
Final Design Specificstion For t h e M C S 6 5 E 4 Microprocessor

Written by: Y a n 3 / Goodman /' Mathys
Revision I 1*1
Date Released: 10-MAY-82

This document is submitted with the understanding that
it contains information which is confidential in
nature and is not to be revealed to anyone without

written permission from MOS Technologyf Inc.

*********CONFIDENTIAL> MOS TECHNOLOGY >INC♦********* P a 2 e -

Rev t

0 ♦ 0

1,0

Revision History

Date Description of Revision

2-Gct-31 Original release

1-MAY-32 General clean-up arid reorganization*.
Rewrite of software architecture description

*********CQNFIDENTIALf MGS TECHNOLOG Y > INC .MX****** Fade-

Table of Contents

1*0 I n t r o d u c t i o n * * * * * * * * * ♦ * * * * * ♦ * * * * * 12

1*1 Review of Project Goals* ♦ ♦ * * * * ♦ * * * ♦ ♦ * * 12

1*2 Summary of M C 3 6 5 E 4 Capabilities* * * * * * ♦ * * * * 13

1*3 Terminology* * * * * * * * * * * * * * * * * * * ♦ * 14

1*3*1 Introduction * * * * * * * * * * * * * ♦ * * * ♦ 14

1*3*2 Process* * * •> * * * * * * * ♦ ♦ * * * * * * * * 14

1*3*3 O p Code* * 15

1*3*4 Operand* 15

1*3*5 Instruction* * * * * * * * * * * * * * * * * * * 15

1*3*6 D e s c r i p t o r * * * * * * * * * * * * * 15

1*3*7 Ordinal * 16

1*3*8 Static Data? Dynamic Data* * * * * * * * * * * * 16

1*3*9 Physical Address * * * * * * * * * * * * * * * * 16

1*3*10 Logical Address ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 16

1*3*11 Pa^e Address* * * * * * * * * * * * * * * * * * 17

1*3*12 Offset Address? Relative Address* * * * * * * * 17

1*4 Example of Addressing in the MCS65E4 System* * * * * 20

2*0 Description of the MCS65E4 Pin Functions * 22

2*1 I n t r o d u c t i o n * * * * * * * * * * * * * * * * * * * * 22

2*2 Address Bus Middle / Address Bus Low * * * * * * * * 22

2*3 Address Bus / Data Bus / Bus Status* * * * * * * * * 22

2*3*1 Interrupt Acknowledge* * * * * * * * * * * * * * 23

2*3*2 Hold Acknowledge * * * * * * * * * * * * * * * * 23

2*3*3 Last Instruction Cycle * * * * * * * * * * * * * 23

2*3*4 I/O R e s e t * * * * * * * * * * * * * 23

2*3*5 Processor Instruction Fetch* * * * * * * * * * * 23

2*3*6 Processor Data Fetch * * * * * * * * * * * * * * 23

Final Design Specification for the M C S 6 5 E 4 Microprocessor

*********CGNFIDENTIAL> MOS TECHNOLOGY >INC * ********* Page-

2.3.7 Refresh Cacle. * * . . 24

2.3.8 External Microcode Fetch 24

2.4 Row Address Strobe 24

2.5 Column Address Strobe. 24

2.6 Chip P o w e r ♦ . . . • * . * • 24

2.7 Oscillator 24

2.8 Bus C l o c k 24

2.9 Valid Memory Address 24

2.10 Memory Ready. * * . 25

2.10.1 Read C y c l e 25

2.10.2 Write Cycle 25

2.11 Interrupt Input 25

2.12 Reset 25

2.13 Write Enables * 26

2.14 Bus E r r o r * . ♦ * * » . » » * » * * 26

2.15 Hold. 26

2.16 Instruction Intercept * 26

3.0 Internal Architecture. ♦ . . . * .

3.1 Introduction * • . * * * *

3.2 Execution Unit 27

3.2.1 ABL/ABM Registers. ♦ 27

3.2.2 Register Array

3.2.3 Arithmetic Logic Unit. . . . * » « » 28

3.2.4 Input Queue. * » » * * * » 28

3.2.5 ABH/DB Registers 28

3.3 Execution Control Logic. * ♦ » * ♦ « 28

