execution of Processes 1in the MCS65E4* > .

4*4*1 Introduction

* * X X % * * * x * * * * ‘

4*4*2 Basic Inter-process Controls * * e i I 2

4*4*2*1 Introduction * * ¢ & * * ¢ ¢ ¢ ¢ ¢ ¢ o

4*4*2*2 Kernel Reset Vector™ Frok ok k ok ok %

44 *2*3 Process Parameter List ** ¢ * ¢ ¢ *

4*4*2*4 Pointer to current Caller* * =* i IR
4*4*2*5 Process Link * oK K XX 4 6 T e e
4*4*2*6 Process Stack* TR F RE kX e X F
4*4*3 Inter-Process Operations ¢ * ¢ ¢ ¢ ¢ ¢ ¢ *
4*4*3*1 Introduction e e e 0
4*4*3*2 System reset FHR oK K K Ak & ok
4443 *3 Invoking Additional Processes™* *ox

4*4*3*4 Exception

Processing ek Kok Kk ok ok

444 *3 ¢4 ¢1 Introduction * * * ** = ¢ o*F 0 F

4*4*3*4*2 Servicing exceptions within the
current process * ¢ ¢ ¢ * ¢ ¢ ¢ *F ¢ ¢ * o

4*4*3*4*3 Servicing exceptions within the
calling process Fxok ok Kk okk X *oxxx

4*4*3*5 Returning

to a Suspended Process * *

4*4*4 Exception Vectors within the

MCS65E4 Process

* *

444 ¢4 ¢1 Introduction Fh oA K Kk xk & * oKk X x

4*4*4*2 Undefined

4*4*4*3 Undefined

Op Code Trap * * * * * * *x *x

Data Type Trap * * * * * * %

4*4e4 ¢4 Subscript out-of-limits Trap * wx

*xxxxkxxx**CONFIDENTIAL>

MOS TECHNOLOGY>INC ***xkasksx

»

*

*

Page-

36

36

36

36

37

37

37

37

37

37

38

38

39

3?

39

39

40

42

42

42

45

46

47

47

48

48

48

6

Final Design Specification for the MCSo5E4 Microprocessor

4*4*4 5 Operator and Operand Not Compatible* ¢ * ¢ o 48
4*4 ¢4 46 Overflow & * * * _________. * SR SR S S 2 2 48
4*4*4*7 Other Arithmetic Error *F 4 6 ¢ F 6 & e 48
4*4*4*8 Non-conformable Data Types * * * * * * *x *x =% 48
4*4*4*9 Instruction Access Trap* * ** & * ¢ ¢ ¢ oo 49
4»4»4*10 Data Access Trap* * * FroK Kk ok ok ok ok kk 49
4*4*4*11 Process Stack Page Boundary Trap* * * * * * 49
4*4*4*12 Debug Trap* ¢ ¢ ¢ * & & * . __...... *o* 49
4*4*4*13 Interrupt Input * * * FR ok kK k k ok ok Rk 49.
4»4*4*14 System Call oA KKk kR R Rk ke e R 49
4*4*4*15 System Call with Message* * ¢ * * * ¢ ¢ o * 49
4*4*4*16 Bus Error * * * * % *x % &k % %k kK Kk k Kk kX 49
4*4*4*17 Access out-of-limit * FrOK Kk ko k k Ak 49
4*5 Addressing within the MCSG65E4* ¢ * ¢ ¢ * ¢ ¢ ¢ ¢ ¢ o 50
4*5*1 Introduction * * * * * & % & 4 & & g F * g * ¢* 50
4*5*2 Primary Addressing Group * folola R SR SRR ke 53
4*562 *1 Introduction * * * * * % % % % *x*x & & x &% 53
4*5*2*2 Base Register Select Field ¢ ¢ ¢ ¢ ¢ ¢ * ¢ * 53

4 *5¢2 *3 Data Access Format * * Te KKK Kk Kk x xk 53
4*5*2*4 Number of Extension Bytes* * * * * * ¢ ¢ ¢ * 54
4*5*3 Secondary Addressing Group Fr oK KX K Kk ok xk 54
4*5*3*1 Introduction._...._...._. * ok Kok Kk Kk ok ok kK 55
4*5*3*2 Limit Page Addressing* * ¢ * ¢ * & _______.__. 55

4 *5*3*3 Process Stack PUSH / POP * * * 55
4*5*3*4 1Immediate Addressing? Long Form* ** * * *x % 60
4*5*4 Internal Register Addressing * - 60
4*5*5 Immediate Addressing? Short Form * * ** * *x *x % 60
4*5*6 Process Base Addressing? Short Form*> * * * * *x % 61

FHrRAXAXAXXCONFIDENTIAL? MOS TECHNOLOGY?INC *H*xxdkxxsksk Page-

Final Design Specification for the MC365E4 Microprocessor

4*5*7 Primary Base Addressing? Short Form* *okox X K%

4*6 Data Structure Within the MCS65E4 System * * * * * %
4*6*1 Introduction * * * * Rk 4k 6 e e e e f
4*6*2 The Basic Data Elements* * ¢ * * * * % * ¢4 o *

4*642 ¢1 Unsigned Binary Data Fields* FxR ok KX *
4*6*2*2 Signed Binary Data Fields** ¢ * ¢ * ¢ o *
4*6*2*3 BCD Data Fields.......... ..
4*6*2*4 Floating Point Data Fields * *x . * *
4*6*2*5 String Data Fields * * * * * * % % % % *
4*6*3 Organization of the Variable Descriptor* * *
4*6 *3¢1 Introduction * * FAR Ok ok ok ok ok ok ko ox % *
4*6*3*2 Organization of the Descriptor
Header ¢ & * & & & * .- *

4*6*3*2*1 Introduction Fxok Kk ok kX Kk kX
4*6*3*2*2 Trap Bit * * * * i
4*6*3*2*3 Access Mode* & ¢ * ¢ * * * ¢ * o *

4*6 3 ¢2*3*1 Attached * * * * *

4*6*3*2*3*2 Attached Relocatable

4*6*3*2*3*3 Short Relative * * *

4*6*3*2*3*4 Short Relocatable* * *

* *

* *

* *

4*6*3*2*3*5 Long Relative* * * * * * * *
4*6*3*2*3*6 Long Relocatable * * * =* * *
4*6*3*2*3*7 Logical Addressing * * * * *
4*6*3*2*4 Data Type Field and Flag *x * *
4*6*4 The Data Structures* * * * xR KA x * *
4 46 ¢4¢1 Introduction * ** * * & * x *x % * *
446*4*2 Single DimensionArrays* * ox ok x * *

* x * *

4*6*4*3 Array Structure* * * * % x %

FHRAKFAXRXXXCONFIDENTIAL> MOS TECHNOLOGY>INCeF*xdsrxsix

Page-

63

63

66

66

66

66

66

66

63

63

68

68

68

68

69

69

69

69

69

70

70

70

74

74

74

77

8

Final Design Specification for the MCS65E4 Microprocessor

4*6»4*4 Record ¢ ¢ * ¢ ¢ % ¢ 4066 ¢ 0606 ¢+ 067 o 0 0 32
4*6*5 Deferred Descriptor™ FoR R KE Kk kK Rk Kk k% 36

4*6*6 Application of the MCS65E4 Data
Accessing Mechanisms *FoK Ok x e o6 6 T 6 6 ¢ 0 S3

4*6 *6e1 Introduction * * X e e * o6 T e F * e 0 33

4*6*6*2 Accessing Data in Multi-Dimensional

4*6*6*3 Example of Accessing a mulli-dimensional

4*6*6*4 Example of Accessing Data in a Complex

Record Structure* & * * * « * * > _ % 5 * * * * * 99
4*6*6*5 Exception Vectors* TR KAk kKR Kk KR ko 104
4*6*6*5*1 Introduction * * * ** *x % x % % % % *x % 104
4*6*6*5*2 Descriptor Format* ** * * *x % *x % *x*x % 104

4*6*6*5*3 Example of Attached Address

Descriptor Format * & * & * ¢ * ¢ * * * *x *x x 4 105
4*6*6*5*4 Example of Remote Exception Vector * * * 105
4*7*The MCS65E4 Instruction Set* * * * * % * % % *x % % % 107
4*7*1 Introduction * * _ * % % % % % % % % *x & & * * * * 107
4*7*2 Format of the MCS65E4 Op Codes * * 107
4*7*3 Basic Arithmetic arid Logic Operations™ XK KX 109
4*7*3*1 Introduction * * * % % * % % ok ok ook %ok % 109
4*7*3*2 ADD* * * F Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ko 111
4*7*3*3 SUBTRACT * * * * * % * % % % % o iaiaa--- 112
4*7*3*4 MUL* * * * F % % & & & & * &k Kk Kk Kk ok x Kk kX 113
4*7*3 *5 DIVIDE * * * * * % * % % % % * .- 114
4*7*3*6 AND* * * * * * F % * K *k Kk *x *k K* .- * 115
4*7*3*7 OR * * * * * *x % * ... Bl * * 117
4*7*3*8 EQOR * * * * *x * % *x % % * K& ... * *okox 119
4*7*3 %9 MOD* * * % * ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 121
A*T7*3*10 ABS * * * ok ok ok ok ok ok ok ok ok ok ok * 122

FHrRAXKAXXXCONFIDENTIAL> MOS TECHNOLOGY *INC ***xHkxxsksk Page-

Final

4.7.4_.11

4.7.3.12

4.7.3.13

4.7.3.14

4.7.3.15

4.7.3.16

4.7.3.17

4.7.3.13

4.7.3.19

7.4 Program Control

4.7.4.1

4.7.4.2

4.7.4.3

4.7.4.4

4.7.4.5

4.7.4.6

4.7.4.7

4.7.4.3

4.7.4.9

4.7.4.10

4.7.4.11

4.7.4.12

4.7.4.13

4.7.4.14

4.7.4.15

4.7.4.16

4.7.4.17

4.7.4.18

S E T i e

Introduction

BR.

JMP

Instructions

FHFHXKAXXAXXCONFIDENTIAL, MOS

Design Specification for the MCS65E4 Microprocessor

Final Design Specification for the MCS65E4 Microprocessor

4.7.4.19

4.7.4.20

4.7.4.21

RTE

TASK.

4.7.5 Advanced Operations. -

4.7.5.1

4.7.5.2

4.7.5.3

4.7.5.4

4.7.5.5

4.7.5.6

4.7.5.7

4.7.5.8

4.7.5.9

4.7.5.10

4.7.5.11

4.7.5.12

4.7.5.13

4.7.5.14

4.7.5.15

*xxkxxrk*x**CONFIDENTIALYF

Introduction _.

RESET. « = o o o e
CEQ. .

ONE . o e e e e e e e e e e e e e e e et e e meaaa

C6E *x

MOS TECHNOLOGY* INC_ ****x*x*x*x*xgp

152

153

- 154

- 155

- 155

156

157

161

163

164

167

169

171

173

175

176

F=aSe-

11

160

Fin31l Design Specification for the MCS65E4 Microprocessor

1*0 Introduction

This specification contains a detailed description of all aspects
of the MCS65E4 microprocessor develop merit project? beginning in
Section 1 with a review of the project goals arid a discussion of
the market toward which this chip 1is directed™* It is hoped that
these discussions will lead to greater understanding of the goals
of the project on the part of everyone involved*

Section 2" contains a description of the MCS65E4 interface* This Iis
followed by s description of the internal architecture of the
MCS65E4 (Section 3)? including the register organization? the
internal buses and the organization of the control store* Section
4 contains a detailed description of the MCS65E4 software
architecture (addressing modes? instruction set? etc*)*

1*1 Review of MCS65E4 Project Goals

Before entering into a detailed discussion of the MCS65E4? it
would be useful to briefly review the major factors which have
influenced the design of this processor system* Understanding
these TfTactors will be particularly important for anyone involved
in the design verification stage of this project*

Although the MCS65E4 1is equipped with a "compatible®™ mode 1in which
it is capable of executing software which was written for the
MCS65027? the MCS65E4 1is not designhed to be upward compatible with
the 6502 family of 3-bit microprocessors™* The primary reason for
this is that the basic design considerations behind the 6502
processor differ greatly from those described below for the
MCS65E4 processor* This 1is true in spite of the fact that the 6502
has reached a dominant position in the microcomputer market? one
of the target markets for the MCS65E4*

To put the 6502 architecture into perspective? it should be noted
that when this design effort began? microprocessors were viewed
primarily as replacements for random logic in the design of
controllers™ The 6502 was optimized toward this application* To
this end? significant emphasis was placed on minimum system
configurations and on minimizing device and system cost* This was
accomplished through the use of such things as page zero
addressing? 8-bit index registers? multiple-function support
devices? and generally simplified system interfacing*

Many of the characteristics of the 6502 which were designed to
maximize 1its performance as a random logic replacement would seem
to limit its performance in high-end microcomputer systems™* In
spite of this fact? low cost and ease of use has allowed the 6502
to become a dominant factor 1in this market* These are the features
which will be retained in the MCS65E4~* At the same time? the
architecture of this "next generation* processor will be designed
to assure maximum performance in microcomputer systems at the
lowest possible cost*

Modern high-end microcomputer systems exhibit several features
which can greatly influence the design of a processor optimized

*xxxxxxxxCONFIDENTIAL? MOS TECHNOLOGY? INC ** %k Page- 12

Final Design Specification for the MC365E4 Microprocessor

for this application™* In particular? all such systems are
controlled by a sophisticated operating system * In many cases?
components of this operating systenm are swapped into and out of
memory as required* host such systems support several user”s

programs in a *multi-task”™ environment? reallocating the available
memory from system to user or from one user to another as
reoui red*

There are several important problems inherent 1in this type of
system* The first 1is memory protection* It is iImportant that the
operating system be protected from the user®s programs arid that
the user®s programs be protected from each other* In addition? the
software should be “relocatable”™ since the physical address space
in which the program will be located is generally determined at
execution time*

In addition to the above? it Is assumed that most microcomputer
programming will involve the use of a high-level language™
Therefore? the software architecture of the processor must be
designed to minimize the time required Tfor both compilation arid
execution of such Ilanguages™

Finally? it should be noted that even the most powerful processor
is wasted 1if it is absorbed in 1/0 handling a large portion of the
time* For this reason? the system level problems of interrupt?
DMA? etc* must be handled in a manner which maximizes the amount
of time which the processor has available for "computing"™*

All of these factors have had a strong influence on the design of
the MCS65E4* However? the design described below addresses each of
these factors in a mariner which provides maximum performance
within well-defined chip size constraints™* The architecture
described 1in this document can be built into a device which will
be well within "state of the art”? providing a combination of
device cost and performance which should allow it to assume the
dominant position in the micro- computer market now held by the

6502 *
1*2 Summary of MCS65E4 capabilities

The following is a brief listing of the principal features of the
MCS65E4 family of microprocessors™*

1* S? 16 or 32-bit Data Bus*
2* 24-bit Address Bus*
3* ALUprocesses 32 bits of data for each processor cycle*

4* No internal data registers visible to the programmer* All
operations are "memory-to-memory"™*

5* Internal operarid registers allow processing of multi-byte
operands™*

6* "Generic" Op Codes? i* e*? the Op Codes do not specify

FrAXKAXEAXCOQNFIDENTIAL? MOS TECHNOLOGY ?INC e**HHxxkix Page- 13

Final Design Specification for the MCS65E4 Mictoprocessor

the format of the data fields™

7* "Self-defining* data structures? i* e* most data 1is
accessed through tags arid descriptors* However; the
ability to directly access and manipulate byte? double
byte and triple byte fields 1is provided to facilitate the
generation of descriptor and pointer addresses? etc*

8* On-chip hardware and microcode support for many oper< -irig
system functions™*

9* Hardware support fort
N3¢ Error Detection arid correction*
b* Virtual memory*
c* Prioritized and vectored interrupts*

de Floating point data types™
e* Decimal (BCD) data types™

1*3 Terminology

1*3*1 Introduction

The architecture of the MCS65E4 contains a number of very

important concepts which are uniaue to the world of
microprocessors>* To assure the accurate transfer of information?
therefore? this section introduces what is hopefully a clear?

consistent terminology which will be employed throughout this
document™*

1*3*2 F"rocess

The "process" is one of the key concepts in the MCS65E4
architecture* In general? a process can be described as a
self-contained combination of software and data* The address

limits within which a process must execute are defined by
information stored in an internal Process Base F~egister for the
lower limit and 1In a Process Linmit Register for the upper limit*
Special hardware within the MCS65E4 assuresthat a process does

not access any memory Jlocations outside of the address space
defined by these two registers*

There are several 1iImportant process characteristics which affect
the execution of software within the MCS65E4* The most important

is that all processes are totally relocatable? i* e*? an MCS65E4
program will execute 1in exactly the same manner no matter where it
is located in the 16 mega-byte address space In addition? an
active process can be suspended? and can be moved within the
address Space of its caller without affecting subsequent

execution™*

There are three types of processes within the MCS65E4
architecture* These are the Kernel? the Operating System and the
User process?* Each exhibits characteristics which reflect its

position in a well-defined hierarchy>* The term "Kernel process"™*
refers to the lowest level in the set of processes which forms a

xsskkkkk kX CONFIDENTIAL> MOS TECHNOLOGY 2 I NC % %k s sk s ok e Page- 14

Final Design Specification for the MCS65E4 Microprocessor

complete MCS65E4 system* The processor enters this mode through

the chip reset function or through system c¢311s and traps which
occur in the higher level processes™ Within the Kernel? the

processor C3n call either 3 higher 1level operating system process
or 3 User process™* These higher Jlevels of operating system csn
continue to call additional processes until a User process is
encountered* This hierarchy of processes 1is described in detail,
below *

Within this specification? the terms “Kernel processl will be used
to refer to process level 1 in which both the Kernel flag and the
User/Supervisor flag 3re set* The term “Operating System Process
will refer to those higher level processes in which the
User/Supervisor fTlag is set but the Kernel flsg 1is cleared* This
can be summarized as follows*

Kernel User/Supervisor

Process Flag Flag

Kernel 1 1

Operating System 0 1

User 0 0
1*3*3 0p Code
The terin bQp Code* refers to thefirst byte of each iInstruction*
This byte specifies the operationto be performed(Add? Subtract?
etc™) arid the format of the instruction* However? it does not

specify the type of the data (Real? BCD? etc*) which 1is to be
manipulated by the instruction*

1*3*4 Operand

The term *operand" refers to that portion of the 1instruction which
contains the information necessary to access a single data field~*
The first byte of the operand specifies the manner in which the
desired data field is to be accessed* Specifically? the data can
be located in an internal register? it can be in the instruction
(immediate data)? or it can be accessed through the normal data
referencing mechanism described below*

1*3*5 1Instruction

The term "instruction” refers tothe combination of Op Code and
Operands which are accessed under direct control of the Process
Program Counter to cause a complete execution seouence to take

place within the processor*
1*3*6 Descriptor

Within the MCS65E4 architecture? the “data descriptor* acts as the
primary means by which the processor determines the format and
location of a data field* The term descriptor refers to all of the
information reauired to access a data field* The components which

*xxxHxxx*CONFIDENTIAL? MOS TECHNOLOGY?INC *** %% Page- 15

Final Design Specification for the MC365E4 Microprocessor

make up 3 descriptor are*

le Descriptor Header™
2* Address Reference Information*
3¢ Auxiliary Information*

The operation of the descriptor 1is described in detail 1in Section
1*3*7 Ordinal

The term mordinal* will be used to refer to the three-byte
unsigned binary fields which are used to store Jlogical addresses?
offset addresses? etc* within the MCS65E4 architecture*

1*3*3 Static Data? Dynamic Data

During the discussions of process organization and execution
within the MCS65E4? the terms static data and dynamic data will be
used to differentiate between process variables which retain the
same Tformat for the life of the process arid those which are
created 3nd abolished while the process is being executed* The
most important characteristic of these two types of data is that
the amount of memory required by the static data will not change
during execution of the process* Dynamic data? however? consists
of variables which cannot be assigned fixed amounts of memory
during compilation of the process software because the memory
requirements for these variables will only be known at run time*
1*3*9 Physical Address

The term “physical address* will be used to specify a position Iin
the 16-megabyte address space which the MCS65E4 can access* These
are the addresses which appear on the pins of the processor*
Throughout this document? the physical address is assumed to be
the wmdefault*" Therefore? 1i1f an address type (physical? logical ?

etc™*) is not specified? it can be assumed to be a physical
address *

1*3*10 Logical Address

One of the most iImportant aspects of the stand-alone nature of a
process is that all addressing within the process software is
self-contained and is completely independent of the physical

memory Qlocations in which the process resides™ All addresses
generated during execution of the process software are assumed to
be offsets from the address contained in the Process Base

register* For example? if 3 process whose base address is 044B0O
(HEX) were to specify an address of 0177 (HEX)? the physical
address which would be accessed 1is 044C77 which 1is obtained by
adding 0177 to 044B00*

This characteristic of addressing within the MCS65E4 brings up the
concept of the logical address* 1In this document? the term logical
address will be used to refer to the position of a memory location
within the address space of a process* In the above example?

xwkxHxxkxxxCGNFIDENTIAL? MOS TECHNOLOGY 2 INC * % sk oPage- 16

4

Final Design Specification for the MCS65E4 Microprocessor

therefore? the Ilogical address would he 0177* It should be noted
that all software execution within the MC365E4 is performed within
the context of a process* For this reason j all memory locations

have both a physical and a logical address* The Physical address
remains fixed by the system lo”ic* However? the logical address of
each memory Ilocation 1is entirely a function of 1its position within
a process* This will be illustrated in the example below (See
Fidure 1*1)*

To assure accuracy? this document will utilize the phrase “within
process (process name)* whenever a logical address is specified*
Also? a memory location which is outside of the limits of a
process 1is assumed to have no logical address within that process?
i* e*? the logical address 1is assumed not to exist*

1*3*11 Page Address

There are many aspects of the MCS65E4 architecture which assume ari
eight bit organization* For example!l

1* Op codes are eight bitswide*

2* The minimum addressable data field is eight bits wide*
3* Offset addresses can bezero? eight? sixteen or 24 bits*
4* Both the base and limitfor a process are specified

in 256-byte increments*

As a result? it will be useful to utilize the term "page address-”
to identify the location of a 256-byte page* Throughout this
document? the Page Address will be specified by the upper 16
address bits with the 1low order eidht bits 1identified by XX* For
example? Page Address O01E4XX identifies the page whose upper
sixteen address bits are O01lE4* This page 1includes addresses 01E400
through OlE4FF*

In addition to the Page Address? the phrase "address on page (page
number or name)l will be used to specify an eight bit address
within a page* For example? address O01E43A can be identified as
address 3A on page O0l1E4XX*

The term "Base Page- will be used to refer to the lowest order
page within a process* This 1is the 256-byte block of memory whose
page address 1is contained in the Process Base register* Similarly?
the term "Limit Page8 will be used to refer to the 256-byte block
of memory whose page address is contained in the Process Limit
register™* The range of addresses which are available to a process
extends from address 00 on the Base Page through address FF on the
Limit Page*

1*3*12 Offset Address? Relative Address

All data addressing within the MCS65E4 is accomplished by adding a
displacement to a memory address™* This can be divided into two
specific forms of addressing™ These are Offset Addressing 3nd
Relative Addressing™* These two differ primarily in the manner in
which the memory address arid the displacement are specified*

xaxwkxxxkxxCONFIDENTIAL? MOS TECHNOLOGY 2 INC *% %%k Page- 17

Final Design Specification for the MCS65E4 Microprocessor

Within the MCS65E4 architecture? the term “Offset Addressing8 will
he used to identify an addressing operation in which the offset 1is
specified in the instruction arid the memory maddress is contained
in a base register™* Only positive offsets are permitted whon
accessing through Offset Addressing™* The base register can be
either one of the on-chip process registers (TOS? BAS? PRM? LMT)
or any three-byte set of addresses in the Base Page*

To assure accuracy? this document will utilize the phrase “offset

from register (register name)* whenever an Offset Address is
specified* In addition? whenever an external base register is
established in the process Base Pase? this base register will be
identified as “EXT (n)“? where n is the page address of the start
of the base register* For example? if addresses 15-17 on the

process Base Page are to be treated as an external base register?
this base will be identified as EXT15e Finally? it will be assumed
that a memory location which cannot be accessed through a base
register has no offset address relative to that register* This
will be true? of course? for any memory Qlocation outside of the
process* Even more important? it will also be true for all memory
locations with a lower physical address than that contained 1In the
register since negative offsets are not permitted while accessing
data via base registers™*

In addition to Offset Addressing? the MCS65E4 utilizes a similar
addressing mode in which the memory address 1is not contained 1in 3
base register and in which both negative and positive
displacements are permitted* This 1is termed “Relative Addressing"™
Within Relative Addressing operations the memory address can be
either, the contents of the program counter or the address of a
data descriptor™* This 1is described 1in detail in Section 4 of this
specification*

*adkxkxkxxCONFIDENTIAL> MOS TECHNOLOGY 21 NC e Page- 18

Final

Physical
Address
Space

FFFFFF

028000

000000

FIGURE

FrHAAXXEXXCONFIDENTIALT MOS TECHNOLOGY >INCe*****xxkx Page-

Design Specification for the MCS65E4 Microprocessor
Operating
System User
Kernel Process Process Registers
Address Address Address
Space Space Space Contents Name
FFFFFF
OEOOFF
i
1 1 0301FF 0301XX LMT
I 1 1
i 1 1
1 1 1
1 1 1
1 1 1
1 1 |
1 1 1
1 1 1 1 1 1 1 I
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 I
1 | | 1 1 1 1 E
1 i 1 1 1 1 D 1
| ! 1 1 1 1 ! 1
1 1 1 1 1 C 1 1
1 1 1 1 1 1 I 024700 EXT*
! h t ob 1 1p 1 h
1 1 1 1 1 ' - 0235A0 TO3
: I A
i i i i i 023590 F*RM
1 A i i i
1 1 i i i
i 1 i i i 001200 EXT*
| h 1 L i
1 1 1 023500 0235XX BAS
1 1
I L
I |
t i 1 *BaseF ‘age Addresses 10-12 are
I I 1 assumed to contain 001200. This
-“-010000 set of memory locations will be
\ treated as an external base
i register pointing to physical
| address 024700 (BAS + 001200)*
000000
¢1- Initial Configuration for Addressing Example

19

Final Design Specification for the MCS65E4 Microprocessor

le4 Example of Addressing within the MCS65E4 System

The addressing concepts outlined above can be clarified by
example* This will be accomplished by describing the addresses
associated with a memory Jlocation which 1is contained within the
address space of a User process* This User process is assumed to
have been called by an Operating Systenm process and 1is therefore
at level three 1in the hierarchy* Any memory location Qlocated in
this User process can be accessed by each of the lower level
processes™* Therefore? the memory Qlocation being discussed below

will have a single physical address? hut will have a logical
address within the Kernel process? within the Operating System
process arid within the User process* In addition to these three
logical addresses? the memory Jlocation will have a number of

Offset Addresses during any period that the MCS65E4 1is executing
one of these three processes*

The diagram above illustrates the memory map of anulti-task
system in which the three processes reside* The Kernelis assumed
to cover the entire 16-megabyte space* The Operating System

process (which was 1invoked by the Kernel) is limited to the range
of addresses from 010000 to OEOOFF™* At the same time? the User
process is assumed to reside initially within addresses 023500 to
0301FF* The memory Jlocation which will be examined initially will
be 028000? which 1is within the range of addresses allocated to the
User process* Figure 1*1 illustrates this configuration*

As described previously? each memory location has a single
physical address* For the memory location being examined
initially? this physical address is 028000* In fact? since the
base of the Kernel is always at address 00000 0? a memory
location®"s logical address within the Kernel is the same as its
physical address* Within the Operating System process (level two

in the hierarchy) the logical address of this memory Jlocation 1is
0180007 which 1is the displacement between the physical address of
the base of the Operating System process and the physical address
of the memory location itself* At the same time? this memory
location has a logical address within the User process* This 1is
obtained by subtracting the physical address of the memory
location (028000) from the physical address of the process base
(023500)* The resulting logical address is 004B00O*