3.3.1 Control Registers. * * ♦ * . » ♦ * 28

3.3.2 Microcode Array 28

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

*********CQNFIDENTIALt MOS TECHNOLOGY j INC.**#****** Page-

Final Design Specif icst-ion for t. h e M C S 6 5 E 4 Microprocessor

4 * 0 S o f t w a r e 30

4 30

4 30

30

30

31

31

31

4*2*6 T o p 31

31

4*2*7* 1 32

4 * 2 * 7 * 2 32

4 * 2 * 7 * 3 32

4 * 2 * 7 * 4 32

4 * 2 * 7 * 5 32

4 * 2 * 7 * 6 “7 nO A_

4 * 2 * 7 * 7 *7 n>->

4 * 2 * 7 * 3 32

4*2*7*? 33

33

4 *3 Process 35

35

35

35

35

36

4*3*5* 1 36

4 * 3 * 5 * 2 36

*********CONFIDENTIAL> MOS TECHNOLOGY?INC.**#****** PsSe-

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4»3*5*3 Process Stack* *♦ ♦ ♦ ♦ ♦ * * ♦ ♦ * * ♦ ♦ * * 36

4*3»6 Process Software * ♦ ♦ * ♦ ♦ ♦ ♦ * ♦ * * » * , ♦ 36

4*3*7 Process Vectors* ♦ ♦ ♦ * * * * ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ 36

4*3*8 Kernel Reset Vector* * ♦ * * * * * * ♦ ♦ ♦ ♦ * * 36

4*4 Execution of Processes in the M C S 6 5 E 4 * * * ♦ ♦ ♦ ♦ ♦ 37

4*4*1 Introduction * * * * * * * * * * * * * ♦ ♦ ♦ ♦ ♦ 37

4*4*2 Basic Inter-process Controls * * ♦ * ♦ ♦ ♦ ♦ ♦ ♦ 37

4*4*2*1 Introduction * * ♦ ♦ * * ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ * 37

4*4*2*2 Kernel Reset Vector* * * * * * * * * ♦ ♦ ♦ * 37

4♦4 * 2 * 3 Process Parameter List * * ♦ * ♦ ♦ * * * ♦ ♦ 37

4*4*2*4 Pointer to current Caller* * * * ♦ ♦ ♦ * * ♦ 38

4 * 4 * 2 * 5 Process Link * * * * * * * ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ 38

4*4*2*6 Process Stack* * * * * * * * * ♦ * * * * * ♦ 39

4*4*3 Inter-Process Operations ♦ * ♦ ♦ ♦ ♦ ♦ ♦ * ♦ * ♦ 3?

4*4*3*1 Introduction * ♦ ♦ ♦ ♦ ♦ ♦ ♦ 39

4*4*3*2 System reset * * * * * * * * * * * * * * * * 39

4♦4♦3 * 3 Invoking Additional Processes* * * * * * * * 40

4*4*3*4 Exception Processing * ♦ * * * * * * * * * * 42

4 ♦ 4 * 3 ♦ 4 ♦ 1 Introduction * * * * * * ♦ ♦ * * * * * ♦ 42

4*4*3*4*2 Servicing exceptions within the

current process * ♦ ♦ ♦ * ♦ ♦ ♦ * ♦ ♦ * ♦ ♦ ♦ ♦ 42

4*4*3*4*3 Servicing exceptions within the
calling process * * * * * * * * * * * * * * * * 45

4*4*3*5 Returning to a Suspended Process * * * * * * 46

4*4*4 Exception Vectors within the
MCS65E4 Process * * * * * 47

4 ♦ 4 ♦ 4 ♦ 1 Introduction * * * * * * * * * * * * * * * * 47

4*4*4*2 Undefined O p Code Trap * * * * * * * * * * * 48

4*4*4*3 Undefined Data Type Trap * * * * * * * * * * 48

4 * 4♦4 ♦ 4 Subscript out-of-limits Trap * * * * * * * ♦ 48

*********C0NFIDENTIAL> MOS TECHNOLOGY>INC * ********* Page- 6

Final Design Specification for the MCSo5E4 Microprocessor

4 * 4 * 4 ♦ 5 Operator and Operand Not Compatible* ♦ * ♦ ♦ 4 8

4 * 4 ♦ 4 ♦ 6 0 ve r f l'o w ♦ * * * * * ♦ * * ♦ ♦ ♦ ♦ 4 8

4 * 4 * 4 * 7 Other Arithmetic Error ♦ * ♦ ♦ ♦ * ♦ * ♦ ♦ ♦ 4 8

4*4*4*8 Non-conformable Data Types * * * * * * * * * 48

4 * 4 * 4 * 9 Instruction Access Trap* * * * ♦ * ♦ ♦ ♦ ♦ ♦ 49

4»4»4*10 Data Access Trap* * * * * * * * * * * * * * 49

4*4*4*11 Process Stack Page Boundary Trap* * * * * * 49

4*4*4*12 Debug Trap* ♦ ♦ ♦ * ♦ ♦ * * * 49

4*4*4*13 Interrupt Input * * * * * * * * * * * * * * 49.