To allow the offset addresses for this memory location to be
specified? it iIs necessary to first specify the contents of the
registers which can be used as a base for addressing the memory
location™* This will be illustrated by assuming the existence of
two addressing registers? termed the Primary Base Register arid the
Top oF Stack Register™* At the same time? it will be useful to
assume that addresses 10-12 within the Base Page contains 001200
and will be treated as an External Base Register* This provides
three internal registers, (including the F"rocess Base register) and
one external base register which can be used to access data*

To illustrate the offset address? assume that the MCS65E4 is

executing the User process? the Primary Base register (PRM)
contains 023590 and that the External Base Register (logical

*xwxxrxxxxCONFIDENTIAL? MOS TECHNOLOGY? INC s Page- 20

Final Design Specification for the MC365E4 Microprocessor

addresses 10-12 within the user process) contains 001200* The Top
of Stack Register (T0S) is initially at 0235A0« Under these
conditions™ the Offset Address of memory location 023000 relative
to PRM is 004A70e Likewise* the Offset Address " TOS is 004A60
and the Offset Address to the External "Base is 003900*

Durind the execution of the User process software* it 1is possible
to modify the contents of the addressing registers introduced
above* Doing so* of course* modifies the Offset Address of each
memory Qlocation in the process relative to that register* 1t may
in fact eliminate the Offset Address since only positive offsets
are valid* This can be illustrated by assuming that PRM .is set at
logical address 000040 within the User process* Doing so sets the
register contents to 023540* At this point* the Offset Address of
memory Jlocation 028000 becomes O004ACO* However* if the PRM 1is set
so that it points to address 029000 (logical address 0005B00
within the User process)* this register c3n no longer be used to
access address 028000 arid therefore* this memory location no
longer has an offset to the PRM register™

It should be noted that all memory Jlocations outside the limits of
a process have no logical addresses within that process* Likewise?
memory locations outside of a process which 1is being executed have
no Offset Address relative to the internal or external base
registers since these locations cannot be accessed by these
registers*

FxxHxxxAXXCONFIBENTIAL MOS TECHNOLOGY>INC *****xxkxx Page- 21

Fins! Design Specification for the MCS65E4 Microprocessor

240 Description of the MCS65E4 Pin Functions

2¢1 Introduction

The initial versions of the MCS65E4 will be available in a
standard 40-pin dual-in-line package* This is made possible by
multiplexing the address? data and bus status information onto a
set of 24 Pins* The pin configuration 1is as follows*

Function t of pins
1* Address Bus Middle/ Address Bus Low

(A9/A1-A16/A8) 3
2. Address Bus Hi3h/ Date Bus Lo

(A16/DB0-A23/DB7) 8

3. Bus Status/ Data Bus Hi2h
(1ACK/DB8-MIC/DB15) 3
4. Row Address Strobe (RAS) 1
5. Column Address Strobe (CAS) 1
6. Chip power (VDDrvss) 9
7. Oscillator 0
8. Bus Clock (BCLK) 1
10. Memory Ready (RDY) 1
11 ¢ Interrupt Input (INT) 1
12. Reset (RES) 1
13 . Write Enables (WEL> WEH) 9
14. Bus Error (BERR) 1
15. Hold (HLD) 1
16. Instruction Intercept (I11) 1
TOTAL 40

of these sets of pins is described in detail below*

2*2 Address Bus Middle/Address Bus Low (A9/A1-A16/AS)

The low order sixteen address bits (above AO0) are multiplexed onto
eight pins in a manner which 1is compatible with industry standard
64-Kbit dynamic RAMS* These 1lines enter the high impedance state
for external DMA operations (see HOLD)*

2*3 Address Bus/Data Bus/Bus Status (A16/DB0-A23/DB7t
IACK/DB8-MIC/DB15)

The high order eight address bits and the bus status bits are
multiplexed with the bi-directional data bits* During memory write
operations* the timing for these signals is the same as for the
low order sixteen address lines* For a memory read operation? the
MCS65E4 output drivers enter the high 1impedance state and the
memory devices place data onto these lines*

The high order address bits are normally stored in external
latches to be used as chip selects for the memory and 1/0 devices*
These signals are strobed by RAS as are the bus status bits* The
bus status bits are used to control specific functions such as
interrupt and DMA*

FHRFXKXXAXCONFIDENTIAL> MOS TECHNOLOGY>INC@*Hxrxkskix Page-

Final Design Specification for the MC365E4 Microprocessor

Bit Status Function

51 Interrupt Acknowledge (IACK)

52 Hold Acknowledge (HOLDA)

53 Last Instruction Cycle CLIO

54 1/0 Reset (IORES)

55 Processor Instruction Fetch (INST)
56 F*rocessor Data Fetch (DAT)

57 Refresh Cycle (REF)

SS External Microcode Fetch (MIC)

2*3*1 Interrupt Acknowledge (1ACK)

The 1ACK bit goes high to signal the Interrupt Controller that it
can place the active interrupt reauest information on the low
order eight bits of the data bus* This operation 1is described in
detail 1iIn Section 4*4*4*13*

2*3*2 Hold Acknowledge (HOLDA)

The Hold Acknowledge bit goes high to indicate that the processor
will enter the HOLD state at the end of the present cycle* During
the HOLD state* the RAS and CAS signals continue to run 3nd the
bus status signals are generated by the processor during RAS*
However” no data* address or write enable (UEL* WEH) 1information
is generated and the corresponding drivers remain in the high
impedance state at the appropriate time*

2*3*3 Last Instruction Cycle (LIC)

The LIC bit goes high to indicate that the current cycle 1is the
last cycle of an instruction execution seauence * This 1is used in
conjunction with bus arbitration logic in multi-processor systems
to control access to shared resources*

2*3*4 1/0 Reset (IORES)

This bit goes low to cause the systenm 1/0 devices to be reset*
This occurs when a System Reset instruction 1is executed* Causing
the RES input signal to go low does not cause this bus status bit
to go low* This allows resetting the processor without effecting
the peripheral devices*

2*3*5 Processor Instruction Fetch

This bit goes high to indicate that the address on the address bus
comes from the Processor Program Counter arid that the data being
fetched from memory will be placed into the input Queue*

2*3*6 Processor Data Fetch

This bit goes high to indicate that the address on the address bus
was generated as the result of an instruction execution*

2*3*7 Refresh Cycle

xwwkxxxxxxCONFIDENTIAL> MOS TECHNOLOGY* INC * %% s Page- 23

Final Design Specification for the MCS65E4 Microprocessor

This bit does high to indicate that the current cycle 1is a memory
refresh cycle*

2*3*8 External Microcode Fetch

This bit does high to indicate that the current cycle 1is art
external microcode fetch cycle*

2*4 Row Address Strobe (RAS)

The Row Address Strobe is a clock signal usedprimarily to latch
the middle eidht bits of the address into externallatches™* These
can be discrete TTL Ulatches for interfacing to peripheral devices
or to conventional static memories* In mostcases? however? they
will be located in the dynamic memory devices* |In addition to the
middle byte of the address bus? this signal 1indicates the presence
of valid data on the high order address lines arid on the Bus
Status lines* RAS will be held low by RBY but will continue
running during a HOLD operation*

2*5 Column Address Strobe (CAS)

The Column Address Strobe is primarily used to latch the column
addresses (low order eight address bits) into external latches*
This signal 1is also used to indicate that valid data is present on
the data lines during a memory write operation and to enable the
memory output drivers during a memory read operation* This signal
is synchronous with the BCLK signal* The CAS signal is held Ilow by
RDY but will continue running during a HOLD operation*

2*6 Chip Power (VDDFVSS)

The MCS65E4 will by powered by +5*0 Volts DC applied between the
VDD and VSS pins (VDD = +5? VSS = Ground)*

2*7 Oscillator (Osc 1In? Osc Out)

The 8 Mhz oscillator can be controlled by a auartz crystal
connected between the Oscillator |In and Oscillator Out pins* In
addition? the chip can be controlled by an external oscillator by
driving the Oscillator In pin with a TTL level sauare wave*

2*8 Bus Clock (BCLK)

The Bus Clock corresponds to the normal Phase Two clock. in the
6502 microprocessor system* Since this signal is always present?
it can be used to synchronize the RDY? HOLD and BERR signals and
to control data transfers between the MCS65E4 and any 6502
interface device*

2*9 Valid Memory Address

This bit goes high to indicate that there is a valid memory
address on the address bus *

FHRAKFXFIXXCONFIDENTIAL? MOS TECHNOLOGY ? 1 NC @k Page- 24

Final Design Specification for the MCS65E4 Microprocessor

2*10 Memory Ready (RDY)

The Memory Ready 1input can pe used to control the operation of the
processor when interfacing to slower memory or peripheral devices*
This signal operates in the same manner as in the 6502
microprocessor system with the additional capability of being able
to stop on both a read and a write operation* These two operations
are described separately below* The dynamic memory refresh
operation 1is disabled 3S long as RDY is held low*

2*10*1 Operation of RDY during Read Cycle

At the beginning of a memory read operation? the processor places

A9-A23 and the bus status information on the multiplexed
address/data lines* This is followed by RAS going low to cause
this information to be latched externally™* The address and bus

status information is then changed to A1-A8 arid DO-D15* This is
followed by CAS going low and BCLK going high*

Immediately after BCLK goes high* the RDY 1line can be pulled low
to cause the processor to stop in 1its current state* If RDY is
pulled low during a memory read operation* the processor stops
with the data bus Ilines 1in the high impedance state* The RAS and
CAS signals remain low as long as RDY remains low* This will hold
the address in the external latches allowing whatever time is
necessary for the memory outputs to become valid*

2*10*2 Operation of RDY during Write Cycle

Timing for the Write cycle 1is very similar to that described above
for the Read cycle* The Write Enable Signals (WEL* WEH) will go
low immediately after the beginning of the cycle (coincident with
A9-A16 going valid)* Immediately after RAS goes low* the data to
be written into memory 1is placed on the DBO-DB15 Ilines* If RDY is
pulled low during this cycle* the RAS and CAS signals remain low
arid the processor output data will remain on the DBO-DB15 lines™
The Write Enable lines will go high coincident with the trailing
edge of the BCLK pulse during which the RDY Iline returns high*

2*11 Interrupt Input (INT)

The MCS65E4 processor can be interrupted through the Interrupt
Input* Setting the INT Pin low causes the MCS65E4 to enter an
interrupt seouence at the end of the current instruction if the
Interrupt Inhibit bit in the Process Control Register 1is cleared*
The operation of the interrupt function 1is described in detail in
Section 4*0*

2*12 Reset (RES)

The processor can be reset by applying a low signal to this input*
For power-on reset* this can be accomplished by connecting an R-C
circuit to the RES pin* Positive control of the reset function in
the peripheral devices can be accomplished by connecting these
devices to the I0RES Bus Status bit* As long as the reset input
stays low* the processor will not perform any write operations*

FAXFXFXXXCONFIDENTIAL* MOS TECHNOLOGY *INC* H**sxksoksx Page-

Final Design Specification for the MCS65E4 Microprocessor

2*13 Write Enables (LJEL?WEH)

The write-enable sign3ls coritrol the direction of data transfers
betweeri the MCS65E4 and memory*. If a write-enable line is high
(Read)? data will be tr3nsferred from memory to the processor* |IFf
this sign31 is low? dat3 will be transferred into memory* WEL
controls writing into the lower byte iIm memory (even addresses)
while WEH controls writing into the the upper byte (odd
3dd resses)*

2*14 Bus Error
The Bus Error pin can be used to indicate that 3n error occurred

during the previous cycle* This error C3n be the result of a
Virtual Memory Address f3ult? 3 dsts error detected 1in an external

EDC chip? or any other form oferror*When this occurs? the

processor immediately suspends 1its current execution sequence and
traps to the operating system* The operating system can process
the error and? if appropriste? can then return to the execution

seauence which was interrupted*
2*15 Hold (HOLD)

The Hold pin can be pulled low toc3use the processor to "stop and
to pl3ce its sddress and data bus into the high iImpedance state*
This is used primarily for external DMA and multiprocessor
operations* As long as the HOLD pin is low? the RAS and CAS
signals continue to operate normally arid the processor continues
to put out the Bus Status bits* However? no address or d3ts
sign31ls 3re genersted by the processor 3nd the corresponding pins
remain in the high- impedance state except as required to gener3te
the bus status information 3nd to perform the required refresh
operations™ IT the external memory refresh is enabled during the
hold state (Hold = Low)? the HOLDA bus status bit will return Ilow
periodicslly to signal the external devices that the processor
will place refresh addresses on the address bus

2*16 Instruction Intercept (I1)

The Instruction Intercept can be used to cancel the execution of
an instruction within the MCS65E4* |If this line 1is pulled Ilow? the
current instruction execution terminates immediately™* The
processor then treats the next byte in program sequence as 3n Op
Code snd immedi3tely enters the appropriate execution sequence*
This pin is used primarily by Auxiliary Arithmetic Processors to
cancel the execution of intercepted 1iInstructions™*

*xxxHxxxx*CONFIDENTIAL? MOS TECHNOLOGY?INC* ***%xxsx Page- 26

Final Design Specification for the MC365E4 Microprocessor

3*0 Internal architecture of the MCS65E4
3*1 Introduction

All aspects of the 1internal MC365E4 architecture are designed to
achieve the desired level of performance 1in the smallest possible
chip size* Most of the registers are organized into a single
dynamic array with all data modification taking place in a
high-speed 8-bit ALU* Four 1internal cycles are executed for each
external (processor) cycle* This ratio of internal to external
cycles combined with the fact that the ALU 1is utilized 1in nearly
every internal cycle allows full 2 MHz operation in a processor
containing a Tfull 64 bytes of register within a chip size usually
associated with 8 bit processors*

It should be noted that the device described below is only the
first implementation of the architecture described in this
document™* This implementation tries to achieve a balance between
chip size and capability with a strong emphasis on minimizing chip
cost* It is assumed that future implementations of this
architectute will result in devices with increased capability
through Ularger control ROMS? through the integration of additional

system functions (keyboard interface* etc*) onto the processor*
and ultimately™* by expanding the internal organization from 8 to
32 bits* All of these configurations will be upward compatible

with the earlier devices*

The MCS65E4 is organized 1into an Execution Unit and an Execution
Control Unit* Each of the major components which comprise these
two units 1is described briefly below*

3*2 Execution Unit

3*2*1 ABL/ABM Registers

Those registers which 3re associated with the multiplexed low
order sixteen address pins are located in a single dynamic array*
These registers are!

1* Program Counter Low and Middle

2* Refresh Register

4 ¢ Add ress Register 1 Low and Middle
5* Add ress Register 2 Low and Middle
6* Address Register 7 Low and Midd1le

These registers sre supported by an eight-bit incrementer which
operates in parallel with the ALU described below*

3*2*2 Register Array

The complete register array is contained in a matrix of dynamic
RAM cells™* The traditional 3-2-2 dynamic RAM cell has been
expanded to allow two READ buses and one WRITE bus* The register
refresh operation is handled by a combination of hardware arid
software 1iIn a manner which 1is totally transparent to the user*

rxkxkkxxxXCONFIDENTIAL MOS TECHNOLOQOGY *INC********x*x Page- 27

Final Design Specification for the MCS65E4 Microprocessor

3*2*3 Arithmetic/Logic Unit (ALU)

Most of the data modification operstions take place in the ALU*

This includes normal execution operations as well as middle and
high order Program Counter 1incrementing and register incrementing?

decrementing? etc* The ALU 1is equipped with high speed carry
look-ahead to allow it to complete any operation within one
internal cycle* This allows an 8-hit ALU to perform most of the
data manipulation functions required by a 32-bit processor?*

The specific functions performed 1in the ALU are as follows:

1*“Data shifting

2* Address limit checking

3* 2"s complement binary addition and subtraction
4* Packed BCD addition ancT subtraction

5* Logic AND

6* Logic OR

7* Logic EOR

3*2*4 Input Queue

Data which is fetched from memory under control of the program
counter is first loaded into the input queue where it is held
until it is needed by the control logic* The queue is usually
filled by 8pre-fetchinge the next instruction sequence during each
execution*

3*2*5 ABH/DB Registers

All of the registers associated with the Data Bus arid the Address
Bus High are located 1in a single dynamic array* This TfTacilitates
the multiplexing of these signals onto a set of sixteen pins as
described 1iIn Section 2* These registers are as follows:

1* Program Counter High

2* Eiata Latch Low and High
3* Address Register 1 High
4* Address Register 2 High
5* Address Register 3 high

The bus status signals are generated in the control section and
are multiplexed with the appropriate data bus signals at the
bonding pad*

3*3 Execution Control Logic

3*3*1 Control Registers

All of the registers needed to assure proper instruction execution
are contained in the Control Register Section™* These registers
perform such operations as storing execution control flags?
selecting registers within the register array? counting execution
cycles and addressing the microcode array*

3*3*2 Microcode Array

*oxxkkxxxCONFIDENTIAL? MOS TECHNOLOGY? INCX** sk Page- 2S

Final Design Specification for the MCS67”E4 Microprocessor

located 1in a

Both the microcode ROM and the Nanocode ROM are
single array* This assures minimum chip size since only one set of
In addition? this array

decoder/drivers* etc* 1is required*
is organized in a manner which allows the total size of the ROM to

be varied without affecting the remainder of the chip* This will
allow the rapid generation of additional versions of the processor
which provide additional capability through expanded microcode*

buses*

*xkxxxkxCONFIDENTIAL> MOS TECHNOLOGY *INC ****xxxxs Fage-

29

Final Design Specification for the MCS65E4 Microprocessor

4 40 MCS65E4 Microprocessor Software Architecture

4*1 Introduction

The primary goal of the MCS65E4 architecture 1is to shorten the gap

between the processor hardware and the high level language
architecture while at the same time retaining the generality which
will allow it to support a broad range of applications™* In

particular? the software architecture of the MCS65E4 exhibits the
following characterictics J

le Strong multi-tasking support*

2* Separation between data and program*

3* 1Three-operand”™ addressing* i* e** all data operations
are memory-to-memory*

4* Data structures (array* record* etc*) directly
resembling high-level Jlanguage practices?*

4*2 MCS65E4 Internal Architecture
4*2*1 Introduction

The internal architecture of the MCS65E4 contains all of the
registers needed to support execution of the instruction set
described in Section 4*8* This set of registers is divided into
those which are visible to the programmer (hereafter referred to
as the Process Registers) and 3 set of temporary data registers
which are used during iInstruction execution* The process registers
are as follows!

1* Process Base Register (BAS)

2* Process Limit Register (LMT)

3* Process Program Counter (PPC)
4* Primary Base Register (PRM)

5* Top oFf Stack-. Register (TQS)

6* Process Control Register (PCR)

It should be noted that for speed purposes? the internal process
registers (PRM* TOS* LMT* and PPC) contain physical addresses
during process execution* However* the MCS65E4 user does not see
these physical addresses since they are converted to logical
addresses whenever the contents of one of these registers is
transferred into memory>* This 1is accomplished by subtracting the
contents of the Process Base Register (BAS) from the address being
transferred into memory> Similarly* the logical addresses
contained in memory are converted to physical addresses when the
internal process registers are loaded*

4*2*2 Process Base Register (BAS)

The Process Base Register sets the lower limit of the memory space
in which the process must execute* This memory space starts at the
first byte of the page whose address 1is contained in BAS* i*e**
the BAS register contains the page number of the physical address
at which the process starts* For example* if the BAS register
contains O04E7* the lowest address which is available to the

dkxkxxkxCONFIDENTIAL MOS TECHNOLOGY * INC sk Page- 30

Final Design Specification for the MCS65E4 Microprocessor

process is 04E700*

4*2*3 Process Limit Register (LMT)

The Process Limit Register sets the upper limit of the memory
space in which 3 process is to execute* At the 33me time? it
identifies 3 page in memory which is used to store exception
vectors 3nd other information required to control execution of the
process™* The highest sddress 3V3il3ble to a process is the last
byte of the Limit Page* For example? if the LMT register contains
0D34? the highest available sddress 1in the process 1is O0D34FF*

4*2*4 Process Progr3m Counter (FPC)

Execution of MCS65E4 programs proceeds under control of the
Process Progr3m Counter* The operstions sssociated with this
register are much the same as in any programm3ble processor™®

4*2*5 Primary Base Register (PRM)

The Primary Base register 1is provided to control the accessing of
data during instruction execution*Address offsets contained in
the MCS65E4 instructions are added to the PRM register to obtain
the physical address of the dats*

4*2*6 Top oF Stack. Register (T0S)

The Top of Stack Register controls access to the process stack
during instruction execution* The steck and Top of Stack Register
(TOS) operate in a conventional manner to store subroutine return
addresses? subroutine data? interrupt return addresses? etc* In
addition? the TOS C3n be used as 3 b3se register to control the
accessing of dats in memory utilizing offset, addressing* This
operates in exactly the same manner as does Offset Addressing
using the Prim3ry B3se (PRM) register™*

4*2*7 Process Control Register (PCR)

The Process Control Register cont3ins 3 number of flsgs 3nd
control bits which sre used to control instruction execution
within the processor* The PCR register bits aret

Bit Designstion

0 K Kernel Mode F13g

1 U - User/Supervisor Mode

° I - Interrupt Inhibit Flag

3 E - Eneble Exterr»3l Memory Refresh
4 P - Enable Periodic Interrupt

5 S - Eneble St3ck Bound3ry Check
6 D Debug Mode

7 T Dis3ble All Tr3ps

8-11 M - Microcode Select

12-15 R Refresh R3le

wxkwxkkx CONFIDENTIAL? MOS TECHNOLOGY 2 INC* * s Page- 31

Final Design Specification for the MCS65E4 Microprocessor

4*2*7*1 Kernel Mode Flag (K)

The Kernel state K =1 represents the first level of the
operating system* This flag 1is set and cleared automatically as
the processor moves into arid out of the Kernel state*

442 *7 2 User/Supervisor Mode (U)

The User/Supervisor flag is set to 3 logic 1 to enable execution
of 3 number of privileged instructions which are normally
available only to the operating system* This flag is set
automsticslly by the Reset 1iInput or when the processor exits from
3 User process* It is cle3red when a User process is invoked™*

4*2*7*3 Interrupt Inhibit Flag (1)

The Interrupt Inhibit Flag can be set to disable interrupts on the
INT input*

4*2*7*4 Enable External Memory Refresh (E)

The E flag must be set to a logic 1 to enable the processor to
perform periodic external memory refresh operations* The internal
refresh 1logic will assure that each row in the dynamic memories
will be refreshed at a rate determined by the programmable Refresh
Control Counter>*

4*2*7*5 Enable Periodic Interrupt (P)

The P flag can* be set to & logic ¥ to cause the processor to
execute a trap each time the memory refresh logic "rolls over**
This occurs at a rate determined by the Refresh Control Counter
(typically between 2 and 4 milliseconds)™* This trap will occur
whether or notthe external refresh operation is enabled*

4*2*7*6 Enable Stack Boundary Check (S)
The S flag can be set to cause the processor to execute a trap
whenever the stack crosses a P3ge boundary during a PUSH or POP

operation* This allows either the process or the operating system
to verify that the stack will not over-write data in memory™*

4*2*7*4 Debug Mode (D)

The Debug flag can be set to allow single-instruction execution of
3 User process™* Esch time the processor enters 3 User process it
will execute a single instruction and will then trap back to the
operating system? allowing the operating system to display the
effects of each instruction execution fordebugpurposes™*

4*2*7*8 Enable Read Before Byte Write W)

All trsps 3re disahl? if this flag is set*

4*2*7*9 Microcode Select M)

*xkkHkxkxxxCONFIDENTIAL? MOS TECHNOLOGY >INC * %k Page- 32

Final Design Specification for the MCS65E4 Microprocessor

These Tfour bits directly reflect the contents of the internal
Microcode Select Register* This data 1is placed onto bits 12-15 of
the address bus during an external microcode fetch*

4*2*7*10 Refresh Rate
These four bits direclly reflect the contents of the internal

Refresh Control Register* This data directly controls the rate at
which the MC365E4 refreshes the external memories*

skkxxkkxkxCONFIDENTIALE MOS TECHNOLOGY 2 INC*****xxxxx Page- 33

Final Design Specification for the MCS65E4 Microprocessor

Kernel Reset Vector

dilit F3ge Process Vactor*®

Process Software

Process Stack

Dynamic
Memory Free Memory

Dynamic Data (Heap)

Static Data

Global Data

Base Page |
Inter-process Control™*

*~ Kernel and Supervisor Process only

Figure 4*0 Suggested Process Organization 1in the MCS65E4 System

FrRFAXAXAXXCQNFIDENTIAL> MOS TECHNOLOGY ?INC ****Hxskkx Page-

Final Design Specification for the MCS65E4 Microprocessor

4*3 Process Strueture

4 >3*1 Introduction

Those factors which infljence the organization of a process within
the MCS65E4 are much the same as the factors which govern the
organization of memory within an MCS6502 system* These are 3s
fo llows*

1* The vectors associsted with the processing of interrupts?
system calls? etc* are located in the Limit page? i* e*?
in high order memory> This generally dictates that
program memory be at the upper limit of the address space
allocated to the process*

2* The availability of short offsets from the Process Base
Register would seem to dictate that Read/Write memory be
located in the low order portion of the address space
allocated to a process* In addition? the first three
bytes of memory within the Kernel process arid within any
Operating System process must be read/write memory*

These factors lead to the general process organization shown in
Figure 4*0* However? this process structure is by no means
mandatory* This is particulsrly true if the entire process is
located in read/write memory> As long as the process vectors
remain in the addresses outlined* it is possible to place the
process software anywhere in the process address space? such as
directly above the static data are3* This would place the entire
dynamic data area (including the stack.) in high order memory*

4*3.2 Inter-process Control

As mentioned above? the Tfirst three bytes of the Kernel arid
Operating System processes must be reserved for use by the MCS65E4
to control movement into arid out of the process* These addresses
must be located in read/write memory* The processor will transfer
data into arid out of this ares during the servicing of interrupts?
system calls? etc*

The MCS65E4 architecture does not require that the first three
bytes of the User process be reserved*

4*3*3 Global Data

The TFfirst 64 bytes of memory above the process base can be
accessed with a single byte of addressing information* In
addition? addresses 65 through 511 can be accessed with one
additional byte of offset (two bytes total)* For this reason? this
region should be used to store those static variables which are
accessed most freouently*

4*3*4 Static Data

This area consists primarily of static variables which will be
utilized by the process software* This data should be accessed

axkxxxkxxCONFIDENTIAL? MOS TECHNOLOGY? INC % xxsxsxax Page- 35

Final Design Specification for the MC365E4 Microprocessor

through the Primary Base Register or through the Process Base
Registere

4v3e5 Dynamic Memcry

The dynamic memory area consists of three sections* These are the
dynamic data area* the free memory area and the process stack.*
Each of these 1is discussed separately below*

4¢3 *5¢1 Dynamic Data

The Tfirst section 1is the dynamic data area 1in which the processor
allocates memory to dynamic variables during process execution*
This data can be accessed through the Primary Base Register arid
through the external base registers™* This area may be used for a
process heap? or for the storage of higher 1level processes called
during execution of process software*

4* 3*5*2 Free Memory

The free memory area acts as a buffer between the dynamic data arid
the process stack™* Since the MCS65E4 stack grows downward toward
lower-order memory? the optimum configuration would be that in
which the dynamic data area grows upward into the free memory area
while the stack, grows downward* The MCS65E4 architecture contains
provision Tfor assuring that these two data areas do not overlap*

4*3*5*3 Process Stack

Transfer of data into arid out of the process stack 1is performed
under control of the Top of Stack Register within the MCS65E4
processor?* In the MCS65E4? the TOS register always contains the
physical address of the last byte of data placed onto the stack*
Therefore? the TOS register is decremented before data 1is placed
into the stack and 1is incremented after each transfer of data out
of the stack *

4*3*6 Process Software

The process software C3n generally be viewed as “"staticl? i*e*?
the memory requirements will not change during the execution of
the process™* Therefore? this software should generally be located
outside of the dynamic memory area* As outlined above? MCS65E4
architecture requires that a set of process vectors be located in
fixed positions within the process address space* For this reason?
it will generally be more satisfactory to place the process
software in high-order memory alorig with these vectors*

4*3*7 Process Vectors
Processing of interrupts? system calls? arid system errors is
controlled by a set of vectors which must be located in the Limit

Page of the process*

4*3*8 Kernel Reset Vector

*wxxxwkxxxCONFIDENTIAL> MOS TECHNOLOGY>INC *%* % sxsx Page- 36

Final Design Specification for the MCS65E4 Microprocessor

In the Kernel Process? the high order four bytes of memory are

reserved for storing the Kernel Reset Vector ¢ This 1is used by the
processor during the system reset operation* The Reset Vector is

stored in the same format as the exception vectors*
4*4 Execution of Processes in the MCS65E4
4*4*1 -Introducti on

The registers described 1in Section 5*2*1 are designed to support
the execution of a hierarchy of processes in a multi-task
environment ijnder the control of a sophisticated operating system*
One of the key aspects of this architecture is support from the
processor to initiate a new process? to exit from a process in the
event of a fault or interrupt? and to return to an interrupted
process* All of these inter-process operations are described in
this section*

4*4*2 Basic Inter-process controls
4*4*2*1 Introduction

The MCS65E4 provides five primary tools for controlling movement
into and out of processes* They are the following?

1* Kernel Reset Vector

2* Process Parameter List

3* Process Link

4* Pointer to Current Caller
5* Process Stack.

44 *2*2 Kernel Reset Vector

The high order four memory locations in the Kernel process
(physical addresses FFFFFC-FFFFFF) are reserved for storage of the
Reset vector™

4*4*2*3 Process Parameter List (PPL)

The Process Parameter List (PPL) contains the information
necessary to enter a process for the first time* The arguments 1in
this list are as follows*

1* List Size

This eight-bit parameter specifies the number of bytes of
data contained in the list (not including the List Size
parameter)™

2* Process Base Address
The Process Base Address parameter specifies the logical

page address of the Base Page of the new process within
the caller®"s address space*

3* Process Size

*kkkHkxkxxxCONFIDENTIAL? MOS TECHNOLOGY?INC **x ks Page- 37

Final Design Specification for the MCS65E4 Microprocessor

This 16-bit parameter specifies the logical page address
of the Limit Page within the new process? it e*7 the page
address relative to the new process®"s base? not to the
caller®s base * This data 1is used by the MCS65E4 to Iload
the Process Limit Register during process 1initialization*

4* Program Entry Address

This 24-bit parameter specifies the logical address
within the new process of the entry point for the process
software* This data is used to load the Process Program
Counter during process 1initialization*

5 PRM Initial Value

This 24-bit parameter specifies the logical address
within the new process of the initial Primary Base
Register contents* This data is used to load the PRM

register during process initialization*
6* TOS Initial Value

This 24-bit parameter specifies the logical address
within the new process of the initial top of stack* The
MCS65E4 uses this data to load the TOS register during
process initialization*

7* Process Control Register |Initial Value*

This 16-bit parameter specifies the initial contents of
the Process Control Register™ This data 1is transferred
directly into the PCR during process initialization*

4*4*2*4 Poiriter to Current Caller

During the execution of any process (other than the Kernel
process) it Is very important that the MCS65E4 be able to exit
from the process and return to its caller* This 1is accomplished by
utilizing physical addresses 000000 through 000002 within the
Kernel process to store the physical address of the current
caller™s Top of Stack * This information will be utilized by the
MCS65E4 during the processing of any exceptions which require that
execution of the current process be suspended *

Addresses 000000-000002 within the Kernal Process are reserved and
should not be used by the Kernel software for general data
storage™

4*4*2*5 Process Link

For Operating System processes it is necessary that the MCS65E4 be
able to exit to both lower level and higher Jlevel processes* The
Pointer to Current Caller described previously stores the physical
address of the caller®s top of stack? allowing a process to return
to its caller at any time* However? when a higher level process is

FHXFKXFXXCGNFIDENTIAL? MOS TECHNOLOGY ?INC Hxsasksokask Page- 38

.rial Design Specification for the MCS65E4 Microprocessor

invoked? it uill be necessary to store this pointer in a manner
which assures that it will be available when the MCS65E4 exits
froili the higher level process and be3ins executing the
intermediate level process once sgain * This 1is accomplished by
storing "the information contained 1in the Pointer to Current Caller
into the first three bytes of the intermediate process (logical
addresses 000000 through 000002) before exiting to the higher
level process* These three logical addresses will be referred to
as the Process Link*

It should be noted that the Process Link, 1is a reserved area arid
should not be used by the Operating System Process for general
data storage* In addition* this process 1link does not exist within
the User process since it is impossible to invoke additional
processes within the User process*

4 ¢4 ¢2+6 Process Stack

Throughout the inter-process operations described below? the
process stack is utilized for saving the 1internal registers when
exiting from a process*

4*4*3 Inter-process Operations

4*4*3*1 Introduction

The manner in which each of these architectural elements 1is used
in a system can be described most effectively through a detailed
discussion of the primary 1iInter-process operations that must take
place during the operation of a full scale multi-task
microcomputer* Specifically? these operations are!

1* System Reset*

2* Invoking higher level processes*

3* Exiting from a process in the event of an interrupt?
system call? or bus error*

4* Returning to a process after an interrupt? system call 7
or bus error*

4 ¢4 *3 ¢2 System Reset

When the MCS65E4 is reset? it immediately enters the Kernal mode
with the Base? Limit and Process Control registers initialized as

follows!

Register Initial Contents
Process Base (BAS) Register 0000XX
Process Limit (LMT) Register FFFFXX

Process Control Register (PCR)

Bit O C K) 1
Bit 1 CuU) 1
Bit 2 1) 0

*wxxxwxxxCONFIDENTIAL> MOS TECHNOLOGY? INC **#xsxsxsx Page- 39

Final Design Specification for the
Bit 3 (0
Bit 4 (cp 0
Bith S 0
Bit 6 (@) 0
Bit 7 VU 0
Bits 8-11 (M 0
Bits 12-15 (R 0
The processor then fetches a 24-bit
information stored in the Reset Vector
FFFFFFF) arid begins executing the
address™* The manner in which the

utilized to determine the Kernel
Paragraph 4*7 *6*2*

instructions
Reset Vector
starting address

MCS65E4 Microprocessor

(2 MSEC Refresh rate)
address utilizing the
(addresses FFFFFFC through
located at this
information is
is described in

4*4*3*3 Invoking Additional Processes

Higher level processes can be invoked either from the Kernel
process or from an Operating System process by executing an 10S or
TASK instructors The single operand contained in the instruction

must point to the Process Parameter
MCS65E4 begins execution of the
the contents of the internal
stack and then examining the Process
the operating parameters for the new
the sequence proceeds as TfTollows!

1* The contents of the Process
current process stack*
stack contains the following:

Memo ry

Location Contents

TOS+11 PCR? Bits 8-15
TOS+10 PCR? Bits 0-7
TOS +9 PRM? Bits 16-23
TOS-1-8 PRM? Bits 8-15
TOS +7 PRM? Bits 0-7
TOS +6 PPC? Bits 16-23
TOS +5 PPC? Bits 8-15
TQS +4 PPC? Bits 0-7
TOS +3 LMT? Bits 8-15
TOS +2 LMT? Bits 0-7
TOS +1 BAS? Bits 8-15
TOS BAS? Bits 0-7

2* The processor then fetches the contents of the Pointer to
Current Caller (physical addresses 000000-000002) arid
places this information into the Process Link of the
current process (logical addresses 000000-000002 of the
current process)*

3* The Pointer to Current Caller is then updated
transferring the data contained in the TOS register into
physical addresses 000000 through 000002*

FAXAKIXXXCQOQNFIDENTIAL? MOS TECHNOLOGY ?INC ****Hxxkxkx Page- 40

List for the new process*
10S or TASK
registers onto the
Parameter
process™

After this operation?

The
instruction by placing

current process
List to determine
More specifically?

registers are pushed onto the

the process

by

Final Design Specification for the MCS65E4 Microprocessor

There are several 1items worth noting 1in the preceeding operations™*
The Ffirst is that the addresses which are placed onto the caller”™s
stack from the 1iInternal process registers are physical addresses*

No attempt is made to convert these physical addresses to logical
addresses. In addition ? the processor does not allempt to format
this data in a manner which would facilitate subsequent

manipulation through the normal processor software* Both of these
are made possible by the basic nature of process execution wi thin
the MCS65E4 architecture* In particular? it Is assumed that the
limits within which the new process will execute will not include
that portion of memory 1in which the caller®"s stack 1is located and
that it will not include the caller-s Base Page or Limit Page*
Therefore? it will be impossible for any higher 1level process to
access this data* Similarly? the use of physical addresses on the
caller®s stack is made possible by the fact that the caller cannot
be moved within the physical address space while a higher level
process is being executed*

After the preceeding operations are complete? the MCS65E4 is ready
to enter the new process* This is accomplished 3S follows*

1* The processor first calculates the physical address of
the PPL for the new process* This 1is accomplished through
one of the normal operand addressing sequences described
in Section 4*5 utilizing the information contained 1in the

instruction* This physical address is then transferred
into one of the internal registersfor use during the
remainder of this operation*

2* The first item in the PPL specifies the number of bytes
of data which are contained 1in the list* This list length
parameter is transferred into aninternal register to
control termination of the 10S or TASK instruction™*

3* The second parameter in the PPL contains the logical
address of the base of the new process* This 1iIs expressed
as a 16-bit logical page address withinthe calling
process™* The physical address of the base of the new
process 1is determined by adding this data to the caller”s
physical base address™* The resulting physical page
address is loaded into the Process Base register™

4* The third 1item 1in the Process Parameter List specifies
the number of pages of memory which must be allocated to
the process* This information 1is added to the Process
Base Register* The resulting 16-bit physical page address
is transferred 1iInto the Process Limit Register™*

5* The fourth 1item iIn the PPL specifies the logical address
of the process entry point? i* e*? the 1lreset vectorl for
the process* This 24-bit parameter is added to the
contents of the Process Base Register? 1* e* to the base
address of the new process? to determine the physical
address of the process entry point* This physical address
is loaded into the Process Program Counter™

FHKFKXFXXCONFIDENTIAL? MOS TECHNOLOGY ?INC **xxaskrxsk Page- 41

Fins1l Design Specification for the MCS65E4 Microprocessor

Those items listed shove represent a minimum length PPL* However?
*t is Possible to initialize additional process registers by
extending the length of the PPL* In this case? the MCS65E4 will
fetch additional parameters 1in the Tfollowing ordert

1* The first parameter in the extended PPL specifies the
logical address of the 1initial Top oFf Stack within the
new process* This data is added to the Process Base
Register™ The resulting physical address is transferred
into the TOS register™

2* The next parsmeter in the PPL specifies the initi
contents of the Process Control Register™ Th

information is transferred directly into the PCR*

3* The next parameter specifies the initial value of the

Primary Base Register™ This 1is expressed as a 24-bit
logical address within the new process™* This data is
added to the contents of the Process Base Register* The
resuiting physical address is transferred into the

Primary Base register™
4*4*3*4 Exception Processing
4*4*3*4*1 Introduction

Exiting from the current software occurs whenever the MCS65E4
encounters one of a number of exceptions* These exceptions may be
the result of 3 sign3l on one of the processor®s input pins
(interrupt? etc*)? it may be the direct result of process software
(System Call instruction? Data Access Trap? etc*)? or it may be
due to a problem in the data being processed™* Any of these
conditions will cause the MCS65E4 to discontinue execution of the
current software and to begin execution of an exception handler>*
Trie procedures involved 1in doing so are described in detail in
this section*

The MCS65E4 exceptions can be divided into 3 number of classes*
The first are those "privileged* exceptions which must be serviced

by the operating system (by a Supervisor Mode process)* The second
consists of those which can be serviced within a User process* In
addition? a number of exceptions are recognized at the end of an
instruction execution sequence while others must be recognized and
processed immediately™ As shown in the discussion below? each of
these exception groups is handled differently™*

All exceptions? regardless of type? 3re serviced under control of
an exception vector located in a reserved portion of the Limit
Page™* Within the User process? however? there 1is no provision for
storing vectors for the privileged exceptions* These exceptions
are serviced by returning immediately to the current process”"s
caller* For this reason? the User process vectors are a subset of
those which must be stored in the Supervisor Mode processes
(Operating System and Kernel)™* All of these exceptions are
described in detail 1iIn Section 4*4*4* The Exception Vector format
and the manner in which the MCS65E4 utilizes the exception vector

sk xskkxkxxCONFIDENTIAL? MOS TECHNOLOGY PUNC *¥ s skxxxx Page- 42

Final Design Specification for the MCS65E4 Microprocessor

information to determine the address of the exception handler are
described in Section 4*7*6*

4*443 #4¢2 Servicing Exceptions Within the Current Process

Many of the fault conditions occuring within the MCS65E4 systenm

can be serviced by the currently executing process* When a
non-priveleged exception occurs during the execution of a User
Process or when any exception occursduring execution of an
Operating System process? the MCS65E4 immediately checks the TRAP
bit in the appropriate exception vector* IT this bit is a logical
zero 7 the exception is serviced in thecurrent process as

described in this paragraph* IT the TRAP bit is a logic 1? the
processor will return to the current caller for servicing the
exception* (Note that all exceptions which occur during execution
of the Kernel Process must be serviced within the Kernel Process
software™) The sequence of operations which tak.es place when an
exception 1is serviced within the current process depends on
whether the exception is recognized at the end of each machine
cycle or between instructions™ For those exceptions which 3re
recogriized only between instructions? the sequence proceeds as
follows!

1* The physical address contained in the Process Program

Counter is converted into the corresponding logical
address and is then pushed onto the current process
stack™* TheTOS Register 1is adjusted to point to the last
byte of data which was pushed onto the stack* After the
above sequence is complete? the process stack contains

the following?

Memo ry

Location Contents

TGS +2 PPC 7 Bits 16-23
TOS+1 PPC? Bits 8-15
TOS PPC? Bits 0-7

2* The MCS65E4 then loads the physical address of the

exception servicing software into the Process Program
Counter* This address 1is determined by adding the logical
address referenced by the exception vector to the

contents of the Process Base Register* The processor then
begins executing the software at this address*

After servicing of the exception is complete? the processor can
return to the process software at the point where the exception
occurred by executing a Return From Subroutine (RTS) instruction*
This transfers data from the process stack into the Process
Program Counter? adjusting the TOS Register to point to the last
valid byte of data in the stack *

For those exceptions which must be recognized at the end of a
processor cycle rather than at the end of the current instruction?
the processing sequence is much more complex than that Just

FHARFXAKXXAXCQOQNFIDENTIAL? MOS TECHNOLOGY ?INC ***Hxdhxskx P3ge- 43

Final Design SpecifiCotion for the MCS65E4 Microprocessor

described* This 1is caused by the fact that it will be necessary to
return to the middle of an instruction execution sequence after
exception processing is complete* This 1is accomplished by placing

the contents of all of the internal registers onto the stack?
including all of the Process registers (except the Process Base
Register and the Process Limit Register)? all of the temporary
data registers used during 1instruction execution and all of the
various latches? registers? etc* which control the instruction
execution sequences* This sequence of operations proceeds as
followst
1* The MC365E4 first places the contents of the Process
Registers? the temporary data registers? 3nd the rriisc*
execution control registers? latches? etc* onto the

stack.* The processor does not attempt to organize this
data in a mariner which will Ffacilitate processing of this
information by the exception handler>* After this
operation 1is complete? the process stack contains the
following™

Memory
Location Contents

TQS+59 Temporary Operand Register
TOS+58

TOS +57

TOS+56

TOS+55 Temporary Operand Register 7
TOS+54

TOS+53

TOS+52

TOS+51 Temporary Operand Register 6
TOS+50e

TGS+49

TQS+48

TOS +47 Temporary Operand Register 5
TOS+46

TOS+45

TOS+44

TOS+43 Temporary Operand Register 4
TOS+42

TOS+41

TOS+40

TOS+39 Temporary Operarid Register 3
TOS+38

TQS+37

TOS+36

TOS+35 Temporary Operand Register 2
TOS+34

TOS +33

TOS+32

TOS+31 Temporary Operand Register 1
TOS+30

TOS +29

TOS+28

TQS+27 Temporary Address Registers

FHHKFKXXXAXCONFIDENTIAL? MOS TECHNOLOGY ?INC *Hxsksksx Page- 44

Final Design Specification for the MCS65E4 Microprocessor

TOS+26

TOS +25

TOS+24

TGS+23

TOS+22

TOS+21

TOS+20

TOS+1?

TOS+18 PRMy Bits 16-23

TOS+17 * ? Bits 8-15

TOS+16 Bits 0-7

TOS+15 PPC; Bits 16-23

TOS+14 1 t Bits 8-15

TQS+13 1 ? Bits 0-7

TOS+12 Literal Register

TOS+11

TOS+10 Internal Control Registers
TOS +9

TOS +8

TOS +7

TOS +6

TOS +5

TOS +4

TOS +3 Data Input Latch? Bits 8-15
TOS +2 > Bits 0-7
TOS+1 Data Output Latch? Bits 8-15
TOS ? Bits 0-7

2¢ The MCS65E4 then loads the physical address of the

exception servicing software into the Process FrograiTi
Counter* This address 1is determined by adding the logical
address referenced by the exception vector to the

contents of the Process Base Register* The processor then
begins executing the software at this address*

After servicing of the exception is complete? the processor can
return to the process software at the point where the exception
occurred by executing a Return From Exception (RTE) instruction*
This transfers all of the data previously placed onto the process
stack back into the appropriate processor registers* The TOS
Register is then adjusted to point to the last valid byte of data
in the stack* The MCS65E4 then begins execution of the instruction
sequences which had been interrupted by the exception*

4*4*3 _4*3 Servicing Exceptions Within the Current Caller

If the TRAP bit 1is set within the exception vector? or if a
privileged exception occurs within a User Process? the MCS65E4
must exit from the current process and return to the current
process®"s caller to service the exception™* This sequence of
operations is much more complex than that described above because
of the need to push the contents of all of the process registers
onto the stack, to allow a return to the process at a later time*
The sequence of operations which takes place depends primarily on
whether the exception was recognized at the end of an instruction

*xKkHkHxkxxxCGNEIDENTIAL? MOS TECHNOLOGY P INC %% %k Page- 45

Final Hesign Specification for the MCS65E4 Microprocessor

execution or during an instruction* In the latter case? the
processor will begin the exception processing by first placing the
contents of all of the internal registers in exactly the same
sequence as described above (Paragraph 4*4*3*4*2)* After this

opOration is complete? the remainder of the Process Registers are
placed onto the stack in a manner which 1is compatible with the
Process Parameter List described above* This allows the MCS65E4 to
return to the process at a later time utilizing the same 10S or
TASK 1instruction which was used to enter the process initially™*

After this sequence of operations is complete? the processor is
ready to exit from the process and to return to the current
caller* This 1is accomplished as follows!

1* The processor Tirst fetches the address of the current
caller®s top of stack from absolute addresses
000000-000002* This 1is placed into the TOS Register*

2* |If the processor 1is returning to an Operating System
process? the data in the Process Link is then moved into
the Pointer to Current Caller®

3* The Processor next transfers the data from the caller”s
stack into the 1internal process registers™* This allows
the processor to begin executing the caller"s exception
servicing software*

4* Before executing the exception handler within the caller?
the processor first pushes the information which will
allow returning to the process which was interrupted by
the exception* This 1is accomplished by first calculating
the logical address within the caller of the Top of Stack
for the interrupted process by subtracting the physical
address of the Caller"s base from the physical address of
the Top of Stack for the higher level process* This
information 1is then pushed onto the caller®s stack*

5 If there are any exception qualifiers associated with the
exception? this information is then pushed onto the
caller®s stack*

6* The processor then fetches the appropriate exception
vector from the Limit Page of the caller™ The logical
address referenced by this vector 1is transferred into the
Process Program Counter™ The MCS65E4 then begins
executing the software Jlocated at this address*

4*4 *3*5 Returning to a process after an interrupt? system call?
or bus error*

The procedures which allow returning to a process which had been
suspended by the occurrance of an exception are exactly the same
as those which are utilized for entering the process for the first
time* This 1iIs made possible by the fact that the processor created
a Process Parameter List on the stack of the suspended process
before exiting* When returning to the process? the single operand

FAXFKXXXXCONFIDENTIAL? MOS TECHNOLOGY?INC *H**Fxskaxsk Page- 46

Final Design Specification for the MCS65E4 Microprocessor

in the 10S or TASK instruction must reference this PPL* This 1is
facilitated by the fact that the logical address of this PPL
within the caller had been placed onto the caller®s stack* This
logical address can be accessed by referencing the Top of Stack
within the TASK or 10S instruction* Note that the amount of data
which must be transferred into the internal processor registers is
controlled by the List Length parameter which was placed on the
stack last* This allows the same procedures for returning to the
process whether the exception was recognized after an instruction
execution sequence or in the middle of an instruction*

4*4*4 Exception Vectors within the MCS65E4 Process*

4*4*4*1 Introduction

The Exceptions Vectors and their location within the limit page
are as followsl

Non-privileged Exceptions Add ress
1- Undefined 0p Code F8-FB
Ur;defined data type FA-F7
Subscript out-of-limits FO-F3
4* Operator arid Operand not compatible EC-EF
U= overflow E8-EB
6- Other arithmetic error (divide by zero; etc* E4-E7
7* Non-conformable data types EO-E3
8* Instruction Access Trap DC-DF
- Data Access Trap D8-DB
10- Stack P3ge Boundary Trap D4-D7
Privileged Exceptions Address
Interrupt Request (IRQ) DO-D3
System Call CC-CF
System Call with message C3-CB
4* Channel Trap; Channel A C4-C7
5* Channel Trap; Channel B C0-C3
6* Bus Error BC-BF
7* Access out-of-limit B8-BB
3* Debug Trap B4-B7
Each of these 1is described 1iIn detail below* Note that within the

User process; addresses D4 through FB are reserved for the storage
of exception vectors* Addresses B4 through M3 are available for
general data storage* In the Supervisor Mode processes; addresses
A8 through FB are reserved arid should not be used for general data
storage™ Addresses FC through FF are used within the Kernel
process to store the Kernel Reset Vector* Addresses FC-FF cannot
be used for general data storage 1in either the Supervisor or User
Modes ¢

The exception vectors are 24-bit pointers stored in memory in a
format which is compatible with the data descriptor described in
Section 4*7* Within the exception vector descriptor header; the
TRAP bit is used to indicate when the exception 1is to be serviced

*wkwxxxxkkCONFIDENTIAL; MOS TECHNOLOGY 2 INCH**% sk Page- 47

Final Design Specification for the MCS65E4 Microprocessor

in the current process* |If this bit is a logic zero? the vector is
assumed to reference a logical address within the current process™*
The formst of the Exception Vectors and the manner in which the
the MCS65E4 utilizes the information in the Exception Vector to
determine the address of the exception handler are described 1in
Section 4*7*6*

4*4 ¢4*2 Undefined Op Code Trap

The MCS65E4 will trap through this vectorwhenever it encounters
an Op Code which 1is not supported in the standard instruction set*
This allows the process to either abort or to interpret the O0p
Code through the exception processing software*

4*4*4*3 Undefined Data Type Trap

The MCS65E4 will trap through thisvector when it encounters a
data type which 1is not supported in the standard instruction sat*
This allows the process to abort or to iInterpret the data type
information 1in the exception processing software*

4*4*4*4 Subscript out-of-limits Trap

The MCS65E4 will trap through this vector when the software
attempts to access a structure or array with a subscript which 1is
out of the limits specified in the data descriptor (see Section

4*4*4*5 OQOperator and Operand not Compatible

The MCS65E4 will trap through this vector when the software
attempts to perform an operation on a data field which is not
compatible with the operation* This allows the process to either
abort or to interpret the operation in the exception servicing
software*

4*4*4*6 Overflow

The MCS65E4 will trap through this vector when an arithmetic
overflow is encountered during execution of an arithmetic
instruction™*

44 *4*7 Other arithmetic error (divide by zero? etc*)

The MCS65E4 will trap through this vector when it encounters any
arithmetic error other than overflow* Specifically? these errors
are the following*

1* Divide-by-zero*
2* Sauare root of negative number*

4*4>4*3 Non-conformable data types

The MCS65E4 will trap through this vector when the software
attempts to perform an operation on two incompatible data fields*
This allows theprocess to abort or to perform an automatic

*owkkxkxxxxCONFIDENTIAL? MOS TECHNOLOGY >INC *%* s xxsx Page- 43

Final Design Specification for the MC365E4 Microprocessor

conversion of one of the operands*

4e4*4*9 Instruction Access Trap

The MCS65E4 will trap through this vector when it begins execution
of an instruction 1in which the TRAF" bit 1is set*

4*4*4*10 Data Access Trap

The MCS65E4 will trap through this vector when it encounters a
descriptor with the TRAP bit set to a lodic 1e

4*4*4*11 Process Stack. Fade Boundary Trap

The MCS65E4 will trap throudh this vector when the Top-of-Stack
Redister crosses a pade boundary durind a Push or Pop operation*
This allows the process or the operatind system to verify that the
process stack has not over-written other data in the dynamic data
area *

4*4*4*12 Debud Trap
The hCS65E4 traps throudh this vector whenever it enters a User

process with the Debud flad set* This exception can only be
serviced in a Supervisor Mode process*

4*4*4*13 Interrupt Input (INT)

The MCS65E4 will trap throudh this vector when the Interrupt Input
does low durind process execution*

4*4*4*14 System Call

The MCS65E4 will trap throudh this vector when it encounters an SC
instruction durind the execution af a process*

4*4*4*15 System Call with Hessade

The MCS65E4 will trap throudh thisvector when it encounters an
SCM instruction durind the execution af a process*

4*4*4*16 Bus Error

The MCS65E4 will trap throudh this vector when the Bus Error input
signal does low durind instruction execution* This operation 1is
described 1in detail iIn F"aradraph 4*4*3*4*2*

4*4*4*17 Access out-of-limit

The MCS65E4 will trap throudh this vector when the processor
software attempts to access a Physical address which 1is outside of
the limits specified by the Process Base Redister and the Process
Limit Redister; i* e*> above address FF 1in the Limit pade or below
address 00 on the Base Pade*

4*5 Addressing within the MC365E4

*xkHxxxxFCONFIDENTIAL> MOS TECHNOLOGY >INC ks Pade- 49

Final Design Specification for the MCS65E4 Microprocessor

4*5*1 Introduction

There are three primary locations in which data can be stored
within the MCS65E4 architecture* These are t

1* In the internal processor registers*
2* In the instructions which form the process software *
3* In the data storage area of the process address space*

The MCS65E4 operand structure contains provisions for referencing
data in each of these locations* Referencing data in the internal
registers is accomplished by specifying the register in the Tfirst
byte of the operand* Immediate data cart be specified either 1iIn the
first byte of the operand (short form iImmediate addressing) or in
the operand extension bytes (long form immediate addressing)* All
other data references are accomplished by adding the value of an
offset contained in the instruction to the contents of a Dbase
register™* This base register c3n be either one of the 1internal
registers or any three-byte [location in the Base P3ge of the
process*

The most important advantages 3ssoci3ted with the use of Db3se
registers to control the 3ccessing of dsta is that it sssures
complete relocatibility for both the process and for the dat3
within a process andr in addition* it facilitates the creation and
manipulation of dynamic dat3* This recognizes that most software
routines manipulate a relatively small amount of dat3* Very seldom
does 3 progrsiTi find it necessery to access the entire 24-bit
sddress sP3ce while manipulating dal3* For this resson? it should
be possible to eccess most of the data with one or two bytes of
offset instead of the three, bytes which would be necessary if
conventional absolute addressing were the only . 3V3il3ble
addressing mode* Utilizing the base registers within the MCS65E4
in an effective manner c3n result in 3 significsnt reduction in
the tol31 progrsm stor3ge requirements by reducing the smount of
addressing information which must be provided*

The first byte of each operand specifies the following!