4»4*4*14 System Call * * * * * * * * * * * * * * * * 49

4*4*4*15 System Call with Message* * ♦ * * * ♦ ♦ ♦ * 49

4*4*4*16 Bus Error * * * * * * * * * * * * * * * * * 49

4*4*4*17 Access out-of-limit * * * * * * * * * * * * 49

4*5 Addressing within the MCS65E4* ♦ * ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ 50

4*5*1 Introduction * * * * * * * * ♦ * * ♦ * * ♦ * ♦ * 50

4*5*2 Primary Addressing Group * * * * ♦ ♦ * * * * * * 53

4 * 5♦2 * 1 Introduction * * * * * * * * * * * * * * * * 53

4*5*2*2 Base Register Select Field ♦ ♦ ♦ ♦ ♦ ♦ * ♦ * 53

4 * 5♦2 * 3 Data Access Format * * * ♦ * * * * * * * * * 53

4*5*2*4 Number of Extension Bytes* * * * * * ♦ ♦ ♦ * 54

4*5*3 Secondary Addressing Group * * * * * * * * * * * 54

4 * 5 * 3 * 1 I n t r o d u c t i o n * * * * * * * * * * * 55

4*5*3*2 Limit Page Addressing* * ♦ * ♦ * ♦ 55

4 * 5 * 3 * 3 Process Stack PUSH / POP * * * 55

4*5*3*4 Immediate Addressing? Long Form* * * * * * * 60

4*5*4 Internal Register Addressing * * * * * 60

4*5*5 Immediate Addressing? Short Form * * * * * * * * 60

4*5*6 Process Base Addressing? Short Form* * * * * * * 61

*********C0NFIDENTIAL? MOS TECHNOLOGY?INC ********** Page-

Final Design Specification for the MC365E4 Microprocessor

4*5*7 Primary Base Addressing? Short Form* * * * * * * 61

4*6 Data Structure Within the MCS65E4 System * * * * * * 63

4*6*1 Introduction * * * * * * * ♦ * ♦ * ♦ ♦ ♦ ♦ + ♦ f 63

4*6*2 The Basic Data Elements* * ♦ * * * * * * ♦ ♦ ♦ * 66

4 * 6♦2 ♦ 1 Unsigned Binary Data Fields* * * * * * * * * 66

4*6*2*2 Signed Binary Data Fields* * ♦ * ♦ * ♦ ♦ ♦ * 66

4*6*2*3 BCD Data F i e l d s 66

4*6*2*4 Floating Point Data Fields * * * ♦ * * * * * 66

4*6*2*5 String Data Fields * * * * * * * * * * * * * 66

4*6*3 Organization of the Variable Descriptor* * * * * 63

4 * 6 * 3♦1 Introduction * * * * * * * * * * * * * * * * 63

4*6*3*2 Organization of the Descriptor
Header ♦ ♦ * ♦ ♦ ♦ * ♦ 68

4 * 6 * 3 * 2 * 1 Introduction * * * * * * * * * * * * * * 68

4 * 6 * 3 * 2 * 2 Trap Bit * * * * 68

4*6*3*2*3 Access Mode* ♦ ♦ * ♦ * * * ♦ * ♦ * ♦ * * 68

4 * 6 ♦ 3 ♦ 2 * 3 * 1 Attached * * * * * * * * 69

4*6*3*2*3*2 Attached Relocatable * * * * * * * * 69

4*6*3*2*3*3 Short Relative * * * * * * * * * * * 69

4*6*3*2*3*4 Short Relocatable* * * * * * * * * * 69

4*6*3*2*3*5 Long Relative* * * * * * * * * * * * 69

4*6*3*2*3*6 Long Relocatable * * * * * * * * * * 70

4*6*3*2*3*7 Logical Addressing * * * * * * * * * 70

4*6*3*2*4 Data Type Field and Flag * * * * * * * * 70

4*6*4 The Data Structures* * * * * * * * * * * * * * * 74

4 ♦ 6 ♦ 4♦1 Introduction * * * * * * * * * * * * * * * * 7 4

4 ♦ 6 * 4 * 2 Single Dimension Arrays* * * * * * * * * * * 74

4*6*4*3 Array Structure* * * * * * * * * * * * * * * 77

*********C0NFIDENTIAL> MOS TECHNOLOGY>INC♦********* Page- 8

Final Design Specification for the MCS65E4 Microprocessor

4*6»4*4 Record ♦ ♦ * ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ ♦ ♦ 32