1* The internal register which contains the data (register
addressing™)

2* The value of the immediate dat3 (Short Form Immediate
Addressing) *

3* The number of extension bytes of immediste d3la which
follow (Long Form Immediste Addressing)™

4* The base register to be used (inter m3l or externel)™*

5* The offset between the base 3nd the desired data (Short
Form Offset Addressing)*

6* The number of bytes of offset which TFfollow (Long Form
Offset Addressing)™*

*xkxxkxxxxCONFIDENTIAL> MOS TECHNOLOGY 7 INC ** ks P3ge- 50

Final Design Specification for the MCS65E4 Microprocessor

7* The Variable Access Mode

(Byte? Two-byte Integer?
Ordinal; or data field defined by a descriptor)>*
The data contained in the first byte of the Operarid (hereafter
referred to as the ’Operarid Control Byte"™) can be organized into a
number of fields arid sub-fields* This organization 1is summarized
in Figure "4*1 below* Each of the divisions
described

in this figure are
in detail 1iIn subsequent paragraphs of Section 4*

FrRFXAXKXIXCONFIDENTIAL> MOS TECHNOLOGY >INCe**xdsrrxsk

Fage- 51

R

]

[

o =,

Design Specification for the MCS65E4

1 0

Data
Access
Format

Auxiliary
I Data
1 Field

Register

BIT

5 4 3 2
1 Number of |1 Base
1 Extension 1 Register
1 Bytes 1 Select
1 1 Addressingl
| 0 0 1 Mode
1 1 Select
1 1
1 0 1 1
1
1 i
1 1 1 Immediate Data
| 1
1
1 Offset from BAS
1
1
1 Offset from PRM

Figure 4ele Organization

*AhAkxx*x*x*X*CGNFIDENTIAL>

MOS TECHNOLOGY tINC *****x*x*xxk

of Operand Control

Byte

Microprocessor

Remarks

Prisary
Addressing
Group

Secoridary
Addressing
Group

Internal
Register
Addressing

Iimediate
Data
Short Form

BAS Offset
Addressing
Short Form

PRM Offset

Addressing
Short Form

Page-

Final Design Specification for the MCS65E4 Microprocessor

4*5*2 Primary Addressing Group
4 *5*2¢1 Introduction

The Process Base Register (BAS)? Primary Base Register (PRM); arid
Top oFf Stack. Register (T0OS) are the principal addressing registers
within the MCS65E4* In addition? any three consecutive bytes of
memory within the process Base Page can serve as a base register
during data accessing operations™* For this reason? the Operand
Control Byte is organized in a manner which assures that each of
these registers can be used with maximum effectiveness during
process execution* This is accomplished through the primary
addressing group arid by providing short form addressing for the
BAS arid PRM registers* This short form addressing 1is described in
subsequent paragraphs of Section 5*6* Long form addressing for
these internal and external base registers 1is described in this
paragraph *

The addressing information provided in this group can be divided
into three fields™* The first group specifies which of the
registers 1is to be utilized as the base register?* The second
specifies the number of bytes of addressing information which
follows the Addressing Control Byte? arid the third specifies the
format of the data acauisttion™* Each of these is described in
detail below*

4*5*2*2 Base Register Select Field

The Base Register Select Field specifies one of the base registers
as follows”

Bit 3 Bit 2 Selected Register

0 0 Process Base Register (BAS)
0 1 Primary Base Register (PRM)
1 0 Top of Stack (T0S)

1 1 External Base (EXTXX)

As described previously? the physical address of the data which is

to accessed is determined by adding the offset contained 1in the
instruction to the register selected by this field* If External
Base Addressing is selected? the address of this base register

(within the Process Base Page) 1is specified by the byte following
the Operand Control Byte*

4*5*2*3 Data Access Format
The two bits of the Data Access Format field are used to control
the manner in which data 1is to be accessed* This 1is accomplished
as follows:
Bit 1 Bit O Format
0 0 Descriptor Access

Data is to be accessed through a descriptor™

*xxxxxkxXCONFIDENTIAL> MOS TECHNOLOGY 2 INC ***** sk Page- 53

Final Design Specification for the MCS65E4 Microprocessor

The address in the instruction 1is assumed

to

be that of a descriptor which contains all
of the information required to properly

manipulate the desired data field*

Single Byte Access

The address contained in the 1instruction
assumed to be that of a single byte
unsigned integer data*

Two byte Integer Access

The address contained 1in the 1instruction
assumed to be that of a sixteen-bit word

is
of

is
of

2" s complement 1integer data* Low order data
is assumed to be located in the low order

add ress™
Three byte ordinal Access

The address contained 1iIn the instruction

is

assumed to be that of a 24 bit ordinal data

field* Low order data 1is assumed to be

the low order address*

4*5*2*4 Number of Extension Bytes

in

The Number of Extension Bytes field specifies the number of bytes
of offset information which follows the Operand Control Byte* This

is specified as follows!

Number of
Bit 3 Bit 2 Addressing Bytes

0 0 None- The offset address is assumed to be
zero*
0 1 One- The high order bits of the offset are

assumed to be zeros*
(offset value t 0 <= offset <= 255)

1 0 One- Bit 3 of the offset 1iIs assumed to be a
logic 1* The remaining high order
bits of the offset are assumed to be

zeros™

(offset value * 256 <= offset <= 511)

1 1 Two- The Jlow order 3 addressbits of the
offset follow the Operarid Control
Byte* This is followed by bits 3-15*
The high order eight address bits are

assumed to be zeros*

(offset value |1 0 <= offset <= 655365)

4*5*3 Secondary Addressing Group

xdkxkxkxxCONFIDENTIAL> MOS TECHNOLOGY? INC ks Page-

54

Final Design Specification for the MCS65L4 Microprocessor

4*5e3*1 Intrcduction

In addition to these primary addressing modes? there 3re several
addressing modes within the MC365E4 software architecture which do
not reauire the Tflexibility which is inherent in the addressing
described in the previous paradraph* This 1is true for Limit Pa3e

addressing (utilizing the LMT Resister as base) since this
operation never requires more than 3 single byte of offset™*
Similarly? the PUSH arid POP operations do not require any
addressing information since the data 1is placed directly onto the
process stack without offset* Finally? the Immediate Addressing

requires only that the size of the iImmediate operand be specified
since the data follows directly after the Operand Control Byte~*
These addressl!rig modes are selected by the Addressing Mode Select
field as Follows:

Bit 3 Bit 2 Addressing Mode

0 0 Limit Page Addressing

0] 1 Process Stack PUSH 7/ POP

1 0 Immediate Addressing (Long Form)

1 1 Process Base Addressing (Long form)

Each of these modes 1is described 1in detail below*
4*5*3*2 Limit Page Addressing

As described previously? the Limit Page within a process 1is used
to store the vectors which are used in the servicing of
interrupts? system calls? etc* during process execution* These
vectors can be manipulated directly by the process whenever
appropriate* Limit Page addressing provides an efficient method of
accessing these vectors™ When Limit Page addressing is selected?
the Auxiliary Data Field (bits 0 and 1) specifies the Data Access
Format in exactly the same manner as that described above (See
Paragraph 5e6e2 *3) ¢

4*5*3*3 Process Stack PUSH / POP

The top of the process stack can be specified as the source (POP)

or destination (PUSH) for data within most of the MCS65E4
instructions* This is accomplished by specifying PUSH/POP
addressing 1in the appropriate operarid field* |If this addressing Iis
specified within a source operand? the processor will execute a

POP operation in whichthe contents of the data field located on
the top of the process stack, will be transferred into an internal

data register*The TOS register will then be 1incremented by an
amount determined by the length of the data field* The TOS
Register then pointsto the next data field on the stack * If

PUSH/ POP addressing is specified in a destination operarid? the
results of the 1instruction execution will be transferred onto the
process stack * As with all process stack, operations? the TOS

FHRAXAXXFXCONFIDENTIAL? MOS TECHNOLOGY ?INC *xxessiossk Page-

Final Design Specification for the MCS65E4 Microprocessor

register 1is adjusted to point to the last byte of data which was
placed onto the stack™* When PUSH/POP addressing is selected? the
Auxiliary Data Field specifies the Data Access Mode in exactly the
same manner as that described above for the primary addressing
modes™*

The auxiliary data field (bits 1 through O) of the operand
control byte are defined as follows for PUSH/POP operations?

hit 1 bitoO Operation

0 0 PUSH/POP a variable defined by
descriptor (PPD)*

0] 1 PUSH/POP byte (1 byte) (PPEO*

1 0 PUSH/POP half word (2 bytes)
(PPHW)™*

1 1 PUSH/POP triple byte (3 bytes)
(PPTB)™*

The PUSH/POP operations are illustrated in Figure 2*1 with the
following instruction!

Add PPD?PPB ?PPHW (POP descriptor variable arid byte
* (variable from stack? add them
. (together and PUSH the results onto
* (the stack 1in a two byte
. ?integer fTield*

Figure 2*la shows the process stack before the add instruction*
Note the top two elements of the stack are a data fTield with
descriptor (Data Field * 1) and a single byte of data (Data Field
$ 2)* The TOS register 1initially points to the descriptor of the
Data Field * 1*

Figure 2*Ib shows the process stack after the PPD POP operation*
After the operation is complete? the contents of this data have
been transferred into an internal data register arid the TOS
register has been adJucted to point to Data Field *2 * Note that
the POP operation does not change the contentsof the memory
locations in which Data Field *1 is stored*

After the PPB (POP) operation? illustrated in figure 2*1C? the TOS
has been incremented by 1 and now points to earlier data stored on
the stack.*

The result of the add operation will be pushed onto the stack as a

FAXFXXAXXCONFIDENTIAL ? MOS TECHNOLOGY ?INC F*Hxdxskrskx Page- 56

I-inal Design Specification for the MCS65E4 Microprocessor

two byte integer* Note the TOS register has been adjusted to point

to the last byte of data accessed on the stack* Figjre 2e1d
depicts the PPHU (PUSH) operation *

FHRAIXAXAXXCONFIDENTIAL? MOS TECHNOLOGY JINC ******xxxxx Fade-

1'in31 Design Specification for the MC365E4 Microprocessor

Figure 2e¢1A - Memory and TOS register contents before POP

Continuation of High Order Memory
Process Stack

Data
Field Byte
*2
Address or
Data Da ta
Field
*1
Descriptor <-—-Contents of TOS
Register
Free Memory Low Order memory

Figure 2e2B - Memory and TOS register contents after PPD (POP)

Continuation of High Order Memory
Process Stack

Data
Field
*2
<-—-Contents of TOS
Register

Free Memory

Low Order memory

FHRXFXXAXFCONFIDENTIAL> MOS TECHNOLOGY , INCe**x*krxxx Page-

Final Design Specification for the MCS65E4 Microprocessor

Figure 2*1C - Memory and TOS register contents before PPB (POP)

High Order Memory
Continuation of
Process Stack <-——Contents of TOS
Register

Free Memory

Low Order Memory

Figure 2*1D - Memory and TOS register contents after PPHW (PUSH)

High Order Memory
Continuation of
Process Stack

Data |1
Field I
£3 | <-—Contents of TOS

Register

Free Memory

Low Order memory

*xxxxxxx*CONFIDENTIAL> MOS TECHNOLOGY TINCe*****xxxx Page- 59

Final Design Specification for the MCS65E4 Microprocessor

4*s ¢3¢4 Immediate Addressing? Lons Form

The 1long form of immediate addressing allows gp to three bytes of

osto or addressing information to be specified within the
instruction* This dal3 follows directly behind the Addressing
Control Byte* When this form of addressing is selected? the

Auxiliary Data Field (bits 0 arid 1) specifies the number of bytes
arid the format of the iImmediate data as Tfollows!

Bit 1 Bit O Format of Data

0 0 Unsigned Byte* Assumed to be
positive *

0 1 Signed 2 byte integer*™

1 0 Three byte ordinal* Assumed to
be positive*

Not Used
4*5*4 Internal Register Addressing
This addressing mode allows the internal processor registers can
be specified as the source or destination of the data to be
manipulated by the 1iInstruction* The four-bit Register Select data

field selects the internal registers as follows!

Bit 3 Bit 2 Bit 1 Bit O Register Selected

0 0 0 0 Process Limit Register

0 0 0 1 Process Program Counter

0 0 1 0 Top OF Stack Register

0 0 1 1 Primary Base Register

0 1 0 0 Process Control register

0 1 0] 1 Microcode Select Register

0 1 1 0 Refresh Control Register
The LMT register is "read-only®"? i* e*? the process software
cannot modify the contents of this registers under any conditions™*
The Process Control Register? Microcode Select Register? arid
Refresh Control Register are "read-only" in the User Mode and

“Read / Write* 1in the Supervisor Mode*
4*5*5 1Immediate Addressing? Short Form

The first of the short form addressing modes allows Tfive bits of
immediate data to be included in the Operand Control Byte (in bits

*xxxxxkxx*CONFIDENTIAL? MOS TECHNOLOGY? INC ****xsssx Page- 60

Final Design Specification for the MC365E4 Microprocessor

o 4) * This allows immediate values between -16 arid +15 to be
specified within the Operand control Byte *

4*5*6 Process Base Addressing? Short Form

The short form of BAS offset addressing allows up to 6 bits of
offset information to be included in the Operand Control Byte (in
bits 0 - 5)* This allows the Operand Control Byte to directly
specify data fields which are accessed through descriptors located

in the first 64 bytes of the Base Page*

4*5*6 Primary Base Addressing Short Form

The short form of PRM offset addressing allows up to 6 bits of
addressing information to be included in the Addressing Control
Byte (in bits 0 - 5)* This allows the Operand Control Byte to
directly control access to data fields which are accessed through
descriptors located in the first 64 bytes above that memory
location whose address is contained in the Primary Base Register?*

Figure 4*6A arid 4*6 B below summarizes the addressing modes for the
MCS65E4*

*xxxkxx kX XCONFIDENTIAL> MOS TECHNOLOGY *INC *****xksxx Page- 61

Specify the valid data types
"%

«< Terminal symbols which soecifv the form of

Reference mors liagram dv that

Program

o

instruction 1

SYNTAX DIAGRAM

_ 1
ructio oP_Code V - gl operand .« ODerand Operand
Oioerand Ooerand Ooerand
OP-Code B Oicerand
A
OP-Code !B aw

Ficrare 5.6a

-nd

t./ ooerand
m nHntrol

,<BYT>
or<2I1>

s
~ value

3~ _.—nm
J variai
rtaravonrta/
immediate
\Y,

JnternalL

e>k§ﬁt=:rnajj'1

tbV 7+

O< value < 15,777,215
offset=0
iorrse” push/poo
descriDtor short
|
X <255 ij\
256< <511
a) -
0 <65,535
> <3YT>-" o= <15M

or <21>

Figure 5.6b

* only for BAS

- (BASE) t offset

<ORD>

— oyte
variable

_"3norr
integer
variable

lescriDtor <:
variable
<2

<nr

Final Design Specification for the MCS65E4 Microprocessor

4 46 Data Structure Within the MCS65E4 System

446 *1 Introduc tion

Nowhere is the “high Ilevel* approach to architecture more apparent
than in the manner 1in which data 1is stored and accessed within an
MC365E4 system* This was introduced in Section 4*5 which discusses
the organization of the operand* Section 4*6 contains a detailed
description of the remaining aspects of these data accessing
mechanisms along with a description of the manner 1in which data is
stored within the MCS65E4 system*

The principal feature of the MCS65E4 data structure is the use of
descriptors to specify all of the pertinent details concerning a
data field* This contrasts sharply with the conventional approach
in which the field length 1is determined primarily by the Op Code
(8 bits* 16 bits; etc.) and the actual data fields are created by
utilizing the processor software to organize these simple Tfixed
length fields into groups to store complex data entities (10-byte
Real; 3-byte BCD; etc*)*

The principal advantage associated with this traditional approach
is that it is much simpler to implement in hardware* The
instruction set consists of a large number of relatively simple
operations* This is compatible with at environment in which

hardware is expensive; logic design is still somewhat
unsophisticated; arid the science of system programming 1is still in
its infancy* Implementation of this type of architecture at this
time; however; does not recognize the significant developments
which have®"taken place 1in processor design techniques (multi-level
microprogramming; etc*)™* In addition; it ighores the fact that
software design techniques have achieved a substantial degree of
maturity* Specifically; the compiler languages in use today

exhibit the following characteristics 1

1* The algorithms arid data structures are Kkept as separate?
self-contained entities* For example; the statemerit A=B+C
typically contains no information regarding the type of
data which 1is stored in A; B or C* Instead; the data type
is defined earlier in the program as integer; real; etc*

2* Data elements are treated as complete entities most of
the time* This means; for example; that the various
segments of a floating point variable will not be treated
individually by a user®s application program*

3* In most instances; the form of the data within a data
field will not change during the life of a program*

4* The operations which are performed on a data field are
generally a function of the specific data contained in
the field; for example; the arithmetic operations which
are performed on a floating point data field will differ
sharply from those which are performed on an integer data
field*

sskkkxxxxCONFIDENTIAL; MOS TECHNOLOGY ; INC***xsxsxsssx Page- 63

Final Design Specification for the MCS65E4 Microprocessor

The architecture of the MCS6 5E4 is designed in a manner which
recognizes these characteristics* However? it also recognizes the

use of the phrases “most of the time™"? "in most instances*? and
"generally™* in the above list* Specifically? it provides all of
the advantages of descriptors while still retaining the

flexibility needed by such Jlanguages as Fortran? and C iIn which
the definition of a data field can be altered during the execution
of a program* In addition? it recognizes the need to allow
efficient manipulation of the descriptor arid other key elements of
the data structure*

All data manipulation instructions within the MCS65E4 consist of
an Op Code and up to three operands* The Op Codes specify the
operation to be performed while the operands specify the location
of the data to be manipulated* This data can be accessed directly
or it can be located in one of the complex data structures
described below* In all cases? however? processing of the operand
must result in the generation of the address of a basic data
element since all data manipulation operations are performed only
on these elements*

Within the MCS65E4 system most data is . accessed through
descriptors* Hereafter? these descriptors contain the type? format
and location information which allows the processor to manipulate
the data in a data field* After a brief description of the basic
data elements? the organization arid operation of these variable
descriptors are discussed 1iIn detail™*

skkxxxkxxXCONFIDENTIAL? MOS TECHNOLOGY? INC ****xxxxxsx Page- 64

(B)

(HDJ

"riois

lyee (T3)

miord (W)

31

Double
“lod (OW)

iord (LW) 1

n-3yte
3tring(n3
8n-1

FORM Qr

iHE DATA

-Data Tyoe

3Ym
2 21
3 ORD
It M
5
5 4D
7 31
3 3R
9 3D 1
Iq I0R
12 . STR

Note:

Meaning
byte
2 byte signed
integer
Ordinal-3 bytss
unsigned intes
byte
signed intege]
M byte real |
4 byte BCD
1
3 byte
integer signeql
8 byte real
3 byte BCD
10 byte real i
|
String

Size

HW

T3

Dw

Dw

Dw

Lw

0 to
32767
bytes

1-11 will be refered to as scalar

Binary = 0 to 255
BCD = 0Ot 99

-55 ,535 to 55,535
0 to 15,777,215

-231 to 27~-1

ti0-j/ toi0T-d
7 decimal digit of precision

-7 decimal digit

-253 to 253 -1

+10-303 zo 10303
15 decimal digit of precision

+15 decimal digit

il0-t932 t0 101+932
19 decimal digit of precision

262,136

Binary: B to 2

65, 5™

Decirral: 0 to 1C

Final Design Specification for the MC365E4 Microprocessor

4*6+2 The Basic Data Elements

The group of basic data elements 1is composed of 10 simple data
fields arid 1 string data field* The simple data fields (hereafter
referred to as scalers)? consist of signed arid wunsigned binary
data? BCD data? or floating point (REAL) data 1in varying length
fields™* Each of these Basic Data Elements 1is stored in one of
seven different field sizes (Byte? Half Word? Triple Byte? Word?
Double Uord? Long Word? n-Byte String) which 1is depicted 1in Figure
5*7 ¢2a

*awxkxkxxCGNFIDENTIAL? MOS TECHNOLOGY 2 INC s Page- 66

Final Design Specification for the MCS65E4 Microprocessor

4*6 *241 Unsigned Binary Data Fields

The wunsigned binary data fields are type byte and ordinale They
are assumed to be positive and thus have no sign information
associated with them* A byte is 8 bits and an ordinalis 24 bits*
The range of these field sizes are indicated 1in figure 5*7*2b*

4*6 ¢2*2 Signed Binary Data Fields

The signed binary data fields are two? four? and eight byte
integer™ They are stored in two"s compliment binary format* The
range of these fields are indicated in figure 5*7*2B*

The MC365E4 supports four and eight byte BCD fields stored as
packed binary integer and signed magnitude* The most significant
four bits of the field contains the sign information (i*e 0000 =>=m
positive number? 1111 => negative number)> The range of these
fields are indicated in figure 5*7*2b*

4*6*2*4 Floating Point Data Fields

The floating point data fields are compatible with the proposed
IEEE floating point standard>* The are stored in three parts!
mantissa? biased exponent? 3nd sign* Both the mantissa and the
exponent are stored in two"s compliment binary format with the
most significant bit being the sign indicator (i*e* 0 =>
positive? 1 => negative)* The range of these fields are indicated
in figure 5*7 *2B *

4*6*2*5 String Data Fields

String data Tfields are treated as unsigned binary data*

Figure 5*7*2C depicts the format of the Basic Data Elements

FHXFXXAXXCGNFIDENTIAL? MOS TECHNOLOGY? INC Aokt Page- 68

[SU
1i~30 23 22
A+7

8R
63 52 52

A+9

10R
79 73 5% 53

3

At3

3—TT

A+7

3D n

A+n-1

15 disit

n Byte String 1 |

Se =< X = O O

sign
exponent
fraction
key

message
1-bit integer part
sign 0000

1111

n b?pes

<21 >

<ORD >

<-ur>,0R> ,<>D>

<8l>,<8R> ,<8 >

< 10R>

\ STR> with length n

Final Design Specification for the MCS65E4 Microprocessor

4*6*3 Organization of the Variable Descriptor
4*6 3 *1 Introduction

The Variable Descriptor 1is the primary means by which the MCS65E4
determines the format of the data field* With the exception of the
one byte unsigned binary field? the two byte signed integer field?
arid the three byte ordinal which can be accessed directly (without
going through a descriptor)? all data fields must be accessed
through a descriptor®* This assures that all instructions will be
executed 1iri a manner which is appropriate to the type of data
which 1is being manipulated™

The Variable Descriptor is composed of one or more of the
following elements!

1* Descriptor Header
2* Addressing Information (optional)
3* Auxiliary information (optional)

All Variable Descriptors must begin with a Descriptor Header™>
However? the addressing information must be provided only when the
data fTield is not attached directly to the descriptor arid the

auxiliary data must be provided only when referencing the more
complex data structures (strings? records? etc*)*

4*6*3*2 Organization of the Descriptor Header
4*6*3*2*1 Introduction

The organization of the Descriptor Header can be depicted as
follows!

7 6 5 4 3 2 1 0]
I Trap! Flag 1 Data Type I Access |1
| 1 | i Mode i
1 (0) 1 (F) 1 ®) I w) I
Each of these fields is described briefly below* A detailed

description of the operation of the descriptor 1is contained 1in the
remaining paragraphs of this section*

4*643¢2 *2 Trap Bit (Bit 7)

The trap bit in the descriptor can be set to cause a Data Access
Trap to occur when the processor attempts to access the data
field* Within the Exception Vector field? the TRAP bit is used to
specify that the exception will be serviced in the current
process®"s caller™

4*6*3*2*3 Access Mode (Bits 1 arid 0)

The Access Mode field specifies the manner in which the location

*xdkxkxkxxCONFIDENTIAL? MOS TECHNOLOGY?INC e***xsaxss Page- 70

Final Design Specification for the MCS65E4 Microprocessor

of the data field will be determined* Specifically* the data can
be attached to the descriptor? it can be located at a specified
offset from the descriptor or 1t can be located at a specified
logical address within the process™* The two bits in this field
specify one of four access modes as follows™*

Field Descriptor or

Bit 1 Bit O Descriptor Element Descriptor

0 0 Attached Attached Relocatable
0 1 Short Relative Short Relocatable

1 0 Long Relative Long Relocatable

1 1 Logical Addressing Logical Addressing

4*6*3*2*3*1 Attached

If the Attached Access Mode is specified? the variable descriptor
consists of a descriptor header and? if appropiate? an auxiliary
data Tfield* No addressing information 1is required since the data
field is located in memory immediately following the descriptor™*

446 *3*2*3*2 Attached Relocatable

Within 3n element descriptor in an array structure or a field
descriptor in 3 record? the 3tt3ched 3ddressing becomes sttsched
relocatable* The 3tt3ched relocatable addressing mode operates in
much the same manner as attached except ouat ths d3trs is assumed
to be attached to the address which was previously calculated
during the descriptor processing* This 1is 1illustrsted 1in detsil in
the examples below*

4*6*3*2*3*3 Short Rel3tive

If the short relative access mode 1is specified? the data field is
located at a specified offset from the address of the descriptor™
The offset 1is contained in a single byte of addressing information
immediately Tfollowing the descriptor header> The dal3 field c3n
therefore be locsted within the r3nge of -123 to +127 bytes fronm
the address of the descriptor™ If auxiliary information is
required for sccessing the data field? this information follows
immediately after the single byte of offset* (refer to descriptor
flowchart)

4*6*3*2*3*4 Short Relocatable

The short relocatable access mode 1is exactly the same as short
relative addressing mode except that the offset information is
added to the "previously calcul3ted address" within an array
structure or record* See example below for accessing dat3 within a
multi-dimensional array or record*

4*6*3*2*3*5 Long Relative
If the long relative access mode is specified? two bytes of offset
infomation are included in the varisble descriptor* The descriptor

header is followed by the low order 3nd high order bytes of a

*Axxkxxxxk*CONFIDENTIAL7 MOS TECHNOLOGY ?INC *****xxkxx Page- 71

Final Design Specification for the MCS65E4 Microprocessor

16-bit offset field* This allows the data field to be located
within 3 range of -32868 to +32767 bytes from the address of the
descriptor™ IT the data field is one of the mmore complex
structures described below? the required auxiliary data will
follow the two byte offset in the descriptor™®

4*6*3*2*3*6 Long Relocatable

The 1long relocatable access mode is exactly the same as long
relative addressing mode except that the offset information is
added to the epreviously calculeted address" within an array
structure or record* See the example below for accessing dat3
within a multi-dimensional array or record*

44663 ¢2¢3¢7 Logical Addressing

IT Logical Addressing 1is specified? the descriptor header will be
followed by s three-byte ordinal which 1is the logical address of
the data field™* This logical address is added to the contents of
the BAS register to determine the physical address of the data
field* This 3l1lows the data field to be placed anywhere in the
address space of the process* As before? any auxiliary information
which 1is required will follow the three bytes of addressing
information* (Refer to descriptor TfTlowchart)

sk xskkxxkxCONFIDENTIAL? MOS TECHNOLOGY 20 NC**xsssskokxx Page- 72

T " n

11/ attacnec Field
Discriptar x | . 5 Attached
1 s snort 3w Element TRelocatable
I Vrelative 1J (Discriiotor
' r J | / Short
o<s a r ' Sk HW
Y 7 Relative
Long
A Logical
_~scalar Address
scalar (initiate a fetch of
array subscript operand in the instruction)
strin /string tyt>e\ i o)
————— --MS length ~ iHV:- 4 binary stririg or BCD string
string .string type \ v(initiate a fetch of the -———— 7
array length |HYY subscript operand in the instruction)

. (inmiimaibs a fetch of faeikd select. ~J __, . ¢
byte in the instruction) [DISCI’Ip or

Tpr

retch another descriptor
initiate a retcn
arrav - h A
Nyt "HM, tof the subscriot-i __1erm.ent
instruction)
array maximum
structure fement |
with limit

check

-

Final Design Specification for the MCS65E4 Microprocessor

4*6 3 *2 ¢4 Data Type Field (hits 5 - 2) arid Flad ¢hit 6)

The Data Type Field and the Fla5 operate together to specify the
exact nature of the data field* The D field specifies the size of
the field and the type of data stored in the field as follows;

5 4 3 9 Data Type

(@)
o
o
o

Not Used (Reserved for future expansion)

0 0 0 1 Byte (BYT) <—F <—— ———— L
0 0 1 0 Ordinal (ORD) 3 1
0 0 1 1 Two-Byte Integer (21) C B D E
0] 1 0 0 Four-Byte Inteder (41) A A AL
0 1 0 1 Eidht-Byte Inteder (31) L S TE
0 1 1 0 Four-Byte Real (4R) E I A M
0 1 1 1 Eidht-Byte Real (SR) R C E
1 0 0 0 Ten Byte Real (10R) 1 T
1 0 0 1 Four-Byte BCD (4D) 1 S
1 0] 1 0] Eidht-Byte BCD (SD) <--—-1 !
1
1 0 1 1 Strind (STR) e e]
1 1 0 0 Deferred Descriptor/Record
1 1 0 1 Array Structure
1 1 1 0 Not Used (Reserved for future Expansion)
1 1 1 1 Not Used (Reserved for Tfuture Expansion)

For the first 11 items in this table (byte throudh string) >
setting the FLAG to a lodic 1 specifies that the data Tfield 1is an
element in a single dimension array* In this case? the processor
will Tfetch the next operand from the instuction and use the value
as the index information to determine the Ilocation of the data in
the array* IT the FLAG 1is a lodic (074 the descriptor points
directly to the data field*

If the Data Type field specifies that the data field 1is an array
structure <D=1101)> the FLAG is used to enable and disable
automatic check ind of the index contained 1in the instruction to
assure that it is not less than 0 or dreater than the maximum
value specified in the descriptor* |If the Data Type Tfield contains
a binary 1100 (Deferred Descriptor/record)f the FLAG 1is used to
select between the Deferred Descriptor arid the Record*

The Tfollowind table summarizes the use of the FLAG bit within the
descriptor header!

Data Type FLAG Value Definition
1
| Byte | 0 I Descriptor Access 1

*xkxkxxkxxCONFIDENTIAL> MOS TECHNOLOGY , INC s Frade- 74

Final Design Specification for the MCS65E4 Microprocessor

i through 1- l- 1
1 String 1 1 1 Array Access 1
1 e - 11— - = 1
1 1 0 i No Range Checking i
1 Array 1— e I
1 Structure ! 1 1 Perform Range Check ing i
1 o 1—. R _ _
1 Deferred 1 0 1 RecoOrd 1
1 Descriptor - ATTTTTTTTTTTTTTOTTTOTT OO I
| or record 1 1 I Deferred Descriptor 1
Lo 1— » 1 ————————————— J

The dsts type classifications depicited above can be organized
into three groups* The first group contains all of the basic data
elements which are the data fields that are operated upon by all
of the data manipulation instructions* The elements in this group
are 1identified by a 0001 through 1011 1in the Data Type fTield (byte
through string)* The second group contains all of the simple data
structures (arrays ? records? etc*)? while the third contains the
Deferred Descriptor®*

The seauence of operations which the MCS65E4 goes through to
access 3 basic data element is shown below (refer to the Tflow
diagram - the seauence numbers corresponds to the diagram)*

1* The processor accesses the descriptor block.

through any of the MCS65E4 addressing mode (see section
D* Set Y = the address following the addressing
information*

2* A check 1is made to determine whether the descriptor
indicates an basic data type* If it is not? the processor
continues to determine the desecriptor®s type*

3* If the descriptor indicates basic data type? the MCS65E4
gets the addressing information from the descriptor

block.*

4* The addressing information and the access mode bits
together determine the starting address of the raw data*
(In the flow diagram? this calculated address 1is saved 1in

variable Y - an internal register* For attached mode? Y =
Y + o* For relocatable mode? Y =Y + relative* For
logical mode? Y = the physical address¥*)

10* A check 1is made to determine if the basic
data is of type string* If it is? the next two bytes are
fetched from the 1iInstruction and are used as the string

length*
11* 1f the basic data type is not type string

the length 1is determined by the data type* The length can be
either 1? 2? 3? 4? S? or 10 bytes*

*xkxxxkxxx*CONFIDENTIAL? MOS TECHNOLOGY 2 INC *****xxsks Page- 75

POINT TO
DESCRIPTOR BY
OPERAND CONTROL
BYTE PLUS OFFSET

@09

Final Design Specification for the MCS65E4 Microprocessor

4*6*4 The Data Structures
4*6*4*1 Introductioij

In addition to the simple data TfTields described previously? the
MCS65E4 directly supports the storage of data in a number of
simple data structures* These aret

1* Single-dimension arrays
2* Array Structures
3* Records

In addition? these structures can be organized into complex data
structures such as multi-dimensional arrays? arrays of records?
etc* The simple data structures are described in this section* The
manner in which these simple data structures can be used to build
the complex data structures 1is best illustrated by example*

4*6*4*2 Single-Dimension Arrays

The single-dimension array 1is the simplest of the data structures
which are directly supported by the MCS65E4* This 1is selected by
setting the FLAG bit in the variable descriptor to a logic 1* The
processor then assumes that the scalar or string which is to be
manipulated by the instruction is an element of an array* To
access this element? the processor fetches an 1index from the
instruction*

The sequence of operations which the MCS65E4 goes through to
access an element within a single dimension array 1is as follows:
(refer to the flow diagram - the seauence numbers corresponds to
the diagram)™*

1* The processor accesses the descriptor block.
through any of the MCS65E4 addressing mode* Set Y = the
address following the addressing information*

2* A check is made to determine whether the descriptor
indicates single dimesion array* IT it 1is not?
processor continues to determine the desecriptor®™s type*

3* If the descriptor indicates single dimension array (FLAG=1)?

the MCS65E4 gets the addressing information from
descriptor block *

4* The addressing information and the access mode bits
together determine the starting address of the raw data
for the first element of the array (In the flow diagram?

this calculated address is saved in variable Y - an
internal register™ For attached mode? Y =Y + O0* For
relocatable mode? Y = Y 1 relative* For Jlogical mode? Y =

the physical address*)

5* To determine which element 1in the array to access?
the processor fetches the data specified by the next

wskkkkxkxxCONFIDENTIAL? MOS TECHNOLOGY? INC***xxxsxsssx Page- 77

Final Design Specification for the MCS65E4 Microprocessor

operand in the 1instruction* This data is treated as

index (In the flow diagram this value
variable 1)*

10* A check, is made to determine 1if the basic

referred

the
as

data is of type strin3e If it is? the next two bytes are
fetched from the 1instruction and are used as the string

length *

11* If the basic data type is not type string

the Ilength is determined by the data type* The

either 1? 2? 3? 4? 8? or 10 bytes*

8* The element length (EL)? the index value (1)?

length can

and the

be

previous calculated address (Y) are used to address the
sought after element within the array structure*

formula for the address calculation is Y

Y + (1

The
EL)*

Note that the 1location of this element can be determined

without regard for the exact nature of the

stored in the array*

*axkxxkxxCONFIDENTIAL? MOS TECHNOLOGY? INC ** %

Page-

data being

78

START

CONTINUE TO
DETERMINE
DESCRIPTOR

MmvDP

POINT TO DESCRIPTOR.

|3y OPERAND CONTROL

— = m IgYTE PLUS OFFSET

\
SINGLE ~

DIMENSION

ADDRESSING
INFO FROM

DESCRIPTOR!

JPOINT TO
JBEGINNING 1
OF NEW
~ATA

SET NEXT
3YTE FRCM
ENSTRUCT len
mOR INDEX

S .

LENGTH BUILT
INTO DATA TYPE

CAN BE EITHER:
1 0

,3,4,8 or
BYTES

POINT TO RAW
DATA BY
Y=Y+I*EL

sC 2

/T

GET NEXT 2
BYTES FOR
STRING LENGTH

Final Design Specification for the MCS65E4 Hicroprocessor

446443 Array Structure

In addition to the simple array described in the previous
paragraph? the MC365E4 supports the storage of data in arrays in
which elements can be more than the basic data elements* This 1is
termed the "array structure” arid is selected by setting the Data
Type to 1101 (binary)*

When an array structure is specified? the descriptor header
contains no information regarding the type of data which 1is stored
in the array>* Instead? this 1is contained 1in the auxiliary data

field which follows the addressing information* Also? when FLAG
eauals O (i*e* no limit checking)? the maximum index TFfield within
the array descriptor block, is omitted™*

The Tformat for the descriptor block? with 3nd without limit
checking? which references an array structure is shown below:

————— J
| i i |
(711 111011 M 1 -- Descriptor Header
1 | 1 |
i
1
Addressing 1
Information 1
1
_____ j 1
Element™* 1 1#
Length i A n*
————— j] u F
Maximum ! X 0
Index 1 i r
“““ J 1 m
1 i a
Element 1 a t
Discriptor 1 roi
1 y o
1 n
- -1 1

Array Descriptor Block (with limit checking field)

i S 1 1
(T)10 11101 1 (M) i
! | | i

<— — Descriptor Header

Addressing
Information

*axxkxxkxCONFIDENTIAL? MOS TECHNOLOGY P INC * %% Page- 80

Final Design bpecification for *th0 MCS65E4 Hiepop rocessor

1 Element i 1
1 Length 1 1
-1 i
1 Auxiliary
1 Element 1 Information
| Descriptor ! 1
1 1
1 i

Array Descriptor Block (without Ilimit checking Tfield)

FAXFXRXXXXCONFIDENTIAL> MOS TECHNOLOGY rINC***gxxgrsx Page-

Final Desidn Specification for the MCS65E4 Microprocessor

The format of the Descriptor Header in the Variable Descriptor
must be as described in Paragraph 4*6*3*2 with the Data Type field
set to 1101* The actual data within the array 1is accessed through
the addressing information of the descriptor block.* Note that the
attached mode is not valid for the array structure sinee the
actual array data can not immediately follow the descriptor
header>

The Tfirst item in the auxiliary data is the Element Lensth* This
field specifies the number of bytes in each element of the array*
This information must be compatiblewith theinformation contained

in the element descriptor to assure proper accessing of the data
in the array* The Maximum Index Tield is used to check, that the
index contained in the instructiondoes not exceed the bounds of
the array* This check, will only beperformed if the Flad field is
set to a lodic 1* The last field 1in the descriptor is the array
element descriptor™ This 1is a normal Variable Descriptor which
specifies the format of the array element* 1In deneral? all of the
access modes? data types? etc* are permitted in this descriptor™*
However? the operation of the address accessing modes is different
from that described above for the normal Variable Descriptor (i*e*
the attached mode becomes attached relocatable and short and Iland
relative becomes short arid lond relocatable respectively) This is
specifically designed to facilitate the direct support of complex

data structures (multi-dimensional arrays? arrays of records?
etc*)* If the lodical addressind access mode is specified? the
specified lodical address replaces the previous address

calculated™

The seauence of operations which the MCS65E4 does throudh to
access a raw data item within an array structure is as follows
(refer to the flow diadram below throudhout the discussion - the
seauence numbers correspond to the diadram)t

1* The processor accesses the array descriptor block (ADB)
throudh any of the MCS65E4 addressind mode* Set Y = the
address followind the addressind information*

2* A check, is made to determine whether the descriptor
indicates an array structure* |If it is not? the processor
continues to determine the desecriptor®s type*

3* If the descriptor indicates array structure? the MCS65E4
dets the addressind information from the descriptor
block.*

4* The addressind information and the access mode bits
todether determine the startind address of the raw data
for the first element of the array (In the flow diadram?

this calculated address is saved in variable Y - an
internal redister™ For attached mode? Y =Y + 0* For
relocatable mode? Y = Y + relative* For lodical mode? Y =

the physical address*))¢ Note that the attached mode is
not valid for an array structure since the actual raw
data does not follow the descriptor header™

*q*x**x*x**CONFIDENTIAL? MOS TECHNOLOGY ?INC ****skxxxx Pade- 82

Final Design Specification for the MCS65E4 Microprocessor

5* To determine which element in the array to access?
the processor fetches the data specified by the next
operand 1in the 1instruction* This data is treated as the
index (In the flow diagram this value is referred as
variable 1)*

6* However? before the element 1is accessed? the MCS65E4
determines if the index value 1is greater than or eaual to
zero and less than or eaual to the maximum index value
contained in the array descriptor* The check, will not be
performed if FLAG eauals zero (see section 4*6*3*2*3*4)*
If FLAG eauals one in the descriptor header 3nd the 1index
value is invalid? the processor terminates execution of
the current instruction and will execute a trap seauence*

7* The processor then gets the element length from the
descriptor block™* The element length (in the flow
diagram? this value 1iIs refered to as variable EL) within
the array descriptor is the number of bytes of each
element in the array*

S* The element Ilength (EL)? the 1index value (1)? arid the
previous calculated address (Y) are used to address the
sought after element within the array structure* The
formula for the address calculation is Y =Y + (I * EL)*
Note that the location of this element can be determined
without vregard for the exact nature of the data being
stored 1iIn the array*

9* If th*e element descriptor specifies a basic data type
(byte through string)? the processor can process its
address information to get the address of the raw data*
Once the processor has the address of the raw data
element? it can proceed to move the data 1into the chip*
IT however? the element discriptor 1is an array structure?
the above seauenee (3 through 2 will repeat* When a
basic data element 1is encountered? only 3 and 4 will be
performed to fetch the data field* In both cases? 4 has a
different meaning since Y now contains the address to the
base of the array* Therfore? attached mode (in this case
called the attached relocatable mode) is used to access
the Tfirst element of the array* Relative mode (in this
case called short or long relocatable mode) now contains
the the offset from previously calculated address instead
of that of the descriptor*

FHRXAKXAXXCONFIDENTIAL? MOS TECHNOLOGY?INC* *H**kxkkx Page- 83

| POINT TO ARRAY
START J DESCRIPTOR SLOCK

j (AD3) 3Y OPERAND

I CONTROL BYTE PLUS

1 OFFSET

ADI

IAMMNacc ipT
;\:.1: _

inrormation
Ele. yy,igh
fMax COptional]

Tl Dpescrio j
t

‘Addr” Info.
Ele Length
Max (Optional

i
J Desr -

Array
Descriptor
Block

©Attached Mode
not allowed here

Final Design Specification for the MCS65E4 Microprocessor

4 *6 *4*4 Record

A record consists of a number of related but dissimilar data
fields which are organized into a single data structure* When the
MCS65E4 encounters a record descriptor during an instruction
executioni it fetches the next byte of data from the instruction*
This 1is assumed to be an offset from the first field descriptor to
a fTield descriptor™ The field descriptor then provides the
information reauired to access the raw data* The format of the
Record Descriptor 1is as followst

Descriptor
Header

Addressing
Information

Field Descriptor
Field *1

Field Descriptor
Field *2

Field Descriptor
Field *3

As with all Variable Descriptors? the record descriptor begins
with a Header* The Data Type field must be 1100 (binary) and the
flag must be a logic 1* The Access Mode Tfield can be either of the
relative modes or the logical addressing mode* The attached Access
Mode is not supported for the same reason mentioned above for the
array structure* Therefore? the addressing information is not
optional in the Record Descriptor?*

The format of the Field Descriptor is exactly like that of the
normal Variable Descriptor™ However? the operation of the offset

and logical addressing access modes is different from that
described above for the normal Variable Descriptor arid similar to
that described for the Variable Descriptor®* This 1is specifically
designed to facilitate the direct support of complex data

*xxkxxkxx*CONFIDENTIAL? MOS TECHNOLOGY ?INC *****kxxsx Page- 85

Final Design Specification for the MCS65E4 Microprocessor

structures (mulli-dimensional arrays? arrays of records* etc ¢)e¢ IT
the short or long relocatable offset is specified in the field
descriptor? the offset will be added to the previous address
calculated™* If the attached relocatable addressing mode is
specified? then zero 1is added to the previous address calculated*
It the logical addressing access mode 1is specified? the specified
logical address replaces the previous address calculated* This Iis
illustrated in detail 1iIn the examples below*

The seauence of operations which the MCS65E4 goes through to
access a raw data item within a record structure 1is as fTollows
(refer to the flow diagram below throughout the discussion - the
seauence numbers correspond to the diagram)!

1* The processor accesses the record descriptor
block (RDB) through any of the MCS65E4 addressing modes™*

2* A check 1is made to determine whether the descriptor
indicates a record structure* |If it is not? the processor
continues to determine the desecriptor®s type*

3* If the descriptor indicates array structure? the MCS65E4

gets the addressing information from the descriptor
block*

4* The addressing information arid the 3ccess mode bits
together determine the starting address of the raw data

for the first field* In the flow diagrsm? this
calculated address is saved in variable Y - an internal
register™ For attached mode? Y =Y + 0* For relocatable
mode? Y = Y + relative* For 1logical mode? Y = the

physical address*

5* To determine which field within the record to access?
the processor fetches the data specified by the next
operand in the 1iInstruction* This data 1is treated as the
offset into the record descriptor to obtain the field
descriptor *

«**xxxx*CONF IDENTIAL? MOS TECHNOLOGY?INC ****kxxxx Page- 86

POINT TO RECORD
DESCRIPTOR BLOCK
(RDB) 3Y OPERAND

PH RECORD
STRUCTURE _ -
fmiy

CONTROL BYTE PLUS ADDRESSING I
0 p cmme INFORMATION 1

rELD
DESCRIPTOR 1 :

FIELD
RECORD TrDTPTIR 2
DESCRIPTOR I

J
. 1

Y

GET ADDRESSING
INFORMATION FROM
RECORD DESCRIPTOR

POINT TO beginning;
OF RECORD"s ROW

DATA. THIS IS]
OBTAINED BY ACCESSj

MODE BITS
ADDRESS INFORMATION

hvj ETELD

GET FIELD

Final Design Specification for the MCS65E4 Micros

This p-3”e intentionally left blank

*xxkxxkxkxCONFIDENTIAL> MOS TECHNOLOGY? INC . ***fxsssx

Final Design Specification for the MC365E4 Microprocessor

4*6*5 Deferred Descriptor

The deferred descriptor contains no information redardind the type
of data which 1is stored 1iIn the data field which 1iIs to be accessed
by the instruction* For this reason* the deferred descriptor does
not directly refer to the raw data* Instead? it points to another
descriptor which can contain data type information* It should be
rioted that this second descriptor is exactly the same as any
variable descriptor (i* e*? the second descriptor could very well

be another deferred descriptor)™* In all cases? it is necessary
that the processor encounter data type information before raw data
can be fetched from memory>* The operation of the deferred

descriptor 1is illustrated in F"arsraph 4*6*6* 4*

A summary of all the data types 1is depicted belowt

FHRAXAXXFXXCONFIDENTIAL? MOS TECHNOLOGY?INC HHxssasksksx Pa3e- 89

Final Design Specification for the MCS65E4 Microprocessor

4+6*6 Application of the MCS65E4 Data Accessing Mechanisms
4*6*6*1 Introduction

The data accessing mechanisms described above are used throughout
the MCS65E4 architecture for storing raw data” array indexes?
exception vector addresses? etc* For this reason? they are a very
important key to understanding the operation of this processor™
Therefore? a number of examples of data structures are described
in detail below* It is hoped that these will contribute to the
readers understanding of the manner in which data is stored arid
accessed within the MC365E4 system*

4*6*6*2 Accessing Data in Multi-Dimensional Array Structures

The manner in which the data storage and accessing techniaues
described above can be extended to control the accessing of data
in complex array structures can be described most effectively by
reviewing the seauence of operations which tak.es place when the
MCS65E4 encounters the Array Descriptor* As described previously?
the addressing information contained in the descriptor specifies
the address of the first element iIn the array being accessed* The
element length information contained in the descriptor is then
combined with the next operand in the instruction to determine the
location of the array element being accessed*

After the physical address of the array element has been
determined? the processor then references the element descriptor

to determine the manner 1in which the element is to be processed*
As noted above? the format for the element descriptor is
essentially the same as for any of the normal descriptors™*
Specifically? this means that the element descriptor can specify
any of the normal data types such as the scaler (byte? ordinal?
real? etc*)* Even moreimportant is the fact that the element
descriptor can specify that the element is a simple array? an
array structure? or a record* This 1is the key to accessing complex
data structures in the MCS65E4 system*

The operation of the element descriptor can be illustrated by
examining the manner in which the MCS65E4 would access data in a
simple 3 X 4 two- dimensional array (termed DATA(X?Y) below)* The

twelve elements in this array would be stored iIn contiguous memory
locations as follows™*

oxxkkxxkCGNFIDENTIAL, MOS TECHNOLOGY? INCH %> Page- 91

Final Design Specification for the MC365E4 Microprocessor

Hi5h-order Memory

(3*4)

37*2)
(3*1)
(2/4)
(273)
(2+2)
(2*1)
(1*4)
(1*3)
(1*2)

(1+1) Address of array

Low-Order Memory

To create the descriptor for this array* the structure must be
viewed 3s a single-dimension array in which each element contains
four data fields* This can be illustrated as follows}

Full Array* Siridle-Dimension Depiction*
! 1 | 1
IHidh-order Memory! IHidh-order memory!
1 1 1 1
- i 1 _ - !
1 (3*4) | 1 1
i - i

i (3*3) i ! Element !
J] 1- 3 -1
1 (3*2) I ! 1
1 = - i

1 (3,1) 1 1 !
1 - - l i - - i
1 (2*4) 1 1 1
J J J |

FrxHxxxxAXCGNFIDENTIALF MQS TECHNOLOGY *INC ******xxxx Fade- 92

Final Design Specification for the MC365E4 Microprocessor

1 (273) i 1 Element 1
jrmmm - |

1 (272) 1 1 " J
- J

1 2?1) 1 i i
i - - i - - i
1 (1,4) i ! 1
1-- ——— -1

1 <1,3) 1 1 Element 1
lommmmmm oo | 1- 1 -3
1 (1,2) 1 1 1
1 - - —1

1 (1,1 1 1 1
[- - — 1 - - _
i \ i i
ILow-Order Memory 1 ILou-order Memory 1
1 1 1 1

The descriptor which specifies the form of this single-dimension
array must contain an element length which is four times the
actual element size* For example? if the raw data is ten byte real
then the element length 1in the array descriptor would be forty*If
the 1index is to be checked for maximum size? the descriptor must
specify 3 as the maximum Tfor the Tfirst index into the array* Usind
the procedures described above? the MCS65E4 will first utilize the
addressing; element size arid index information to determine the
location of an element in this single-dimension array* For
instance? if the instruction references element (273) in the
array? the processor will Tfirst determine the address of element 2
in the single-dimension array by evaluating the following formula*

Physical Address = (Contents of Specified Base Register)
+ (Array Address) i1 (Element Size * Index)

Motet * = multiplication

After this operation is complete? the MCS65E4 bedins processing
the element descriptor™ This operation 1is very similar to normal
descriptor processing except that the Relative arid Attached
addressing becomes short and lond relocatable as reauired for

accessing data in the array structures* Rather than addins the
displacement to the address of the descriptor? the processor
instead adds it to the address which was determined during the
previous phase of the addressing seauence 1in progress* In the

example above (accessing element (2?3) in the array)? the address
determined during the first phase of the addressing seauence would
be that of element (2?1) 1in the 3rray* This corresponds to element
2 iIn the single-dimension depiction illustrated above*

For the 3 X 4 two-dimensional array described previously? there
are two methods which could be utilized for specifying the element
descriptor™* IT each element iIn the total array is a scalar and if
no index checking 1is reauired? the element descriptor c3n specify
that each element 1iIn the single-dimension array 1is a simple scaler
array> IT index checkinS is desired? then the element descriptor
must specify that each element of the single-dimension array 1is an

*xkkkxxxxCONFIDENTIAL? MOS TECHNOLOGY 2 INC %%k Fade- 93

Final Design Specification for the MC365E4 Microprocessor

array structure* This element descriptorwould then contain a
second element descriptor which would specify the exact data type
for the array element*

The above discussion becomes somewhat confusing because of the
“"levels™ which the processor must go through during the addressing
sequence™* This can be illustrated more clearly by continuing the
example from above* Most importantly ? the reader must understand
the fTact that during the 1initial processing of the descriptor? the
MCS65E4 views this two-dimensional array as a single-dimension
array structure* This “first-level” of addressing allows the
processor to access array elements 1in sets of four (for example?
2jijl1)? (2>2)? (2?3) arid (2*4))* The element descriptor within this
array descriptor must therefore contain the information reauired
for accessing the "second level*? 1i1*e*? for determining the exact
location of the desired element within the groups which are
accessed during the first level* The total descriptor for the
example above (assuming 1index checking 1is reauired and that each
element of the array contains a byte data type) would therefore
be :

be noted from
addressing
be eliminated since

can

Final Design Specification for the MC365E4 Microprocessor
Low-Order Memory
Descriptor Header
Addressing
Information
Element Size 1
Maxi murn Index Valie
Total - >
Array 1 Element
Descriptor 1 Descriptor

| |

| Descriptor Addressing

| for “first Information

1 leve 1*

1 element Element Size 2
Maximum Index Value
Element Descriptor
Header
Addressing
Information
High-order Memory

There are several important points which
this illustration*The element descriptor-s
information in the previous example can
attached addressing mode (in this case

relocatable mode)

0OGU3 1S+

is utilized*

The physical

called attached
address of (2>3)

(contents of specified base register) +

(base of array logical address) +

(element size 1 * index 1) +

(element 2 addressing information) +

(element size 2 * index) +

Data Addressing Information
If this is a 3 X 4 array of 10 byte Reals? the address is
calculated 3s fTollows!