4*6*5 Deferred Descriptor* * * * * * * * * *• * * * * * 36

4*6*6 Application of the MCS65E4 Data
Accessing Mechanisms * * * * ♦ * ♦ ♦ ♦ * ♦ ♦ ♦ ♦ S3

4 * 6 * 6♦1 Introduction * * * * ♦ ♦ * * ♦ ♦ * ♦ * * ♦ ♦ 3 3

4*6*6*2 Accessing Data in Multi-Dimensional
Arrays * * * * * * * * * * * * * * * * * * * 38

4*6*6*3 Example of Accessing a mu 11i-dimensiona 1
array * 94

4*6*6*4 Example of Accessing Data in a Complex
Record Structure* ♦ * * * « * * > . * » * * « * * * 99

4*6*6*5 Exception Vectors* * * * * * * * * * * * * * 104

4 * 6 * 6 * 5 * 1 Introduction * * * * * * * * * * * * * * 104

4*6*6*5*2 Descriptor Format* * * * * * * * * * * * 104

4 * 6 * 6 * 5 * 3 Example of Attached Address
Descriptor Format * ♦ * ♦ * ♦ * ♦ * * * * * * ♦ 105

4*6*6*5*4 Example of Remote Exception Vector * * * 105

4*7*The MCS65E4 Instruction Set* * * * * * * * * * * * * 107

4*7*1 Introduction * * . * * * * * * * * * * * * * * * * 107

4*7*2 Format of the MCS65E4 O p C o d e s * * 107

4*7*3 Basic Arithmetic arid Logic Operations* * * * * * 109

4 * 7 * 3 * 1 Introduction * * * * * * * * * * * * * * * * 109

4*7*3*2 ADD* 111

4 * 7 * 3 * 3 SUBTRACT * * * * * * * * * * * 112

4 * 7 * 3 * 4 MUL* 113

4 *7*3 *5 DIVIDE * * * * * * * * * * * * 114

4 * 7 * 3 * 6 AND* * * * * * * * * * * * * * * * 115

4 * 7 * 3 * 7 OR * * * * * * * * * * * 117

4 * 7 * 3 * 8 E0R * * * * * * * * * * * * * * * * 119

4 * 7 * 3 * 9 MOD* 121

4*7*3*10 ABS * * * * * * * * * * * * * * * 122

*********C0NFIDENTIAL> MOS TECHNOLOGY * INC ********** Page- 9

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4.7.4.11 NEG 123

4.7.3.12 INC.. ... 124

4.7.3.13 D E C 125

4.7.3.14 SORT. 126

4.7.3.15 MOM 127

4.7.3.16 L E A D Z 123

4.7.3.17 LEAD1 129

4.7.3.13 CLR 130

4.7.3.19 S E T , 131

4.7.4 Program Control Instructions 132

4.7.4.1 Introduction ► 132

4.7.4.2 B E Q 133

4.7.4.3 B N E 134

4.7.4.4 B G T 135

4.7.4.5 B G E 136

4.7.4.6 B E Q Z ... 137

4.7.4.7 BNEZ 133

4.7.4.3 BROS 139

4.7.4.9 BMI .. 140

4.7.4.10 BR. 141

4.7.4.11 JMP . 142

4.7.4.12 BSR 144

4.7.4.13 JSR . 145

4.7.4.14 B D E C 147

4.7.4.15 BCOND 143

4.7.4.16 SC. 149

4.7.4.17 SCM 150

4.7.4.18 RTS 151

*********CONFIDENTIAL, MOS TECHNOLOGY»INC.********* Page- 10

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4.7.4.19 RTE . 152

4.7.4.20 I O S 153

4.7.4.21 TASK. 154

4.7.5 Advanced Operations. . . . , . . . , . , . . , . 155

4.7.5.1 Introduction , 155

4.7.5.2 RESET. 156

4.7.5.3 CEQ 157

4.7.5.4 ONE 158

4.7.5.5 CGT . 159

4.7.5.6 C6E * * * 160

4.7.5.7 FIND 161

4.7.5.8 DETC 163

4.7.5.9 N D E T .. 164

4.7.5.10 D E T R 167

4.7.5.11 SHM_ . . . 169

4.7.5.12 F ' T R 171

4.7.5.13 DTYF'E 173

4.7.5.14 CNYRT .. 175

4.7.5.15 EVAl. 176

*********CONFIDENTIALr MOS TECHNOLOGY*INC.********# F'aSe- 11

Fin3 1 Design Specification for the M C S 6 5 E 4 Microprocessor

1*0 Introduction

This specification contains a detailed description of all aspects
of the M C S 6 5 E 4 microprocessor develop merit project? beginning in
Section 1 with a review of the project goals arid a discussion of
the market toward which this chip is directed* It is hoped that
these discussions will lead to greater understanding of the goals
of the project on the part of everyone involved*

Section 2' contains a description of the M C S 6 5 E 4 interface* This is
followed by s description of the internal architecture of the
M C S 6 5 E 4 (Section 3) ? including the register organization? the

internal buses and the organization of the control store* Section

4 contains a detailed description of the MCS65E4 software