Data Address = Physical Address of the base of array +

(40 * 1) + 0 + (10*2) 4-0

FHrFI XXX XAXXCONFIDENTIAL> MOS TECHNOLOGY >INCe***Fxxkxxx Page- 95

Final

™ Physical

Design Specification for the MCS65E4 Microprocessor

address of the base of array + 60

Note that index 1 = 2 - 1 = 1? index 2 = 3 - 1 = 2¢ The element
addressing information eauals 0 for attached mode and offset for
short or lend relocatable* There 1is no way for the processor to
determine the total 1length of the array descriptor™ This 1is the
reason that attached addressing is not valid in the first
Descriptor Header* Also? it should be noted that the nesting of
the second level descriptor into the Tfirst level descriptor can be

extended to any level
element descriptor
array descriptor or
however?
specified properly
manner which allows
addressing™

EDI

TAD

ED2

xskkxxk*xCOQNFIDENTIAL?

shown
even a

care must be taken to assure

arid
the

of complexity™* This means that the second

in this diagram can? in fact? be another
record descriptor™ In all cases?
that the element length be
that all addressing be specified in a

processor to process each level of

Low-Qrder Memory

Descriptor Header

Addressing
Information

Element Size
Index Value

Maximum

Element Descriptor
Header

Addressing
Information

Element Size
Index Value

Maximum

Element Descriptor
Header

Add ress ing
Information

Element Size
Maximum Index Value
Element Descriptor

for array element
*thi rd level 1

ED3

High-order Memory

MOS TECHNOLOGY ?INC ¥k Page- 96

Final Design Specification for the MCS65E4 Microprocessor

TAD t Total Array Descriptor

EDI t Element Descriptor For First Level Element
ED2 t Element Descriptor For Second Level Element
ED3 t Element Descriptor For Third Level Element

4*6 *6 *3 Example of Accessing Multi-Dimensional Array

For our next example we assume we have a FORTRAN data area where
data within the area can be accessed either as single eight-byte
integers or single four-byte reals through an eauvalence
statement™* The data in memory has “holes”™ 1in it (i*ee the real or
integers are not contiguous)* However? the MCS65E4 descriptor can
be setup to be able to access the data properly (i*e* to by-pass
the "holes*)e Assume we have a three dimensional array? A? with
maximum dimension C157?107?51 * The data is stored seauentislly as|l

A(Q7Q?Q)? A(0?07?1)? +¢¢? A (07074)

A ?1?20) A0 ?27?20) ? ***? A0??74)

A (1?7 0?0)? A(2?070)7 ***2 A (9 20 ?0)

A(14?9?4) (without showing "holes?*)

Geometrically? the array consists of fifteen planes where each
plane consists of one 10x5 matrix plus some imbedded “holes®"* The
plane 1is depicted below* Remember there are Tifteen of these
planes to form a solid geometric structure*

1 5 byte 1
1 hole 1
1 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte 1
1 hole real real real real real 1

1 4 byte ! 4 byte 1 4 byte 1 4 byte i 4 byte 1 4 byte 1

xxwxxxxxxCONFIDENTIAL? MOS TECHNOLOGY 2 INC * %% %% %% Page- 97

Final

Design Specification for the MC365E4 Microprocessor

hole 1 real 1 real | real 1 real | real

4 byte 1 4 byte I 4 byte i 4 byte ! 4 byte t 4 byte
hole i real L real 1 real i real 1 real

4 byte 1 4 byte 1 4 byte ! 4 byte 1 4 byte 1 4 byte
hole 1 real 1 real 1 real 1 real 1 real

The descriptor for this array is shown below with a description of
how each field is derived*

Logical
Address

1* O011FFO

2*

3*

44

1T 10 11101 i 11 Define Array Structure

I_

1 56

b 1

1 34 Logical of raw data

I — - - |

1 12

I

a- F5 - Element Length

1T i 11 11010 101 IElement Descriptor (array)
|

1 5 Short Relocatable Addressing
t —

1- 9 - Maxi mum Index Value

i

1-) 18 - Element Length

g1

| T! 1 1 0110 1 01 Element Descriptor (REAL4)

I —

1 4 Short Relocatable Addressing

Descriptor for Multi-Dimensional Array

Field

l*

2

3*

Description

Specifies first dimension as array structure with
logical addressing™*

Specifies the logical address of the array (123456)

Specifies the element length for first dimension*

Element 1length = HI + MAX2 * (H2 + (MAX3*L))
(where HI = hole 1

MAX2 = second dimension size

H2 = hole 2

MAX3 = third dimension size

L = length of element)

*xxkxxxx*CONFIDENTIAL> MQS TECHNOLOGY>INCe***xsxskx Page- 98

Final Design Specification for the MC365E4 Microprocessor

Element 1length 5+ 10 * (4 + (b*4))

F5 (hex) using above formula*

4 * Specifies second dimension as array structure with
short relocatable mode addressing

5* Specifies the five byte offset (i*e* skip 5 byte
hole at beginning of each plane)*

6 * Specifies maximum 1index valuefor second dimension
7* Specifies element length for second dimension*

Element length = 4 + 5*4
18 (hex) wusing formula*

Element Ilength HI 4 MAX3*L

(where HI
MAX3

4 hole
third dimension size)

3* Specifies the third dimension as an array of
four-byte reals (this as accomplished by setting
FLAG = 1) with short relocatable offset mode
addressinge

9* Specifies the four byte offset (skip over the hole)*

The processor will 3ccess AC107?87?3]* This assembles into*

The contents of the PRM register 1is O0l1l1FEO* To get to the address
of the array descriptor the processor will add the contents of the
primary register (011FEO) with the next byte 1in the 1instuction
(10) giving 011FFO0O* The next byte (*0A) is an operand control byte
and will be used by the processor to calculate the first 1index of
the sought after element and #08 for the second index and =02 for
the third* Using the array descriptor? the processor calculates
the address of AC10?37?23 with the following formula*

Q = AID + (ELI * 11) +
E2A +
(EL2 * 12) +
E3A +
L * 13)

where AID
ELI
11
E2A

Address Information of Descriptor

Element 1 Length

Index 1

Element 2 Addressing Information (relocatable)

xkkxkxxXCONFIDENTIAL? MQS TECHNOLOGY 2UNCH****xsskskskx Page- 99

Final Design Specification for the MCS65E4 Microprocessor

EL2 = Element 2 Length

12 = Index 2

E3A = Element 3 Addressing Information (relocatable)
L = Data Length

13 = Index 3

Substituting the example data into the above formula we gell

Q = 123456 + (F5 * OA) +
5 +
(18 * 08) &
4 i
N COR)
Q = 123EBD

At logical address 123EBD 1is the data for element A[10j833

If we access element ACI?J?K3 where 1=17?j J=5? and K= -3? the
processor will not trap out for lelement-out-of-rsnge® since both
I arid K do not have range check ins specified in the desrciptor ¢

However when 1=0? J=10? and K=1 the processor will trap out when J
is processed since J is greater then 9 (i*ee 9 1is the max index
as specified 1iIn descriptor)*

This FORTRAN data area can also be accessed as a two dimensional
array £Ff eight-byte integers through an equivalence statemerit* The
array? By has maximum dimension 10X3* Each row of data is now
treated as three eight-byte integers instead of fTive four-byte

reals* Note that the four byte hole at the beginning of each row
will now be utilized* The descriptor for array B will be as

follows™

1T 10 1 1101 1011
1 03 1
1- 13 -1

1T 11 10101 100 1

Field Definition

1* Specifies array structure with short relocatable
addressing mode*

2* Specifies the short relocatable offset
3* Specifies the element length of the Tfirst dimension*
Element length = MAX2*L
= 3*8
= 18 (hex)

xwxwxxkxxxCONFIDENTIAL? MOS TECHNOLOGY> | NC %%k Page- 100

Final Design Specification for the MCS65E4 Microprocessor

4 > Specifies an array of 8-byte integers with
attached addressing mode*

Note that the descriptor fTor array B is five bytes 1long which will

fit into the five byte “hole” in the beginning of each plane* If
we 1ijse external base addressing we can modify the base page and
address any plane within the arra” :or example t.o acce*: BC3r2]:

|

IExternal
1Base with
Ing offset

The Qridinal 20 into the BAS page is 123DE3 which 1is the address
of variable B* Note that this by-passes the Ffirst dimension of the
previous example (AC107?8*31)e Using the above formula we can
address AC107?8y31 by specifying BC8?23*

Q = 123DEA+ {see note below>
3+
18*08+
02*3 +
= 123EBD

note ¢ The relative calculation will start from the byte
following the address information*

Note that element AC107?8y31l1 is referring to element BC8>23 (i*e*

bothgeneratedaddresses are eoual) dhis isshown below*

j———- j——- j—-—-—- |--————----- |--—————- j——- 1 ThirdElement

I hole 1 O 11 12 1 3 1 4 bf Array A
3T 3

(both have same address) =

——————————— - 1----—-—--—-—-—--———————1 Second Element
0 I 1 I 2 I of Array B

FAXFXRXXXXCONFIDENTIAL> MOS TECHNOLOGY j INC *HAHxaksshasx Page- 101

Finsi Design Specification for the MCS65E4 Microprocessor

4 «6*6*4 Example of Accessing Data in a Complex Record Structure

The complex record structure can best be described by referring to
a diagram arid following the operations the processor must perform

to access the data* Assume we have a PASCAL-like record shown
belowt
A = Record
B : ARRAY Clee¢153 of INTEGER*2? -Cdefine 2 byte 1integer array>
C : BCD4? {define 4 byte BCD field>
D : REAL40 ? -~ -Cdefine pointer to 4 byte REAL)
E = Record {define new record)
BB : BYTE? mCdefine a byte Tfield>
CC : ORDINAL -Cdefine an ordinal fie ld>
End 7 {end record)
F : ARRAY Cle*260] of CHAR; -Cdefine a 260 byte string)
G : INTEGER*4 -Cdefine a 4 byte integer field)
End 7 -Cend record)

As previously described a record is 3 group of related but

dissimilar data fields which are organized into a single data
structure* The descriptor for an MCS65E4 record consists of a
record header? addressing information? and field descriptors™*

Basically? the header defines the dal3 type as record? the
addressing information gets the processor to the start of the raw
data and the field descriptors define the specific fields within
the record* There 1s a one-to-one correspondence between a fTield
descriptor and the dat3 field iIn the record* wWithin the field
descriptor is 3ddressing information which 1is the offset from the
base of the record* The base address of the r3w dal3 (contsined in

the record descriptor) 3nd the offset (contained in the field
descriptor) provide the processor with sufficient information to
address any field within the record* The following example

illustrates accessing a complex record by depicting a record”s
descriptor and raw datat

sskkkkxxxxCONFIDENTIAL? MOS TECHNOLOGY?INC* **ssssssx Page- 102

Final Design Specification for the MC365E4 Microprocessor

Logical
Address

123456

123474

123473

12347C
12347D

12347E

1235AA

125656

01F234

Relative

Address
1st 2 byte integer
2nd 2 byte 1iInteger
Field B
|
15th 2 byte integer
4 byte BCD field Field C
T I 0 I 0110 11
Field D
125656
6 Byte Field E.BB
7 Ordinal Field E.CC
=1
3 1st byte of string
|
Field F
260th byte of str*
2C 4 byte Integer Field G
Raw Data For Complex Record
11
33
44
Real Dat3 Field
|
T 10 1 1100 i 11
56 Define Record
with
34 Logical

FAKXXXFXFXCONFIDENTIAL, MOS TECHNOLOGY yINC . #Hx>*x*xx*xy Page-

103

Final Design Specification for

12
01F238 0 1*1 0011
01F239 1 0O 1 1001
1E
01F23B 1101
01F23D T 1 0 1 0010
6 23
O01F23F 7 T 1 0 1 1100
8 26
01F241 9 T 1 0O 1 0001
01F242 A T 1 0 1 0010
B 01
01F244 C 0O 1 1011
28
04
01
01F248 10 0O 1 0100
2C
01
* - Note: Single Dimension Array

Descriptor

*xkxkx*kxxx**CONFIDENTIAL>

the MCS65E4 Microprocessor

00

01

01

01

01

00

01

01

10

Base Addressing

Define Field AeB

Define Field A.C

Define Field A.DS
(deferred descriptor)

Define Field AeD

Define Record with
short relocatable
addressing

Define Field A_._E.BB

Define Field A.E.CC

Define Field A.F
1

|
Define Field A.G

For Complex Record

MOS TECHNOLOGY , IMC . *H*xFxxskx Page- 104

Final Design Specification for the MCS65E4 Microprocessor

The Tield AeF iIs to be accessed* The instruction assembles into*

BAS + 3 ext F2 01 oC
bytes
|
operano = ————— +3 extension bytes--—————-- - field
control selection
byte byte

The operand control byte followed by three extension bytes will
point to the descriptor at logical address OIF234 (assume BAS
register eauals 0)* After determining that the descriptor is
logical addressing mode the processor uses the next three bytes
(starting at O01F235) to point to the start of the raw data for the
record* Since the descriptor specifies that it is record data
type? the MCS65E4 then fetches the next byte from the instruction
(0C in our example) and uses this as a displacement into the
record descriptor to obtain the appropiate field descriptor* In
our example this is located at 01F244 (01F238 + 0C)* The field

descriptor header indicates string data type with short
relocatable offset* The offset in our example is 23 which is
located after the descriptor header <01F245)* This offset is then
added to the start of the raw data (123456 + 23 = 12347E) which 1is

the address of the first byte of the string* The next two bytes of
the field descriptor 1is the string length*

As another example? the field A DO is to be accessed™* The
instruction assembles into:

B j - ymmmmm e — |- - |--———-- :
I BAS + 3 ext |1 34 1 F2 1 01 I 03 I
I bytes | | | | |
operand R 3 extension bytes-------——- > field
control selection
byte byte

The operand control byte followed by three extension bytes will
point to the descriptor at logical address 01F234 (assume BAS
register eauals 0)* After determining that the descriptor is
logical addressing mode the processor uses the next three bytes
(starting at 01F235) to point to the start of the raw data for the
record* Since the descriptor specifies that it is a record data
type? the MCS65E4 then fetches the next field selection byte fronm
the instruction (03 in our example) and uses this as a
displacement 1into the record descriptor to obtain the appropiate
field descriptor* In our example this 1is located at 01F23B (01F233
+ 03)* The field’descriptor header 1indicates deferred type with
short relocatable offset* The offset? 22 in our example? is added

to 123456 giving 123478* Since this a deferred descriptor? the
data contained at 123478 is not raw data but another descriptor™®
The descriptor? located at 123473? 1is then processed the same as

xkxxkxxxkXCONFIDENTIAL? MGS TECHNOLOGY 21 NC***xsskxxss Page- 105

Final Design Specification for the MC365E4 Microprocessor

any other descriptore In our example? the descriptor indicates
four-byte real type with logical base addressing (i*e* the data is
located at 125656)* Therefore? the actual raw data is 11223344
(see diagram above)*

Similarly? the field A*D can be accessed* The instruction
assembles into;

1 BAS 4 3 ext F2 01
1 bytes
operand = ————————- 3 extension bytes--——-----—- ; field
control selection
byte byte

The AeD differs from AeDO in that the former refers to the logical
address that points to the four-byte real* Therefore the Tfield
descriptor indicates Ordinal data type with short relocatable
offset* The offset is 23 (one more byte than A*D8)? so it points
to the logical address iristead of the four-byte real descriptor™
Using this techniaue we can implement any pointer data? such that
P is a pointer to pointer to pointer to the four-byte real ? i*e*?
P?P0? PO0? POOO* AIll have meaning arid can all be implemented by
the MCS65E4 data structure®

For the last example? field A*E*BB 1s to be accessed™* The
instruction assembles intot

iBAS + 3 ext! 34 F2 01 07 00
I bytes |
R :
operand extension bytes—* field field
control select select
byte byte byte

The operand control byte followed by three extension bytes will
point to the descriptor at logical address 01F234 (assume BAS
register eauals 0)=* After determining that the descriptor is
logical addressing mode the processor uses the next three bytes
(starting at 01F235) to point to the start of the raw data for the
record* Since the descriptor specifies that 1t is a record data
type? the MCS65E4 then fetches the next field select byte from the
instruction (07 in our example) and uses this as a displacement
into the record descriptor to obtain the appropriate field
descriptor™* In our example this 1is located at 01F23F (01F238 +
07)* The field descriptor header indicates record type with short
relocatable offset* The offset? 26 in our example? is added to
123456 giving 12347C* Since this 1is another record? the processor
must get another byte from the instruction to determine the offset
from the base of the record descriptor* |In our example? this byte
is 0 which 1is added to 01F241 giving 01F241 which is the field

FHRAXHAFFFCONFIDENTIAL? MOS TECHNOLOGY?INC **xFHxkkxx Page- 106

I'insl Design Specification for the HCS65E4 Microprocessor

descriptor for A*E*BB e This field descriptor indicates byte data
type with attached (relocathle) addressing mode (iee ¢ Add O to
12347C giving 12347C)e Therefore? the raw data for A *E BB is
located at 12347C* The processor calculates the address of a field
in the record by using the following formulal

(record address + (field descriptor 1 + (field descriptor 2
information) relocatable offset) relocatable offset)

4*6*6*5 Exception Vectors
44646¢5¢1 Introduction

Each of the exception vectors listed in Section 4*4*4 1is stored in
a four - byte Tfield in a manner which is compatible with the
MC365E4 data structure™* The Tfirst byte of the vector contains a
descriptor which primarily specifies that the logical address of
the exception processing software is either "attached™ to the
descriptor or is located in a "remote" data structure* If the
address is attached? the three bytes following the descriptor are
assumed to be the logical address of the software which will
service the exception (exeception handler)* This address will be
added to the contents of the Process Base Register to determine

the corresponding physical address™* This address is then
trsnsfered into the Process Program Counter* The processor then
begins execution of the exception software* In addition to the
simple "attached" form of the exception vector? the 1logical
address car! be located in a data structure which 1is separate from
the four byte exception vector™* In this case? the three bytes

following the descriptor contains the logical address of the data
structure in which the address of the execution software is
stored* In all cases this vector format must conform to the
MCS65E4 data structure described above arid the data field which 1is
referenced by the vector must be a three byte ordinal™* This
ordinal 1is assumed to be the logical address of the exception
handler*

The use of complex data structures within the exeption vector is
particularly useful for interrupts? systems calls? etc* in which a
byte of information is Generated by the exeption to be used as an
index value into the array* A dood example of this 1is the System
Call in which a byte of data 1is passed to the operating system*
In addition to placing this "exeception Qualifier” onto the stack?
the data is retained in an internal working register for use
during the exception vector processing* This allows the use of an
array of ordinals to implement a direct vectored systenm call?

direct vectored interrupts? etc* Each of these options will be
illustrated 1in the examples below* These ™"exception Qualifiers”™
are described in detail in the discussion of the exception

vectors*

4*6*6*5*2 Descriptor Format

The descriptor arid associated data within the exception vector
must conform exactly to the format described above for the MCS65E4
data structure* The TRAP bit 1is used to indicate whether the

*xxkxxkxx*CONFIDENTIAL? MOS TECHNOLOGY ?INC ***** ks Page- 107

Final Design Specification for the MCS65E4 Microprocessor

exception can be serviced within the current process (T = 0)* If
the T bit is a logical 1? the processor will return to the lower
level process to service the exception* Only one basic data type
(ordinal) is valid* |If the data type 1is a single dimension ordinal
array? only a single byte of additional information is available
for use in determining the index value of the ordinal array>
Therefore? the exception vector represents limited sub-set of
the data types which the MCS65E4 supports*

4*6*6*5*3 Example of Attached Address Exception Vector Format

The simplest form of exception vector 1is one in which the logical
address of the software which will service the exception
(exception handler) directly follows the descriptor™ This 1is
illustrated below for an Overflow Trap whose handler is located at
logical address 0034A0* Note that the TRAP bit 1in the descriptor
is set to logic O arid that the MODE field contains 00? specifying

attached data* The contents of the exception vector will be as
follows”

Address Contents Remarks

E8* T?0?0010 ?00 Descriptor

E?> A0 (HEX) Low order byte of exception handler

add ress *

EA™* 34 (HEX) Middle order byte of exception handler
address *

EB* 00 (HEX) High order byte of exception handler
address *

0034A0 Actual exception handler code for overflow condition

* - Page address within LMT page

4+6*6*5*4 Example of Remote Exception Vector

In many processes? particularly within the Kernel and Operating
System processes? it is very likely that the exception vectors
will be located 1in Read-0Only Memory™* In this case? use of the
attached form of the exception vector would not allow the vector
address to be modified during process execution* However? use of
the remote exception vector allows the vector address to be placed
in READ/WRITE memory> This will be illustrated by describing a
Data Access Trap Vector in which the address of the handler is
located in logical addresses 000003 through 000005 within the
process* The exception handler begins at logical address 01C450
within the process* 1In this case? address DS within the Limit Page
contains a descriptor which specifies a remote ordinal data field*
The remaining bytes of the vector contain logical address 000003*
This causes the processor to fetch the address of the exception
handler from logical address 000003 through 00005*

*wxxxxxxxCONFIDENTIAL? MOS TECHNOLOGY 2 INC *% %%k Page- 108

Final Design Specification for the MCS65E4 Microprocessor
Addras< Contents Remarks
D3* T?0,0010: 11 Descriptor \
D9* 03 (HEX) Low order byte of the pointer to the
exception handler™*
DA* 00 (HEX) Middle order byte of the pointer to
the exception handler*
DB* 00 (HEX) High order byte of the pointer to
the exception handler™*
000003*~* 50 (HEX) Low order byte of exception handler
address *
000004** C4 (HEX) Middle order byte of exception
handler address*
000005** 01 (HEX) High order byte of exception
handler address
01 C450 Actual exception handler code for data access trap
* - Page address within the LMT P3ge
** - Logical address within the process

*xkKkxxkxx**CONFEIDENTIAL>

109

MOS TECHNOLOGY >INC* **H*Hxkkxx Page-

Final Design Specification for the HCS65E4 Microprocessor

47 The MCS6u£4 Instruction Set
4*7*1 Introduction

The use of descriptors to control accessing data within the
MCS65E4 has a significant impact on the nature of the instruction

set which 1isexecuted by this processor?* Host importantly? it
allows the use of '"generic* instructions; i* e*? 1instructions
which do not specify those aspects of the operation which are data
dependent™ For example* like most processors? the MCS65E4

instruction set contains at arithmetic ADD instruction* However?
this instruction only specifies that an add operation 1is to be
performed between two data fields™* The exact nature of the add
operation 1is determined by the data contained in the data fields
(BCD add for BCD data? etc)* This technioue for controlling the
details of an instruction execution introduces several important
characteristics of the 1instruction set described below* The first
is that there are many combinations of data type arid instruction
which are not valid* In addition? for those instructions which
reauire two operands? the data type for the two data fields which
are to be manipulated by the instruction must be similar* Finally?
the use of descriptors results in a significant reduction in the
total number of iInstructions 1in the instruction set? while at the
same time the operations which can occur during the execution of
each instruction can be Quite complex because of the broad range

of data types which are supported by the processor™* This 1is
reflected iIn the 1instruction descriptions below* Each of these
paragraphs contains a general description of the instruction? a
listing of the applicable data types? a description of the
execution seauence for each data type? and a listing of the

applicable hexidecimal Op Codes*
4*7*2 Format of the MCS65E4 Op Codes

All MCS65E4 instructions are contained within one byte* Bit 7 of
each Op Code is reserved for use as a TRAP bit to cause an
Instruction Access Trap* The remaining bits are used to specify
one of sixteen instruction modes (bits 0-3) and one of the
instructions within the selected mode* This format can be depicted
as fTollows”"

bit: 7

The instruction set C3n be organized into three major groups* The
first group contains the basic data manipulation instructions
(Add? subtract? etc*)* The second contains all instructions which
control program flow (branches? Jump to subroutine? etc*)* Group 3
contains the advanced arithmetic and logic operations* Each of
these groups is discussed separately below*

Figure 5*3 below summarizes the instruction set format for the

*Hkwxxxx*CGNFIDENTIAL? MOS TECHNOLOGY?INC ** %%k Page- 110

Final Design Specification for the MCS65E4 Microprocessor

Format
i 1?17R 1
1 1
1 111IR 1
1 1
1 1,R i
1 1
1 IR 1
1 1
1-—— - -
1 IFI1f* 1
1 1,1,** i
i - L O
1 I»* i
1 1f**
i 1?17R 1
1 I »IR »S 1

J

1 [1
1 1
e — j1-_
1 (IR)2(1?21)?* 1

1 No Operarid L
I - - —Ji
1 I tR 1
r—— - _1
1 Special 1
- |

Rt Result? It Input?
() t Optional

RIt

Mnemonic

ADD ¥ SUB > HUL» DIV
AND ¥ OR> EQR, MOD

ADD? SUB, MULF DIV
AND £ ORf EOR, MOD

ABST NEGFf INC, DEC
SORT ¥ MOV ¥ LEADZf LEAD1

ABS , NEG, INC? DEC
SORT ¥ CLRT SET

BEGFf BNE, BGT, BGE

BEQZ » BNEZf BPOSt BMI

CEQ, CNE, CGT, CGE

FIND j DETCFf NDETFf DETR

SHM

CALL £ JMP
TASK ¥ 10ST RTE

BRf JSR, BDECFf BCOND

RTS > RESET, SCf SCM
F*TRFf DTYPf CNVT

EVAL

Input and Result? St String

FHRAKAXXFXCONFIDENTIAL? MOS TECHNOLOGY ?1INCe*xxsoxxstsk

[N

[EY

[

[

Page-

111

Final Design Specification for the MCS65E4 Hicroprocessor

4*7*3 Basic Arithmetic *nd Logic Operations
4*7,3*1 Introduction

The arithmetic arid logic instructions can be organized into a set
of operations which must be performed on two separate d3ta Tfields
arid a set of operations which involve only a single data field*
The first set of instructions will contain either two or three
operands while one or two operands must be provided 1in the second
set*

The following is a summary of the mnemonics? Op Codes and format
for the basic arithmetic and logic instructions™

Group 1 Instructions (utilizing two data fields)

Two Opera rid Three Operand
Instruction Mnemonic Op Code Op code
Add ADD
Subtract SUB
Multiply MUL
Divide div
Modulus MOD
Logic And AND
Logic Or OR
Exclusive Or EOR
Format

Three operarmf Qp-Code O0OP1?0P2?0P3

Operand 1 (OP1) - Specifies the

Operand 2 (0OP2) - Specifies the

Operand 3 (0OP3) - Specifies the
Two operand! Qp-Code orPl*oP2

Operand 1 (OP1) - Specifies the

Operand 2 (or2) - Specifies both

field and the

Instructions ((utilizing one data field)

Single
Ope rand Two Operand
Instruction Mnemonic Op Code Op code
Absolute Value ABS
Negate NEG
Increment INC
Decrement DEC
square Root SORT
Move MOV
Convert CNVT
Clear CLR

*xkkkxxxxCONFIDENTIAL? MQS TECHNOLOGY? INC™ %%k Page- 112

Final Design Specification for the MCS65E4 Microprocessor

Format
Two operand: Qp-Code O0OP1?0P2
Operand 1 (OP1)~ Specifies the only source field
Operand 2 <0P2)- Specifies the result field*
One operand: Qp-Code OP1

Operand 1 (OP1)- Specifies both the source fTield
and the results field*

xxskkxxxxCONFIDENTIAL> MOS TECHNOLOGY? INC* %%k Page- 11

Final Design Specification for the MCS65E4 Microprocessor

Rk o o o o o

* ADD *
B

4 *7 *3*2 Add

Formati ADD OP1?0P27?QP3

ADD OP1iOP2

Description:

Adds the contents of the data field specified by operarid 2
to the contents of the dat3 field specified by operand 1 and
places the results in the data field specified by either
operand 2 (two operand addressing) or operarid 3 (three
operand addressing)™

Valid Data Types:

Op

Binary (Byte? Integer arid String)

Performs a binary add operation treating the byte and
string data as a positive integer™

Real
Q*

Performs a floating point add operation* Input data is
assumed to be normalized* After the add operation is
complete? the results are normalized before being stored
in the results field* Real operands cannot be mixed with
Binary or BCD data fields™*

BCD

Performs a signed? packed BCD addoperation* All operands
must be the same type andlength*

Immediate Operands

Immediate operands can be specified in combination with
any of the other data types™* The immediate operand

assumes the data type of the second inputoperand* IFf
both input operands are Immediate data? the data type is
assumed to be integer*

Codes:

Two operand addressing-
Three operand addressing-

skxxkxxxXCONFIDENTIAL? MOS TECHNOLOGY? INC* ** sk Page- 114

Final Design Specification for the MCS65E4 Microprocessor

EE R

* SUB *

ECE VAN S o b S S

4*7 *3*3 Subtract

Format: SUB QF’I *0P2 yQP3

SUB OP1 ?0P2

Description:

CASE1 : Subtracts the contents of the data field specified
by operand 1 from the contents of the data field specified
by operand 2 and places the results in the data field
specified by operand 3 (three operand addressing)* Example t
SUB aib jc => c = b - a

CASE2 =: Subtracts the contents of the data field specified
by operand 1 from the contents of the data field specified
by operand 2 and places the results in the data field
specified by operand 2 (two operand addressing)* Example o

SUB aib => b =b - a
Valid Data Types: Same as Add Instruction*
Op Codes:

Two operand addressing-
Three operand addressing-

xxxxxkHkxxCONFIDENTIALY MOS TECHNOLOGY j INC**** %%k Page- 115

Final Design Specification for the MCS65E4 Microprocessor

* MUL *

EGE R S S o S

4*7*3*4 Multiply

Format; MUL QPi>QP2>0P3

MUL OPITfOP2

Description:

CASE1 : Multiplies the contents of the data field specified
by operarid 1 times the contents of the data Tfield specified
by operand 2 and places the results in the data field

specified by operand 3 (three operand addressing)™*

CASE2 : Multiplies the contents of the data field specified
by operand 1 times the contents of the data field specified
by operand 2 arid places the results in the data field

specified by operand 1 (two operand addressing)™*

Valid Data Types:

yes no
Integer I x 1 i
Bed I x 1 1
Real 1 x 1 1
String I x 1 |
Notes:

If the data Tfield specified by OP1 and OP2 are string type?
only the first eigth bytes will be used for multiplication*
If the result field is string data type; the multiplication
of the inputs (either string or integer) will be stored into
the Ffirst sixteen bytes of the resultant string (assuming
the result fTield 1is greater than or eaual to 16 bytes)*

Restrictions:

The Ulength and type of operands 1 and 2 must be eaual*

Op Codes:

Two operand addressing-
Three operand addressing-

*wxxxHxxx*CONFIDENTIAL? MOS TECHNOLOGY , INC %% %% xxs%x Page- 116

Final Design Specification for the MCS65E4 Microprocessor

* DIV *

RS o S e S S o

4*7*3*5 Divide

Format: DIV QP1>0P2>0P2
DIV OP1 >GP2

Descriptiont

CASE1 1 Divide the contents of the data field specified by
operand 2 by the contents of the data fTield specified by
operand 1 and places the results into the data field
specified by operand 3 (three operand addressing)™*

CASE2 1 Divides the contents of the data field specified by
operarid 2 into the contents of the data field specified by
operand 1 arid places the results into the data field
specified by operarid 2 (two operarid addressing)™*

Valid Data Types™*

yes no
Integer I x1 |
Bed I x1i 1
Real I x1 |
String I x1 |

Restrictions”
The 1length and type of operands 1 and 2 must be eaual*
Op Codes:

Two operand addressing-
Three operarid addressing-

xKkkHkHkHkxxCONFIDENTIAL> MOS TECHNOLOGY P I NC % s sk sk x Page- 117

Final Design Specification for the MC365E4 Microprocessor

48 @N zrqv W v

* AND *

R S S e S S o

4 47 3 66 And

Format:

Descri

AND OP1?0P2?0P3
AND OP1?0P2
ption:
CASE1 : Performs a logic ANli operation between each bit of

the data field specified by operand 1 and the corresponding
bit of the data field specified by operand 2 arid places the
results in the data fTield specified by operand 3 (three
operarid addressing)™ The following diagram depicts the AND

operation:

0P2
(0] 1
0 0 0
op: => O0P1
1 0 1
CASE2 : Performs a logic AND operation between each bit of
the data field specified by operand 1 and the corresponding
bit of the data field specified by operand 2 and places the
results in the data field specified by operarid 2 (two
operand addressing)* The following diagram depicts the AND
operation:
OP1 = => O0OP1
Valid Data Types:
yes no
Integer
Bed
Real4
Rea 18
Rea 110

*dkxxkxxkxCONFIDENTIAL? MOS TECHNOLOGY? INCH > Page- 113

Final Design Specification for the MCS65E4 Microprocessor

String I W (i
1 |— .