architecture (addressing modes? instruction set? etc*)*

1*1 Review of MCS65E4 Project Goals

Before entering into a detailed discussion of the M C S 6 5 E 4 ? it
would be useful to briefly review the major factors which have
influenced the design of this processor system* Understanding
these factors will be particularly important for anyone involved
in the design verification stage of this project*

Although the MCS65E4 is equipped with a "compatible' mode in which
it is capable of executing software which was written for the
MCS6502? the MCS65E4 is not designed to be upward compatible with

the 6502 family of 3-bit microprocessors* The primary reason for

this is that the basic design considerations behind the 6502
processor differ greatly from those described below for the

MCS65E4 processor* This is true in spite of the fact that the 6502
has reached a dominant position in the microcomputer market? one
of the target markets for the MCS65E4*

To put the 6502 architecture into perspective? it should be noted
that when this design effort began? microprocessors were viewed
primarily as replacements for random logic in the design of
controllers* The 6502 was optimized toward this application* To
this end? significant emphasis was placed on minimum system

configurations and on minimizing device and system cost* This was
accomplished through the use of such things as page zero
addressing? 8-bit index registers? multiple-function support

devices? and generally simplified system interfacing*

Many of the characteristics of the 6502 which were designed to

maximize its performance as a random logic replacement would seem
to limit its performance in high-end microcomputer systems* In
spite of this fact? low cost and ease of use has allowed the 6502
to become a dominant factor in this market* These are the features
which will be retained in the MCS65E4* At the same time? the
architecture of this 'next generation* processor will be designed
to assure maximum performance in microcomputer systems at the

lowest possible cost*

Modern high-end microcomputer systems e x h i b i t several feat ures
which can greatly influence the design of a processor optimized

*********C0NFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 12

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

for this application* In particular? all such systems are
controlled by a so p h i st icated operating system * In many cases?
components of this operating system are swapped into and out of

memory as required* host such systems support several user's
programs in a * multi-task" environment? reallocating the available
memory from system to user or from one user to another as
reoui r e d *

There are several important problems inherent in this type of

system* The first is memory protection* It is important that the

operating system be protected from the user's programs arid that
the user's programs be protected from each other* In addition? the
software should be “relocatable" since the physical address space
in which the program will be located is generally determined at
execution time*

In addition to the above? it is assumed that most microcomputer
programming will involve the use of a high-level language*
Therefore? the software architecture of the processor must be
designed to minimize the time required for both compilation arid
execution of such languages*

Finally? it should be noted that even the most powerful processor
is wasted if it is absorbed in I/O handling a large portion of the

time* For this reason? the system level problems of interrupt?

DMA? etc* must be handled in a manner which maximizes the amount
of time which the processor has available for "computing"*

All of these factors have had a strong influence on the design of
the MCS65E4* However? the design described below addresses each of
these factors in a mariner which provides maximum performance
within well-defined chip size constraints* The architecture
described in this document can be built into a device which will

be well within "state of the art"? providing a combination of
device cost and performance which should allow it to assume the
dominant position in the micro- computer market now held by the

6502 *

1*2 Summary of MCS65E4 capabilities

The following is a brief listing of the principal features of the
MCS65E4 family of microprocessors*

1* S? 16 or 32-bit Data Bus*

2* 24-bit Address Bus*

3* ALU processes 32 bits of data for each processor cycle*

4* No internal data registers visible to the programmer* All
operations are ' me mo ry-to -m emory"*

5* Internal opera rid registers allow processing of multi-byte

operands*

6* "Generic" Op Codes? i* e*? the Op Codes do not specify

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC♦********* Page- 13

Final Design Specification for the MCS65E4 Mic t o p rocessor

the format of the data fields*

7 * "Self-defining* data structures? i * e *? most data is
accessed through tags arid descriptors* However; the

ability to directly access and manipulate byte? double
byte and triple byte fields is provided to facilitate the
generation of descriptor and pointer addresses? etc*

8* On-chip hardware and microcode support for many oper<
system functions*

- i rig

9* Hardware support fort

-̂3 ♦ Error Detection arid correction*
b* Virtual memory*

c * Prioritized and vectored interrupts*
d ♦ Floating point data types*
e* Decimal (BCD) data types*

1*3 Terminology

1*3*1 Introduction

The architecture of the MCS65E4 contains a number of very
important concepts which are uniaue to the world of
microprocessors* To assure the accurate transfer of information?
therefore? this section introduces what is hopefully a clear?

consistent terminology which will be employed throughout this
document*

1*3*2 F'rocess

The "process" is one of the key concepts in the MCS65E4

architecture* In general? a process can be described as a
self-contained combination of software and data* The address
limits within which a process must execute are defined by

information stored in an internal Process Base F^egister for the
lower limit and in a Process Limit Register for the upper limit*
Special hardware within the MCS65E4 assures that a process does
not access any memory locations outside of the address space
defined by these two registers*

There are several important process characteristics which affect

the execution of software within the MCS65E4* The most important
is that all processes are totally relocatable? i* e * ? an M C S 6 5 E 4

program will execute in exactly the same manner no matter where it
is located in the 16 mega-byte address space
active process can be suspended? and can be

In addition? an
moved within the

address space
execution*

of its caller without affecting s u b s e q u e n t

There are three types of processes within the MCS65E4
architecture* These are the Kernel? the Operating System and the
User process* Each exhibits characteristics which reflect its
position in a well-defined hierarchy* The term "Kernel process'*
refers to the lowest level in the set of processes which forms a

*********CONFIDENTIAL> MOS TECHNOLOGY ?INC********** Page- 14

Final Design Specification for the M C S 6 5 E 4 Microprocessor

complete MCS65E 4 system* The processor enters this mode through
the chip reset function or through system c 311 s and traps which
occur in the higher level processes* Within the Kernel? the

processor C3n call either 3 higher level operating system process
or 3 User process* These higher levels of operating system csn
continue to call additional processes until a User process is
encountered* This hierarchy of processes is described in detail,
below *

Within this specification? the terms “Kernel p r o c e s s 1 will be used
to refer to process level 1 in which both the Kernel flag and the
User/Supervisor flag 3re set* The term “Operating System Process
will refer to those higher level processes in which the

User/Supervisor flag is set but the Kernel flsg is cleared* This
can be summarized as follows*

Kernel User/Supervisor
Process Flag Flag

Kernel 1 1

Operating System 0 1

User 0 0

1*3*3 O p Code

The ter in b Q p Code* refers to the first byte of each instruction*
This byte specifies the operation to be performed (Add? Subtract?
etc*) arid the format of the instruction* However? it does not

specify the type of the data (Real? BCD? etc*) which is to be
manipulated by the instruction*

1*3*4 Operand

The term *operand" refers to that portion of the instruction which
contains the information necessary to access a single data field*
The first byte of the operand specifies the manner in which the
desired data field is to be accessed* Specifically? the data can

be located in an internal register? it can be in the instruction

(immediate data)? or it can be accessed through the normal data
referencing mechanism described below*

1*3*5 Instruction

The term 'instruction' refers to the combination of O p Code and
Operands which are accessed under direct control of the Process
Program Counter to cause a complete execution seouence to take
place within the processor*