Restrictions”
The length and type of operands 1 and 2 must be eoual™*
Op Codes:

Two operand addressing-
Three operand addressing-

*xkxkxkxkCONFIDENTIAL> MOS TECHNOLOGY j INC %ok Page-

h

in31 Design Specification for the MCS65E4 Microprocessor

RS CE E S o

4 67 ¢3 ¢7 Or

Format:

Descri

* m *
Moo WV ¥
OR QP1>0P2*QP3
OR OP 1fOP2
ption;
CASE! : Performs a logic OR operation between each bit of

the data field specified by operand 1 arid the corresponding
bit of the data field specified by operand 2 and places the
results in the data Tfield specified by operand 3 (three
operand addressing)?* The following diagram depicts the AND

operation:

oP2
0] 1
0 0
0P3 = => OP1
1 1
CASE2 : Performs a logic OR operation between each bit of
the data field specified by operand 1 and the cor responding
bit of the data field specified by operarid 2 and places the
results 1in the data field specified by operand 2 (two
operand addressing)™* The following diagram depicts the OR
operation:
0P2
o <
] =]
R
0 o |
o= => 0P1
1 1 |
Valid Data Types:
yes no
Integer
Bed
Re al4d
Reals
ReallO

FAXFXRXAXFXCONFIDENTIAL> MOS TECHNOLOGY >INC@F*Hxxoxsx Page- 120

Final Design Specification for the MCS65£4 Microprocessor

J—J1—-
String I x 1
Restrictions”
The 1length arid type of operarids 1 3nd 2 must be eaual ¢
Op Codes:

Two operand addressing-
Three operand addressing-

FrRAXXAXXCONFIDENTIAL? MOS TECHNOLOGY rINCH > HHxxkkxsk Page-

Final Design Specification for the MCS65E4 Microprocessor

EOR *

4.7 .3.8 Exclusive Or

Format J EOR OP1»0P2»0P3

EOR OP1»0P2

Descriptiond

oP

CASE1 J Performs a logic EOR operation between each bit of
the data field specified by operand 1 and the corresponding
bit of the data Tfield specified by operand 2 3nd places the
results in the d3ta field specified by operand 3 (three
operand addressing). The following diagram depicts the EOR
operation!

OP 2
0 1
0 0 1
=> O0P1
1 1 0
CASE2 1 Performs a logic EOR operation between each bit of

the data field specified by operand 1 and the corresponding
bit of the data field specified by operarid 2 and places the
results in the data field specified by operand 2 (two
operand addressing). The following diagram depicts the EOR
operationd

OF*2
0 1
0 0 1
=> O0P1
1 1 0

Valid D313 Types;

yes no
Integer I x 1 |
Bed I x 1 |
Res 14 I x 1 1
Rea 18 I x 1 1

xxxxxxx*x*CONFIDENTIAL> MOS TECHNOLOGY>INC . ****xxxxx* Page- 122

Finsi Design Specification for the MCS65E4 Microprocessor

Reall0 (I IAVA

i
String i x 1 |

Restrictions”
The 1length arid type of operarids 1 arid 2 must be eauale
Op Codes:

Two operand addressing-
Three operand addressing-

*xskkkxxxCONFIDENTIAL> MOS TECHNOLOGY 7?1 NC %%k Page-

Final Design Specification for the MCS65E4 Microprocessor

R i S o S Sk S

* MOD *
E R o S o S
4*7*3*9 Modulus (Remainder Function)

Format: MOD OP1>QP2>0P3
MOD OF*1f0OP2

Description:

CASE1 : Divide the contents of the data fTield specified by
operand 2 by the contents of the data field specified by
operand 1 and places the remainder into the data field

specified by operand 3 (three operand addressing)™

CASE2 : Divides the contents of the data field specified by
operarid 2 by the con tentsof the data Tfieldspecified by
operand 1 arid places the remainder into the data field

specified by operand 2 (two operand addressing)™*

Valid Data Types:

yes no
Integer I x | |
Bed I x i |
Real Ii x !
String 1 x1 |

Restrictions:

The Ilength and type of operands 1 and 2 must be eoual*
Valid Data Types:
Op Codes:

Two operand addressing-
Three operand addressing-

*xxxxxx*CONFIDENTIAL? MOS TECHNOLOGY >INC*** %%k sk Page- 124

Final Design Specification for the MCS65E4 Microprocessor

EE

* ABS *
R R R b
4*7*3*10 Absolute Value
Format: ABS OP1?0P2
ABS OP1
Description:
CASE1 : Changes the dal3 field specified by operand 1 into a

positive number storing the results into the data field
specified by operand 2 (two operand addressing)*

CASE2 : Changes the the dats field specified by operand 1
into a positive number storing the results into the same
dal3 field (single operand sddtessing)™*

Valid Dots Types:

yes no

Integer I x 1 |

Bed I x 1 |

Resl I x 1 1

3lring 1 I x1

Notes: For integer d3t3 type? chsnging 3 neg3tive number into 3
positive number will involve more than changing the sign bit
since 1integer dat3 is stored in 27s complement form*

Op Codes:

One operand addressing-
Two operand addressing-

*xxkxxkxk*kx CONFIDENTIAL? MOS TECHNOLOGY?INC ****skskkskox Psge- 125

Final Design Specification for the MCS65E4 Microprocessor

4474311 Negate Value

Format; NEG OP1?0P2
NEG OP1

Description i

EGEE S S S S S o

* NEG

*

& & ik& X WE

CASE! 1 Inverts the sign of the data field specified
operand 1 storing the results into the data fTield specified

by operand 2 (two operand addressing)™*

CASE2 t Inverts the sign of the data field specified

operand 1 storing the results into the same

(single operand addtessing)™*

Valid Data Types!

yes no
Integer I x 1 1
Bed 1 x 1 1
Real I x 1 i
String I x 1

Notes t

data

by

by

field

For integer type? the negation will be more than Just change

the sign (i*e* twos compliment arithmetic)*

Op Codesi

One operand addressing-
Two operand addressing-

FHRHXAXXXXCONFIDENTIAL? MOS TECHNOLOGY?INC *Hxxdokskokx

Page-

126

Final Design Specification for the MCS65E4 Microprocessor

R o e S S o

* INC *
00 ™FCU Fh¥

4.7.3.12 1Increment

Format: |INC OP1»0P2
INC OP 1

Description™*

CASE1 ! Adds one to the date specified by operand 1? storing

the results back 1into the data field specified by operand 2
(two operand addressing).

CASE2 t Adds one to the data specified by the operand
storing the results back into the same data field (single
operand addressing).

Valid D313 Types!

yes no
Integer I x1 |
Bed 1 <1 1
Re31 | | 1
String | I x 1

Op Codes!

One oper3nd addressing-
Two operand addressing-

*xExHH##H#**CONFIDENTIAL> HOS TECHNOLOGY*INC . ***x**gxg* Page- 127

Final Design Specification for the MCS65E4 Microprocessor

ECE I S S S S S

* DEC *

R S S S S o

4743413 Decrement

Format: DEC OP1>0P2
DEC OP1

Description:

CASE1 : Subtracts orie from the data specified by operand 1?
storing the results into the data Tfield specified by operarid
2 (two operand addressing)e

CASE2 : Subtracts one from the data specified by the

operand? storing the results back into the same d3ta field
(single operarid addressing) ¢

Valid Data Types:

yes no
Integer 1x 1
Bed ix S
Real | I x
String | I x

Op Codes:

One operand addressing-
Two operand addressing-

xaskxxxxCONFIDENTIAL? MOS TECHNOLOGY > NC#*%*xsxsxx Page- 128

Final

Design Specification for the

4*7*3*14 Square Root

Format: SQRT QP1*0P2

SQRT OP1

Description:

CASE1 : Determines the
operand 1r storing the
by operand 2 (two operand addressing)*

CASE2 =: Determines the
storing the
(single operand addressing)™*

the operand?

Valid Data Types;

yes no
Integer I x1
Bed I x 1
Real I x1
String | I x1

Op Codes:

One operand
Two operand

*xxxA*XX*X*CONFIDENTIAL™

addressing-
addressing-

square
results

square
into the same

MOS TECHNOLOGY >1NC e***Axaxsksx

HCS65E4 Microprocessor

* SORT

* *

EE R S S S S o

root of the data specified by
into the data field specified

root of the data specified by

data TfTield

Page-

129

Final Design Specification for the MCS65E4 Microprocessor

" f " \Lr A
¥t a4y

v

MOV
4 4743415 Move
Format: MOV OP1f0OP2
Description:
Transfers the contents of the data field specified

operand linto the

Valid Data Types:

yes no
Integer I x i i
Bed I x 1 1
Real I x1 1
String 1x1 1

Restrictions:

data fieldspecified byoperarid 2 »

The Ilength and type of operands 1oand 2 must be equale

Op Code-

FHRIKFXEXXCONFIDENTIAL>

MOS TECHNOLOGY ?INCe***Hxxkix Page-

by

130

Final Design Specification for the MCS65E4 Microprocessor

R S S e o o e i

* LEADZ *

2 *<Ivk

44743 16 Leadz
Format: LEADZ GP1?GP2

Description;

Searches the data field referericed by operarid 1 for the
first occuranee of a zero bit* The results are returned 1in

the data field specified by operand 2*

Valid Data Types for QPi:

yes no
Integer4d
Integers
Bed
Real
String ixl

Restrictions:

The data field referenced by OP2 must be an integer™*

For ten byte real only the mantissa will be searched*
Example:

If the first zero is in the fifth position of the fourth

byte then a value of 30 < (4-1)*8 + 4)) will be returned*

If the first zero bit is the first position then a value of
O will be returned*

Op Code-

xaxkxxkxCONFIDENTIAL? MOS TECHNOLOGY? INCH** %%k Page- 131

Final Design Specification for the MCS65E4 Microprocessor

EGE S S S S S S S

* LEAD1 *
E R S S S
4*7*3*17 Leadl
Format! LEAD1 OP1>QP2

Description:

Searches the data field referenced by operarid 1 for the
first occuranee of a one bit* The results are returned in
the data field specified by operand 2*

Valid Data Types Tfor O0OP1:

yes no
Integer4 {x 1 |
Integers 1 x 1 |
Bed I x 1 i
Real I x1 1
String I x1 1

Restrictions:
The data field referenced by Operand 2 must be an integer™

For ten byte real only the mantissa will be searched*

Example:
If the first one is in the second position of the third byte then
a value of 17 < 3-1H)*8 + 1)) will be returned*
Note: |If the first one bit is the Tfirst position then a value of 0
will be returned*

Op Code-

Final Design Specification for the MCS65E4 Microprocessor

E R S S S S

* CLR *
*XxkXkkXkXkhk*x
4 73418 Clear
Format: CLR QF“1

Description:

Loads an arithmetic zero into the data field specified by
the single operand contained in the instruction*

Valid Data Types:

yes no
Integer ixl |
Bed I x1 |
Real I x1 1
String I x1 |

Op Code-

*xdkxkxxkxxCONFIDENTIAL? MOS TECHNOLOGY?INC *¥ s Page- 133

Final

4*7*3*19 Set

Format™* SET o~1

Description:

Set on all
specified by
instruction *

Valid Data Types:

yes no
Integer I x |
Bed I x |
Real ix1
String I X |
Op Code-

*xkKxxkxx*kx**CONFIDENTIAL>

Design Specification for

bits
the

(i*e makes bits logic
single opera rid

1) in the
contained

MOS TECHNOLOGY >[INC™* > xskdaskok

the MCS65E4 Microprocessor

EGE R S S S o o o

* SET =

oA

data field
in the

Page- 134

Final

Design Specification for the MCS65E4 Microprocessor

7*5 Program Control Instructions

7*5+1 Introduction

The set of program control instructions described in this
section consists of those operations which directly affect
program flow during process execution* This includes
conditional branching? unconditional branch and Jump
instructions? subroutine call and return? system call and
return? and miscellaneous process control intructions* These
instructions will be organized into four groups 3S follows!

1*
o%*
3*
4*

Compare and branch operations*

Test and branch operations*

Single operand control functions*
Miscellaneous (no operand) control functions*

xxxxkxxCONFIDENTIAL? MOS TECHNOLOGY? INC *** sk Page- 135

iFinal Design SpeeifiC3tion for '"the MCS65E4 Microprocessor

QU e - i 9)
Wt A 'p

* B EQ *
FNEWTETET

4*7*5*2 Csmpare 3nd Br3nch If Equ31l

Forinst: BEQ GP1?GP2>*
BEQ OP1fGP2>**

Description:

CouiP3re the d3to field referericed by OP1l with the d3t3 field
referenced by OF2 and br3nch conditionslly ($: one byte
offset? two byte offset) if they are eau3le

Notes:

Loc3tiori F is determined by subtrsctirig the progrsiTi counter
from the brsnch destin3lione This offset must be grester
th3n or eau3l to -123 3rid less th3n or eausl to -1*127 bytes
from the start of the next 1instructions opcode*

Loc3tiori is determined by subtrscting the progr3m counter
from the brsnch destinstion™* This offset must be grester
than or eaual to -65536 3nd less th3n or eau3l to +65535

bytes from the stsrt of the next instructions opcode*
Restrictions:

The d313 fields referenced by OF1 3nd OP2 must be the seme
type 3nd length*

Op Codes:

xskkxxkkxxCONFIDENTIAL> MOS TECHNOLOGY rINC****xxsskso P3ge- 136

Final Design Specification for the MCS65E4 Microprocessor

E R S S o o o o

* BNE *

RS S S o o o

4 *7*5*3 Comapre and Branch If Not Eaual

Format: BNE OP1>0P2**
BNE OP1>QP2***

Descriptione

Compare the data field referenced by OPl1 with the data field
referenced by O0P2 and branch conditionally (€3 one byte
offset? two byte offset) if they are not eoual*

Notes:

Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -128 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*
Restrictions:

The data fields referenced by OP1 and QP2 must be the same
type arid length*

Op Codes!

*xxxxHkx*XCONFIDENTIAL> MOS TECHNOLOGY >INC******xxxx Page- 137

Final Design Specification for the MCS65E4 Microprocessor

K*khkkhkkhkkhkkhkkk*k
* BGT *
E R S o e
4*7*5*4 Compare and Branch |If Greater Than
Format: BGT OF“1?0P27?*
BGT OP1?GP2?*#
Descriptione
Branch conditionally (t one byte offset? location two

byte offset) if the data field referenced by OF"1 is greater

than the

Notes:

Location

from the
than or
from the
Location
from the
than or

data field referenced by QP2e

is determined by subtracting the program counter

branch destination* This offset must be greater
eaual to -128 arid less than or eaual to +127 bytes
start of the next instructions opcode*

¢¢ is determined by subtracting the program counter
branch destination* This offset must be greater
eaual to -65536 3nd less than or eaual to +65535

bytes from the start of the next instructions opcode*

Restrictions;

The data
type and
Op Codes:

fields referenced by OP1 and QP2 must be the same
length*

xxkAHxk*XXCONFIDENTIAL? MOS TECHNOLOGY 2 I NC* %%k sk ke Page- 138

Final Design Specification for the MC365E4 Microprocessor

E SRR S S S S

* BGE *
4*7*5*5 Compare and Branch |If Greater Than
Format; BGE OP1?0F27?*
BGE OP1"?QP2?«
Description:
Branch conditionally # one byte offset? location #* two

Notes:

byte offset) if the data field referenced by OFllisgreater
than or eoual to the data Tfield referenced by O0P2e

Location
from the
than or
from the

Location
from the
than or

t is determined by subtracting the program counter

branch destination* This offset must be greater
eaual to -123 arid less than or eoual to+127 bytes
start of the next 1instructions opcode*

#4 1s determined by subtracting the program counter
branch destination* This offset must be greater

eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*

Restrictions:

The data
type and
Op Codes:

fields referenced by OF'1 and OF*2 must be the same
length*

FrFIXAXXXXCONFIDENTIAL? MOS TECHNOLOGY? INC *HHxxdkrskokx Page- 139

Final Design Specification for the MCS65E4 Microprocessor

R S S i o o o

* BEQZ *

EE R L

447 *56 Branch 1if Eaual
Format: BEQZ DPI?#
BEQZ QPIf**

Description:
Branch conditional! # one byte offset; location ** two
byte offset) if data field referenced by QP1 is eaual to
zero*

Notes:
Location ¥ is determined by subtracting the program counter
from the branch destination* This offset must be (greater
than or eaual to -128? and less than or eaual to +127 bytes
from the start of the next instructions opcode*
Location £# 1is determined by subtracting the program counter
from the branch destination* This offset must be (greater
than or eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*

Op Codes:

HxxkxxkFXXCONFIDENTIAL MOS TECHNOLOGY? INC* **x*skkxxx Page- 140

Final

4e745¢7 Branch

BNEZ
BNEZ

Format: QF’l;*

Description;

Branch conditionally
if data fTield

byte offset)
zero *

Notes:

Location

Design Specification for the

OP1,**

MCS65E4 Microprocessor

* BNEZ

*

ECECE S S S S o o o

If Not Eaual

location
is not eaual

(t one byte offset?
referenced by OF1

*

+ two

to

is determined by subtracting the program counter

from the branch destination* This offset must be Greater
than or eaual to -128 and less than or eaual to +127 bytes
from the start of the next 1instructions opcode*
Location ** is determined by subtracting the program counter
from the branch destination* This offset must be Greater
than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*

Op Codes;

FH KA KXAXXCONFIDENTIAL> MOS TECHNOLOGY JINC *****xkxkx Fa3e- 141

Final Design Specification for the MCS65E4 Microprocessor

* BROS *

EE kS S S S S o

4*7 *53 Branch |If Positive

Format: BPOS OP1;*
BPOS QP1>**

Description:
Compare the data field referenced by OP1 arid branch

conditionally <% one byte offset? two byte offset) if
the most significant bit is set to logic O0O*

Notes ;
Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -123 and less than or eaual to +127 bytes
from the start of the next 1iInstructions opcode*
Location is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 arid less than or eaual to +65535
bytes from the start of the next instructions opcode*
For bed? integer and real? the sign bit which 1is always in
the most significant bit? will be tested for logic 0* If the
value 1is positive a branch will occur* The BMI instruction
(see Section 4*7*5*7) can be used for branch on negative
numbers *

Op Codes:

*xxkxxkxx*CONFIDENTIAL? MOS TECHNOLOGY 2 INC ******xsksx Page- 142

Final Design Specification for the MCS65E4 Microprocessor

EGE R S S S S o

* BM 1 *

EE o S S S S S

4*7*5*9 Branch |If Minus

Format; BMI OP17?#
BM I OP if**

Description;
Compare the data field referenced by o1 arid branch

conditionally (* one byte offset? location ** two byte
offset) if the most significant bit is set to lo2ic 1*

Notes :
Location * is determined by subtracting the program counter
from the branch destination* This offset must be Greater
than or eaual to -128 and less than or eaual to 4*127 bytes
from the start of the next instructions opcode*
Location ** is determined by subtracting the program counter
from the branch destination* This offset must be Greater
than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*
For bed? integer arid real? the si2n bit which is always in
the most significant bit? will be tested for 1lo02ic 1* If the
value 1is negative a branch will occur*

Op Codes J

FrFIXAXFXXCONFIDENTIAL ? MOS TECHNOLOGY ?INC ***xFkrskhx Pa3e- 143

Final Design Specification for the MCS65E4 Microprocessor

E R S S o o

*xkhkkkikkikXx
4 ¢7 5610 Branch Relative Unconditionally
Formall BR £
B R **x
Description-
Branch (t orie byte offset? location *t two byte offset)

unconditionally*

Notes t

Location # is determined by subtracting the prodraui counter
from the branch destination* This offset must be greater
than or eaual to -123 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location t£ is determined by subtracting the program counter
from thebrarich destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*

Locations $ and ** can not specify a variable which could be
used for indirect addressing* Instead? the generated address
is a positive or negative offset from the opcode of the next
instruction* Indirect addressing can be accomplished with
the JMP instruction (see Section 4*7*5*11)*

xxxxxxxxCONFIDENTIAL 2 MOS TECHNOLOGY ? I NCH %%k * Page- 144

Final Design Specification for the MCS65E4 Microprocessor

R S o S Sk S

* JMp o+

4*7*5*11 Jump Logical Address Unconditionally
Formatt JMP OoF 1

Description;

Jump unconditionally to the address contained in the data
field referenced by OP1le

Notes :
IT the destination location is fixed (i»e» not calculated at
run time but rather assemble time) the data field referenced
by O0P1 should be an immediate value* However? if the
destination address is not known at assemble time then OP1
should be a variable* In fact? OP1 can define an array
structure which could be used to establish an array of
addresses™* Thus? a "case®" type of instruction can be formed
(see example below)*

Example

JMP TABLECI3 OP1 = References an array structure*

LABLA

LABLB

LABLC

TABLE =

Descriptor Header
LABLA

LABLB

LABLC

The processor does the following to obtain the JMP address:
Get TABLE®"S operand control byte which indicates primary

*xxkxxx*XXCONFIDENTIAL? MOS TECHNOLOGY?2INCH******xskkx Page- 145

Final Design Specification for the MCS65E4 Microprocessor

based descriptor accessing and a two byte offset™* The
contents of the primary register plus the two byte offset
point to the descriptor header*

Determine that TABLE 1is 3 simple array of attached ordinals
(TABLE®"S descriptor header indicates this)™*

Fetch subsript operand (variable 1) for the index 1into the
array*

Determine the address of TABLECI1 (the address of the raw
data is TABLE + 3*1 (see SECTION) for traversing
th rough an array) *

The data field (three byte ordinal) referenced by TABLECIU
is the logical address for the program counter™

The program continues with the appropiate program counter™*
In the above example if 1 eauals 0 then the program will

Jump to LABLA* If 1 eauals 1 then the program will Jump to
LABLB and if I eauals 2 then the program will Jump to LABLC*

FrFIKAXFXXCONFIDENTIAL> MOS TECHNOLOGY? INC *Hxxdkrskrx Page- 146

Final Design Specification for the MCS65E4 Microprocessor

EGE R R

* BSR *

EE G S S S S

44765412 Branch to Subroutine

Format: BSR *
BSR *x

Dascription!

Branch to subroutine at location $ (one byte offset) or
location ** (two byte offset) unconditionally™*

Notes:

Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -128 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*

Locations t and ** can not specify a variable which could be
used for indirect addressing* Instead? the generated address
is a positive or negative offset from the opcode of the next
instruction* Indirect addressing can be accomplished with
the JSR instruction (see Section 4*7*5*13)*

The return address from the subroutine is saved onto the
stack as described in Section * Exiting from the

subroutine 1is accomplished by executing the return from
subroutine (RTS) instruction (see Section 4*7*5*18)*

FHRFIXAXXXXCOQNFIDENTIAL> MQS TECHNOLOGY ?INC**H**Fxxkhx Page- 147

Final Design Specification for the MCS65E4 Microprocessor

*

JSR

*

EGE R S S S o

4,7.5.13 Jump To Subroutine
Format; JSR DPI

Description t

Branch to subroutine at the address contained in the data

field referenced by OPl.

Notes J

IT the destination location 1is TfTixed (i.e. not calculated

st

run time but rather assemble time) the data field referenced

by O0OP1 should be an immediate value. However) if the
destination address is not known at assemble time then OF"l
should be a variable. In fact* QP1 can define an array
structure which could be used to establish an array of
addresses (see example below).
The return address from the subroutine is saved onto the
stack as described in Section . Exiting from the
subroutine 1i1s accomplished by executing the return from
subroutine (RTS) instruction (see Section 4.7.5.18).

Examp le

JSR TABLECIII OP1 = References an array structure,

LABLA

LABLB

LABLC

TABLE =

Descriptor Header
LABLA
LABLB
i LABLC 1
FHRFAXFXAXCONFIBENTIAL> MOS TECHNOLOGY>INC . **x**Hxxkhx P3ge- 148

Final Design Specification Tfor the MCS65E4 Microprocessor

The processor does the following to ohtairi the subroutine address:

Get TABLE*®S operand control byte which indicates primary
based descriptor accessing and a two byte offset™* The
contents of the primary register plus the two byte offset
point to the descriptor header™*

Determine that TABLE is an array of attached ordinals
(TABLE®"S descriptor header indicates this)™*

Fetch subsript operand (variable D) for the index into the
array*

Determine the address of TABLECIU (the address of the raw
data 1is TABLE + 3*1 (see SECTION) for traversing
through an array)>*

The data field (three byte ordinal) referenced by TABLECI3
is the logical address for the program counter™*

The program continues with the appropiate program counter™

In the above example if 1 eauals 0 then the program will
Jump to LABLA* If | eauals 1 then the program will Jump to
LABLB and if 1 eauals 2 then the program will Jump to LABLC*

FHRAXKFXEXCONFIDENTIAL> MOS TECHNOLOGY ; INC Aok Page- 147

Final Design Specification for the MCS65E4 Microprocessor

* BDEC *

B S o o S o o

4 ¢7 ¢5*14 Decrement arid Branch

Format 1 BDEC OP17?x

Descri

Notes™

BDEC OPIf*#
ptiont
Decrement the data field referenced by GP1 and branch

conditionally (t one byte offset? location £# two byte
offset) 1if it is not eaual to O*

Location # is determined by subtracting the program counter

from the branch destination* This offset must be greater
than or eaual to -128 and less than or eaual to +127 bytes
from the start ofthe next 1instructions opcode*

Location isdetermined by subtractingthe program counter
from the branch destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*

This instruction is very useful in a loop situation* GPI
first contains a positive integer which serves as a counter™*
The MCS65E4 will execute the 1loop until this counter reaches
zero and will then proceed to the next instruction*

Op CodesJ

Final Design Specification for the MC365E4 Microprocessor

R o e o o o o S S

* BCQND *

Rk o S S S o

4*7*5*15 Brarich On Coriditiori
Format: BCOND aP1?0P2?GP3

Description:

Add the data field referenced by OP1 to the data field
referenced by OP2 storing the results back into the field
referenced by OF <2* The result iscompared to the field
referenced by OP3e The processor will then conditionally
branch to location * (one byte offset) or location ** (two
byte offset)*

Notes:

The BCOND instruction is similar to the FORTRAN do Uloop* The
field referenced by OP1 1is the "stepping value*? the field
referenced by OF*3 is the limit value? arid the field
referenced by OF2 is the current value within the loop*

The “stepping value- can either be positive or negative* |If
it is positive the current value 1is incremented until it is
greater than or eaual to the limit value* |If the “stepping

value* 1is negative the current value 1is decremented until it
is less than or eaual to the limit value*

Relative Value t is determined by subtracting the program
counter from the branch destination* This offset must be
greater than or eaual to -123 3nd less than or eaual to +127
bytes from the start of the next 1instructions opcode*

Relative Value $* is determined by subtracting the program
counter from the branch destination* This offset must be
greater thanor eaual to-65536 and less than or eaual to
+65535 bytes fromthe start of the next instructionsopcode*

Locations * and ** can not specify a variable which could be
used for indirect addressing* Instead? the generated address
is a positive or negative offset from the opcode of the next
instruction*

FAXFKXAXXCONFIDENTIAL? MGS TECHNOLOGY?INCH H*xHxxssxsxx Page- 151

Final Design Specification for the MCS65E4 Microprocessor

o e ke K kK
44745416 System Call

Format: SC

Description:

Causes the processor to execute a tr3P through the exception
vector Jlocated at the address ~on the limit page*

This operation is described in more detail in Section

Restrictions X

Must be serviced within operating system process U = 0)*

FHRHXAXAXXCONFIDENTIAL? MOS TECHNOLOGY? INCe*HHxxkskax Page- 152

Final Design Specification for the MCS65E4 Microprocessor

R i o o o o

* 3CM *

E R o S S S
4*7*5*17 System Call Message

Format! SCM *

Description t

Causes the processor to execute a trap through the exception

vector located at address --—————- within the limit page* At
the same time? the 8 bit message &> which follows the
operand 1is passed to the operating system* This operation Iis
described in more detail in Section *

Restrictions;

Must be serviced within operating system process*

FHRFXAXAXXCONFIDENTIAL? MOS TECHNOLOGY >INC**H*FHxkkx Page- 153

Final Design Specification for the MCS65E4 Microprocessor

* AKX AKXN KKK

* RTS *

ECE S S S S e

4¢7 518 Return From Subroutine
Format: RTS
Description:

Return from subroutine*

Notes:
The JSR orBSR was used to C3l11 thesubroutine arid
subsequently thereturn address was saved on the process
stack™* The RTS instruction is usedto get back to the
caller™*

Final

Design Specification for the MCS65E4 Microprocessor

sit
* RTE *

EE R S

4*7*5*19 Retrurn From Exception

Format: RTE DP1

Description:

Return to

the middle of instruction execution* The data
field referenced by OP1 contains all the necessary return
information*
Notes:

This instruction should only be executed when returning to
an 1instruction within the same process* The TASK or 10S
instruction should be used when returning to 3n

within another process*

instruction

*xxkxxkxCONFIDENTIAL? tf0S TECHNOLOGY > NC %% %%

Page- 155

the MCS65E4 Microprocessor

Final Design Specification for

\Lf sir \Lr *in *If
~ %

* 10S *

E GRS S o o o

4*7*5*20 Initiate Operating Systen
Format: 10S OP1

Description:

Initiates a higher - level operating system process™* The

user/supervisor flag remains logic 0* The kernal flag 1is set
to a logic o* The operation 1is described 1in detail in

Section .

Notes:
The data field referenced by OP1 specifies the logical

address of the new process*

Restrictions:

Must be serviced within an Operating System or Kernel

process™*

xkkxkkxxECONFIDENTIAL> MOS TECHNOLOGY 2 INC* ** sk Page- 156

Final Design Specification for the MCS65E4 Microprocessor

EGE S S S S S S S

* TASK =
Wtk ££%4%

4 ¢7 5621 TASK
Format: TASK OoP1

Description;

Initiates a user process* Both the user/supervisor flag and
the kernsl flag 3re set to 0O¢ This operation 1iIs described in

detail in Section .
Notes ;

The datafield referenced by OPlspecifies the logical

address of the processparameter list (PPL) for the new

process*

Restrictions;

Must be serviced within 3n operating system process*

*xxxkxxxX*CONFIDENTIAL? MOS TECHNOLOGY>INCe***x*xkxx Page- 157

Final Design Specification for the MCS65E4 Microprocessor

4*7*6 Advanced Operations
4 47 661 Introduction

This group of iInstructions contains a number of powerful 1instructions
which greatly facilitate the control of program sequencing within

the MCS65E4 software* These instructions allow the processor to compare tw
data fields and to set a Boolean variable as a function of the data in the
two TfTields* 1In addition? a full set of string instructions? data shifting
instructions and data conversion instructions 1is provided along with a num
of instructions which are specifically designed to facilitate the control
of the data within the MC365E4 process* Each of these instructions is
described below*

axkxxkxxCONFIDENTIAL? MOS TECHNOLOGY? I NC s Page- 158

Final Design Specification for the MCS65E4 Microprocessor

EE S S S S

* RESET *

ROk e o o R S o

4 o7 ¢6 2 Reset
Format: RESET
Description;

Causes the I10RES bit in the bus status word to go low for 16
cycles ¢

Notes!

The 1instruction has no operands*

FHXFAXXXXCONFIDENTIAL> HQS TECHNOLOGY? INC ok Page- 157

Final Design Specification for the MCS65E4 Microprocessor

EGE R S S S S o o

* CEQ *
447 46 ¢3 Compare Two Operarids For Eauality
Format: CEQ OP1*QP2>QP3
Description:
Compare for eauallty the data field referenced by OP1 with
the data field referenced by oP2 and place the boolean

result into the low order bit position of the field
referenced by OP3*

Notes :
If the field referenced by OP1lis eaual to the field
referenced by OF'2 then the value 0000 0001 will be put into
the data fieldreferenced by OF"3* If the fields are not
eaual the value 0000 0000 willbe put into the field

referenced by OP3e

The data fieldreferenced by OF'3 shouldbe byte data type*
IT it is not?only the least significant byte will be
affected by the instruction*

Restrictions:

The fields referenced by OP1 and OP2 must be the same type
and length*

Example:

Before CEQ 1instruction:

O~1 = References a data field whose value is 16

OF2 = References a data field whose value is 16

OP3 = References a data Tfield whose value 1is 0111 0001
After CEQ instruction:

QFL = References a data field whose value is 16

OP2 = References a data field whose value is 16

OF*3 = References a data field whose value is 0000 0001

skxkkxxkkxCONFIDENTIALE HOS TECHNOLOGY™ INC*****sskxskx Page- 160

Pinal Design Specification for the MCS65E4 Microprocessor

ESEGE R S S S S

* CNE *

ECE I S S e S S S

4 ¢7 ¢6 ¢4 Cohnipare Two Operands For Ineauality

Format! CNE OP1>0P2>0P3

Description ;

Compare for ineauality? the data fTield referenced by oF 1
with the data Tfield referenced by OF"2 and put the boolean
result into the low order bit position of the field
referenced by O0OP3 *

Notes;

If the field referenced by OF“ is not eaual to the field
referenced by OP2 then the value 0000 0001 will be put into
the data field referenced by OP3 ¢ If the fields are eaual
the value 0000 0000 will be put into the Tfield referenced by
OP3 ¢

The data field referenced by OF*3 should be byte data type*
If it is not? only the least significant byte will be
affectede

Restrictions;

The fields referenced by OP1 and OF2 must be the same type
and length*

Example;

Before CNE 1instruction;

OP1 = References a data field whose value 1is 13

OP2 = References a data field whose valje is 16

0oP3 References 3 data field whose valje is 0111 0001
After CNE instruction;

OP1 = References a data TfTield whose value is 13

OP2 = References 3 data field whose valje is 16

OF3 = References 3 data Tfield whose value 1is 0000 0001

wAkxkHkxxkxXCONFIDENTIAL? MOS TECHNOLOGY 2 INC*****xssxx Page- 161

Final Design Specification for the MCS65E4 Microprocessor

L -/ e, X, - -V -U -4/
R ST [1T b

* CGT *
v K* Y

4*7*6*5 Cohp3re Two Operands For Greater Than

Format: CGT OP1?0P27?0P3

Description:
Compare the data field referenced by OP1 with the data field
referenced by QP2=* If the data field referenced by OP1 is
greater than the data field referenced by OP2 then put the

boolean result into the low order bit position into the
field referenced by OF?3*

Notes :
IT the field referenced by OP1 1is greater than the field
referenced by OP2 then the value 0000 0001 will be put into
the data field referencedby OP3 else the value 0000 0000
will be used*
The dats field referenced by OF’3 should be byte data type*
If it is not? only the least significant byte will be
affected*

Restrictions:

The Ffields referenced by OP1 arid OF2 must be the same type
and length*

Example:

Before CGT 1instruction:

O~1 = References a data field whose value is 47

OF2 = References a dat3 field whose value is 16

OF’3 = References a data field whose value is 0111 0001
After CGT 1instruction

OP1 = References a data field whose value is 47

OF2 = References a data field whose value is 16

OF"3 = References a data field whose value is 1110 0011

FAXAXFXRXAXCONFIDENTIAL? MOS TECHNOLOGY? INC *H*xaxsxsxx Page- 162

Finsl Design Specification for the MC365E4 Microprocessor

R S S S e o

wWoa(/ el -l o/ \(/ <t
A N kN

4*7*6*6 Cohnpare Two Operands For Greater Than Or Eaual

Format: CGE OPI1*QP2i0P3

Description:

Compare the data field referenced by OP1 with the data field
referenced by OP2e IT the data field referenced by OP1 is
greater than or eaual to the data field referenced by O0OP2
then put the boolean result i1into the low order bit position
into the field referenced by O0OP3*

Notes:

If the field referenced by OP1 is greater than or eaual to
the field referenced by OP2 then the value 0000 0001 will be
put into the data field referenced by OP3 else the value
0000 0000 will be used*

The data field referenced by OP3 should be byte data type*
If it is not? only the least significant byte will be
affected™*

Restrictions t

The fields referenced by OF’1 arid OF2 must be the same type,
arid length*

Example:

Before CGE 1instruction:

OP1
OF <2
OP3

After

o<1
OF 2
OF*<3

=References a data field whose value is 47
=References a data field whose value 1is 16
=References a data field whose value is 0111 0001

CGE 1instruction:

References a data fieldwhose value 1is 47
References a data fieldwhose value is 16
References a data fieldwhose value is 0000 0001

FHXFXXAXFCONFIDENTIAL] MQS TECHNOLOGY ?INC Fxxskaaskasx Page-

Final Design Specification for the MCS65E4 Microprocessor

ARV X W iy i e/
La At e el

* FIND *
Pyyv sy VKK

4*7*6*7 Find String
Format : FIND OP1?0P2?0P3
Description

Find the first occurance of 3 specified data item within a
given string*

opi:
The dat3 field referenced by OF’1 contains the search
argument and must be of type byte? integer™ ordinal or
string*

oP2J
The data field referenced by OF2 contains the starting point
of the string d3ta field referenced by OP3*

GP3:
The dats field referenced by OP3 represents the string field
to be searched™* The starting point within the dats field
referenced by OF<3 is contained in the data field referenced
by OF2*

Notes!
The data referenced by Operarid 3 must be of type string* The
length of this string is defined by its descriptor™
IT the data referenced by Operarid 1 is of type string? then
only the first 8 bytes are used for the search argument*
It is the users responsibility to initialize the data field
referenced by OP2 with the 1initial starting point within the
string* The search will begin from the first byte of the
string 1if the datafield referenced by OP2 contains -1* It
match 1is detected? the dats field referenced by OF<2 will
contain a positive number which will indicate the byte
position within the string* When the se3rch 1is complete? the
data field referenced by GP2 will contain -2*

Example:

Before FIND instruction:

OF11 References a dats field whose value is:NOWBR
OF12 References a data field whose value 1is:-1
OP3 = References a dats Tfield whose value 1is:HOWMOW BROWN COW*

*wxkkxkxCONFIDENTIAL? MOS TECHNOLOGY ?INC ks sk Page- 164

Final Design Specification for the MCS65E4 Microprocessor

After FIND 1instruction?

OF"1 =References a data Tfield whose value 1is* NOW BR
oP2 =References a data field whose value 1is? +9
OP3 =References a data field whose value 1is? HOW NOU BROUN COW

FHrRFIXAXXXXCONFIDENTIAL» MOS TECHNOLOGY»INC _FH*xxkrrtx Page- 165

Final Design Specification for the MCS65E4 Microprocessor

* Rr-p
4*7 6 *8 Detect Character 1in String
Format: DETC OP1?QP27?QP3

Description:

Find the first byte in a string which matches a byte from a
given set of bytes*

opi :
The data field referenced by OPI contains the set of bytes
which will be matched against the search string*

OP2:
The data field referenced by OP2 contains the starting point
of the string data field referenced by OF’I*

op 3:
The data field referenced by OP3 represents the string field
to be searched™* The starting point within the data Tfield
referenced by OF3 is contained in the data field referenced
by O0P2*

Notes :
The data referenced by Operand 3 must be of type string* The
length of this string 1is defined by, its descriptor™
IT the data referenced by Operand 1 is of type string? then
only the first 8 bytes are used for the search argument*
It is the users responsibility to initialize the data field
referenced by OF'2 with the initial starting point within the
string* The search will begin from the first byte of the
string if the data field referenced by OF'2 contains -1*
The search stops if any byte from the set of bytes matches a
byte within the search string* In that case? the data field
referenced by OF2 will contain a positive number which will
indicate the byte position within the string* When the
search 1is complete? the data field referenced by OF2 will
cor«tain -2*

Example J

Before DETC instruction:

OP1
oP2

References a data field whose value is: XYZW
References a data Tfield whose value 1is: -1

*xkHkxkxxx CONFIDENTIAL? MOS TECHNOLOGY ? I NC**sarxks Page- 166

Fin31 Design Specif ic3tion mfor the MC365E4 Microprocessor

0OP3 = Referencess data field whose value i1s: HOW NOW BROUN COU.

After DETC 1instruction:

OP1 = Referencesa data Ffield whose value is: XYZU
OF2 = Referencesa data Ffield whose value is: +2
OF*3 = Referencess data Tfield whose value i1s: HOW NOW BROUN COW.

FHRXAXFXFXCONFIDENTIAL> MOS TECHNOLOGY>INCe*FHFFxskhx p300— 167

Final Design Specification for the MCS65E4 Microprocessor

HAERTHFFFHH
% NDET t

4 *7 *6 ¢? Detect Character not in String

Format: NDET OP1?0P2?0P3

Description:

opi :

QP2:

QF"3 :

Notes:

Find the first byte in a string which does not matches a
byte from a given set of bytes*

The data field referenced by OPl1 contains the set of bytes
which will be matched against the search string*

The data field referenced by QP2 contains the starting point
of the string data field referenced by GP3*

The data field referenced by OF'3 represents the string field
to be searched™* The starting point within the data field
referenced by OF3 1s contained 1iIn the data field referenced
by O0P2 *

The data referenced by Operand 3 must be of type string* The
length of this string 1is defined by 1its descriptor™

IT the data referenced by Operand 1 is of type string? then
only the first 8 bytes are used for the search argument*

It 1is the users responsibility to initialize the data field
referenced by OF'2 with the initial starting point within the
string* The search will begin from the frrst byte of the
string if the data field referenced by OF2 contains -1*

The search stops ifany byte from the set of bytes does not
match a byte within the search string* In that case* the
data field referenced by OP2 will contain a positive number
which will indicate the byte position within the string*
When the search 1is complete? the data Ffield referenced by
OP2 will contain -2*

Example:

Before NDET 1instruction:

References adata field whose value is: ABCMCS
References adata field whose value is: -1

OF<2
oF<1

*xskxkypkxCONFIDENTIAL> MOS TECHNOLOGY > INC sk Page- 168

Fin31l Design Specification

0OP3 =Referencesa data field whose value
After NDET instruction!

OP1 = References 3 data Tfield whose value
oP2 =References 3 data Ffield whose value
OP3 =Referencesa data Ffield whose value

*xxkx*k*k**CONFIDENTIAL>

MOS TECHNOLOGY>INC , >kt

for the MCS65E4 Microprocessor

is | HCS65E4

is: ABCMCS
is{ +3
ist MCS65E4

Pa2e-

167

Final Design Specification for the MC365E4 Microprocessor

VEWE VAEEL
y MFTR X

Rk S S S S o o

4,7,6*10 DETR
Format: DETR GF“1?0P2?0P3
Description:

Search strind for a sirisle byte which 1is within a defined

ranSe *

OP1 :
The data field referenced by OP1 contains the two byte rande
field which defines the lower and upper bound* The least
significant byte of this field defines the upper bound and
next consecutive byte defines the Ilower bound*

OP2:
The data Ffield referenced by OF'2 contains the starting point
of the string data field referenced by O0P3*

QP3:
The data field referenced by QF3 represents the string field
to be searched™* The starting point within the data Tfield
referenced by .0OF*3 is contained 1in the data field referenced
by O0P2 *

Notes:
As stated above? the least significant byte of the field
referenced by OP1 defines the lower bound and the next
consecutive byte defines the upper bound of the ran2e >
During the search operation? any byte from the data TfTield
which 1is referenced by OF'3 which 1is greater than or eaual to
the lower bound and less than or eaual to the upper bound
will halt the search operation*
It is the users responsibility to initialize the data Tfield
referenced by OP2 with the initial starting point within the
string* The search will bedin from the first byte of the
string if the data field referenced by OF'2 contains -1* When
a byte is within the defined ran”e? a positive number will
be returned which indicates the byte position within the
string* When the search is complete? the data field
referenced by OF2 will contain -2*

Examp le :

Before DETR instruction:

OF’1 = References a data field whose value .is: AB1l2 B4D7

xFxxAxXHFXXCONFIDENTIAL? MOS TECHNOLOGY 2 INC* ****kxxxx Pa2e- 170

Finsi Design Specification for the MCS65E4 Microprocessor

References a Q3ta field whoSQ vslue is* -i

oP*2
References a data field whose valje is: 2¢bF 4567 90l P

OF“3

After DETE instrgctionl

OP1 References a data field whose valje is{ AB12 B4D7Y
OP2 = References a data field whose value is* +1
OF<3 References a data field whose value ist 22BF 4567 8?IF

In this example the Ilower bound = D7 and the upper bound = B
Since BF 1is greater than or eaual to D7 and less than or ecu
to B4f the data field referenced by OF3 will contain rl1.

#FFEXHFRAF*CONFIDENTIAL> MOS TECHNOLOGY? INCe**xxdxskx Fage- 171

Final Design Specification for the MCS65E4 Microprocessor

R R e e e e
* 3HM *
4,746 ,11 Shift Multiple
Format: SHM GP1?GP2?0P3 >

SHM OPIfOP2

Description:

CASE1 : Shift the data field referenced by DPlI by the number
of bit positions specified by the data field referenced by
OF2 storing the results into the data Tfield referenced by
OF*3 (three operand addressing).

CASE2 : Shift the data field referenced by OF'l by the number
of bit positions specified by the data field referenced by
OF"2 storing the results back intothe field referenced by
OF"2 (two operand addressing).

Notes:

IT the fTield referenced by OF2 is positive a left shift w:11
occur, A negative number will cause a right shift*.

The lenth of the data field to be shifted is specified in
the descriptor of the field referenced by OF’1 or 1in the
operarid control byte in the case of byte* integer or
ordinal ,

Logic O will Ffill the bit positions ereated by shift left or
shift right unless the data field referenced by OF'l is an
integer. In this case? a right shift operation will sign
extend (i,e, the most significant bit will fill the bit
positions),

For ten byte real? only the mantissa will be shifted.

Example :

*

SHM OP1 ?0P2 ?0P3

Before SHM instruction:

OF~1
OF*2
OF~3

After
OFhL =

References a one byte field whose- value 1is 1011 0001
References a data field whose value 1iIs -2
References a data Ffield whose value 1is 1111 1111

SHM instruction:
References a one byte field whose value 1s 1011 o001

*xxkxxxxxXCONFIDENTIAL? MGS TECHNOLOGY 2INC, *****xxxx Page- 172

Final Design Specification for the MC365E4 Microprocessor

o
I}

References a data field whose value is -2
References a data field whose value 1is 1110 1100

W
1

sxkkkxxxxCONFIDENTIAL? MOS TECHNOLOGY?IN C*** s % Page- 173

Final Design Specification for the MCS65E4 Microprocessor

RRAR = o I
* PTR *
L AR U
4*7*6*14 Point to Data Field
Format; PTR OP1 ?0F2
Description*
Returns the Logical Address of a Data Field*
OPI1 : =
The PTR instruction will determine the logical address

within the process of the field referenced by OPI* This
field c3n be any dat3 type but it can not be an immediate
value or an internal register™

QP2:
The 24 bit result will be placed in the field referenced by
OP2 which must be of type oridinal*

Notes:
The results of this operation will return the logical
address of qgit*™>r strind cr scalar <e 7 » byte? integer?
real? etc*) type data* |If the data fieldreferenced by OPI
is not string or scalar type dat3 (i*ee¢ record or array

type) the processor will search through the data structure
until 1t encounters a basic data element from the structure*

This 1instruction is very useful to speed up the operation in
the 1loop instead of having to calculate the address of the
operand everytime* All that 1is needed 1is first calculate the
address of the dal3 item then update the pointer address*

ExampleZ PTR TABLECI3 7B

TABLE = 12345678 <0th element - logical address = 001COO

23456789 <8th element - logical adreess = 001C20>

Before PTR 1instruction:

O~1 = References the d3t3 Tfield whose vslue is 23456789 with
logic31l 3ddress 001C20*

B = References the dsta Ffield whose value 1is 000000

FHRFIXAXXXXCGNFIDENTIAL? MOS TECHNOLOGY *INC #*xdxkokxsx Page- 174

.F

Final Hesi3n Specification for the MCS65E4 Microprocessor

After PTR instruction*

OP1 = References the dsts field whose value 1is 23456784 with
logical address 001C20*
B = References the data field whose value is 001C20

FHRXKXHXXXCONFITIENTIAL] MOS TECHNOLOGY>INC . **Hxxdoksix Pa2e- 175

Final Design Specification for the MCS65E4 Microprocessor

WNH Y, VR
* DTYPE =*

E SR S S S S S S

4*7,6*15 Get Date type
Format: DTYPE OF’1 ?0F<2
Description:

Determines the Data Type of a Data Field*

OPI1 :
The DTYPE instruction will determine the data type of the
field referenced by OPI* This field can be any data type but
it can not be an immediate value or an internal register™*
OP2:
The results will be placed in the first byte of the fTield
referenced by 0P2 according to the table listed below (
Result Table), If the resultant data type 1is string the next
two consecutive bytes of the field referenced by opP2 will
contain the string length*
Notes :
The results of this operation must return either string data
type or scalar <e*g* byte* integer? real? etc *) data type*
IT the data fTield referenced by OF’1 is not string or scalar
data type (i*e* re.cord or array type) the processor will
search through the data structure until it encounters a
basic data element from the structure*
The data field referenced by OF2 (result field) will contain
a value which will reflect the descriptor header field*
These values are shown below in the Result Table:
Field Referenced By Field Referenced By
OoP1 0P2
Byte 04
Ordinal 08
Two Byte Integer ocC
Four Byte Integer 10
Eight Byte Integer 14
Four Byte Real 18
Eight Byte Real 1C
Ten Byte Real 20
Four Byte BCD 24
Eight Byte BCD 28
Ten Byte BCD 2C
String 30
Examp le:

FHRXFAKRXAXHXCONFIDENTIAL? MGS TECHNOLOGY 2?INC **xxdraskrx Page- 176

Final Design Specification for the MCS65E4 Microprocessor

Eefore DTYF"E 1instruction

OF1 References the 4th element of an array of two bate integer,
oP2 = References the data field whose value 1is 00,

After DTYPE 1instruction

References the 4th element of 3n array of two byte integer,

QF’1
References the data field whose value 1is O0C,

QF"2

xxwwkxxxxx*CONFIDENTIALT MOS TECHNOLOGYS>INC . *****xxxx Page- 177

Final Design Specification for the MCS65E4 Microprocessor

VAR AEVVY

T TST e 1

* *
CNVRT

VIt WAL Wy -it it a2 It

BT P AT T T > M-

4*7.6.16 CNVRT

Description”

Transfers the contents of the data field specified by
operand 1 into the data field specified by operand 27?

converting the Tformat of the data to that of the second data
field in the process,

Valid Dat3 Types;

Op Code-

Final Design Speci

4,7,6.17 EMAL

The EVAL instruction
arithmetic expression.

allows the

fication for the MCS65E4 Microprocessor

% EVAL

*

MCS65E4 to directly
This is accomplished by organizing

evaluate an

the
the

EVAL

the

expression into Reverse Polish notation and attaching it to
EVAL 0p Code,
The procedures for incorporating an expression into an
instruction are as follows!
le All of the data accessing procedures operate in
normal manner except that the data Tfields must be contained

i, e
referen

in memory?
cannot be

2¢ Those operarid
reference the in

replaced by the

above. This specifies the operations to be Performed as
follows!
3, The final operation which must be performed in the
expression is a MOVE operation. This must place the results
into the desired results field.
Code Operation
50 ADD
51 SUBTRACT
52 MULTIPLY
53 DIVIDE
54 AND
55 OR
56 EOR
57 MOD
58 ABS
59 NEG
5A INC
5B DEC
CEO
CNE
CcoT
CGE
5D MOV
5E LEADZ
5F LEAD1
The operation of this instruction is illustrated in the
example below,
Example!
The expressiont
FHAKXXALXCONFIDENTIAL, MOS TECHNOLOGY ; INC ,*HxxHxdxsix Page- 177

,; data contained 1in the internal registers

ced within the arithmetic expression,
control byte codes which would normally

ternal registers (see Section) are

arithmetic and logic

instructions described

Final

Y=CCCA +

can be converted to Reverse Polish

A B

This expression

Field =* Contents

PO OVM~NOOPNMWNLPR

0

12
13
14
15
16
17
18
19

FrFKAXKXXXCONFIDENTIAL>

Design Specification for the MCS65E4 Microprocessor

INC + C * D E

OF*A
OPB
5A
OPC
52
OPD
OPE
51
53
OPF
59
OF*G
OF"H
55
50
54
5D
OPY

G+

F NEG G H OR + AND MOV

can be converted to a single EVAL

Comments

EVAL Op Code .
Variable A Operand
VariableBOperand
INC Op Code
Variable C Operand
MUL Op Code
Variable D Operand
Variable E Operand
SUB Op Code

DIV Op Code
Variable F Operand
NEG Op Code
Variable G Operand
Variable H Operand
Logic OR Op Code
ADD Op Code

Logic AND Op Code
MOV Op Code

Results Data Field (Y)

* C) / (D - E) AND (NEG F + (G OF: H>>>

notation as follows:

instruction

MOS TECHNOLOGY j INC . **>xxdhxx Page-

as follow

1SO