1*3*6 Descriptor

Within the MCS65E4 architecture? the “data descriptor* acts as the
primary means by which the processor determines the format and

location of a data field* The term descriptor refers to all of the

information reauired to access a data field* The components which

*********CONFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 15

Final Design Specification for the MC365E4 Microprocessor

make up 3 descriptor are*

1♦ Descriptor Header*
2 * Address Reference Information*

3♦ Auxiliary Information*

The operation of the descriptor is described in detail in Section 4

1*3*7 Ordinal

The term ■ordinal* will be used to refer to the three-byte
unsigned binary fields which are used to store logical addresses?
offset addresses? etc* within the MCS65E4 architecture*

1*3*3 Static Data? Dynamic Data

During the discussions of process organization and execution
within the MCS65E4? the terms static data and dynamic data will be
used to differentiate between process variables which retain the
same format for the life of the process arid those which are

created 3nd abolished while the process is being executed* The

most important characteristic of these two types of data is that
the amount of memory required by the static data will not change
during execution of the process* Dynamic data? however? consists
of variables which cannot be assigned fixed amounts of memory
during compilation of the process software because the memory
requirements for these variables will only be known at run time*

1*3*9 Physical Address

The term “physical address* will be used to specify a position in
the 16-megabyte address space which the MCS65E4 can access* These
are the addresses which appear on the pins of the processor*

Throughout this document? the physical address is assumed to be

the ■default*" Therefore? if an address type (physical? logical ?

etc*) is not specified? it can be assumed to be a physical
address *

1*3*10 Logical Address

One of the most important aspects of the stand-alone nature of a

process is that all addressing within the process software is
self-contained and is completely independent of the physical
memory locations in which the process resides* All addresses
generated during execution of the process software are assumed to
be offsets from the address contained in the Process Base
register* For example? if 3 process whose base address is 044B00
(HEX) were to specify an address of 0177 (HEX)? the physical
address which would be accessed is 044C77 which is obtained by
adding 0177 to 044B00*

This characteristic of addressing within the MCS65E4 brings u p the
concept of the logical address* In this document? the term logical
address will be used to refer to the position of a memory location
within the address space of a process* In the above example?

*********CGNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* o P a g e - 16

Final Design Specification for the MCS65E4 Microprocessor

therefore? the logical address would he 0177* It should be noted
that all software execution within the MC365E 4 is performed within
the context of a process* For this reason j all memory locations

have both a physical and a logical address* The Physical address
remains fixed by the system lo^ic* However? the logical address of
each memory location is entirely a function of its position within
a process* This will be illustrated in the example below (See
Fidure 1*1)*

To assure accuracy? this document will utilize the phrase “within
process (process name)* whenever a logical address is specified*
Also? a memory location which is outside of the limits of a

process is assumed to have no logical address within that process?
i* e*? the logical address is assumed not to exist*

1*3*11 Page Address

There are many aspects of the M C S 6 5 E 4 architecture which assume ari
eight bit organization* For example!

1* O p codes are eight bits wide*
2* The minimum addressable data field is eight bits wide*
3* Offset addresses can be zero? eight? sixteen or 24 bits*
4* Both the base and limit for a process are specified

in 256-byte increments*

As a result? it will be useful to utilize the term 'page address'

to identify the location of a 256-byte page* Throughout this
document? the Page Address will be specified by the upper 16
address bits with the low order eidht bits identified by XX* For

example? Page Address 01E4XX identifies the page whose upper
sixteen address bits are 01E4* This page includes addresses 01E400
through 01E4FF*

In addition to the Page Address? the phrase 'address on page (page
number or n a m e) 1 will be used to specify an eight bit address
within a page* For example? address 01E43A can be identified as
address 3A on page 01E4XX*

The term 'Base Page' will be used to refer to the lowest order
page within a process* This is the 256-byte block of memory whose
page address is contained in the Process Base register* Similarly?

the term 'Limit P a g e 8 will be used to refer to the 2 5 6 -byte block
of memory whose page address is contained in the Process Limit
register* The range of addresses which are available to a process

extends from address 00 on the Base Page through address FF on the
Limit Page*

1*3*12 Offset Address? Relative Address

All data addressing within the MCS65E4 is accomplished by adding a
displacement to a memory address* This can be divided into two
specific forms of addressing* These are Offset Addressing 3nd
Relative Addressing* These two differ primarily in the manner in
which the memory address arid the displacement are specified*

*********C0NFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 17

Final Design Specification for the MCS65E4 Microprocessor

Within the M C S 6 5 E 4 architecture? the term “Offset A d d r e s s i n g 8 will
he used to identify an addressing operation in which the offset is
specified in the instruction arid the memory ■ address is contained
in a base register* Only positive offsets are permitted whon
accessing through Offset Addressing* The base register can be
either one of the on-chip process registers (TOS? BAS? PRM? LMT)
or any three-byte set of addresses in the Base Page*

To assure accuracy? this document will utilize the phrase “offset

from register (register name)' whenever an Offset Address is
specified* In addition? whenever an external base register is
established in the process Base Pase? this base register will be
identified as “EXT (n) “ ? where n is the page address of the start
of the base register* For example? if addresses 15-17 on the
process Base Page are to be treated as an external base register?
this base will be identified as E X T 15 ♦ Finally? it will be assumed
that a memory location which cannot be accessed through a base
register has no offset address relative to that register* This
will be true? of course? for any memory location outside of the
process* Even more important? it will also be true for all memory
locations with a lower physical address than that contained in the

register since negative offsets are not permitted while accessing

data via base registers*

In addition to Offset Addressing? the MCS65E4 utilizes a similar

addressing mode in which the memory address is not contained in 3
base register and in which both negative and positive

displacements are permitted* This is termed “Relative Addressing'*
Within Relative Addressing operations the memory address can be
either, the contents of the program counter or the address of a
data descriptor* This is described in detail in Section 4 of this
specification*

*********CQNFIDENTIAL> MOS TECHNOLOGY ?INC♦********* Page- 18

Final Design Specification for the MCS65E4 Microprocessor

Physical
Address
Space

FFFFFF

028000

000000

FIGURE

Kernel
Address
Space

Operating

System

Process
Address
Space

User

Process
Address
Space

Registers

Contents Name

FFFFFF

0E00FF

i
1
I
i
1
1
1
1
1

1 030 1FF
1 1
1 1
1 1
1 1
1 1
1 I
1 1

0301XX LMT

1 1
1 1
1 1
1 I
1 i
I !
1 1
1 1
i i

1 1 1 1
1 1 1 1
1 1 1 1
I 1 1 1
1 1 1 1
1 1 1 1
1 1 1 C
1 1 1 1
1 D 1 1

1 I
1 1
1 I
1 E
D 1
! 1
1 1
I --------- 024700
i

EXT*
! 1
1 1
1 |

l o l l
1 1 1 !
I l l }

1
------------------- 0235A0 T03

1 I
i i

I I I !
i i i -------------------------------023590 F'RM

1 A
1 1
i 1
i I

i i i
i i i
i i i
1 1 1

001200 EXT*
! 1
1 1
1 1
| I

1 I 1
1 -----023500 0235XX BAS

I >
l I
t i 1 * B a s e F ‘age A d d re s s e s 10 -12 a r e
l l 1 assumed to c o n t a i n 001200. T h i s

-“ -010000 set of memory locations will be

\ treated as an external base
i register pointing to physical
I address 024700 (BAS + 001200)*

000000

♦1- Initial Configuration for Addressing Example

*********C0NFIDENTIALf MOS TECHNOLOGY >INC♦********* P a g e- 19

Final Design Specification for the MCS65E4 Microprocessor

1♦4 Example of Addressing within the M CS 65 E 4 System

The addressing concepts outlined above can be clarified by
example* This will be accomplished by describing the addresses
associated with a memory location which is contained within the
address space of a User process* This User process is assumed to
have been called by an Operating System process and is therefore
at level three in the hierarchy* Any memory location located in
this User process can be accessed by each of the lower level

processes* Therefore? the memory location being discussed below

will have a single physical address? hut will have a logical

address within the Kernel process? within the Operating System

process arid within the User process* In addition to these three
logical addresses? the memory location will have a number of
Offset Addresses during any period that the MCS65E4 is executing
one of these three processes*

The diagram above illustrates the memory map of a multi-task
system in which the three processes reside* The Kernel is assumed
to cover the entire 16-megabyte space* The Operating System
process (which was invoked by the Kernel) is limited to the range
of addresses from 010000 to 0E00FF* At the same time? the User
process is assumed to reside initially within addresses 023500 to
0301FF* The memory location which will be examined initially will

be 028000? which is within the range of addresses allocated to the
User process* Figure 1*1 illustrates this configuration*

As described previously? each memory location has a single

physical address* For the memory location being examined
initially? this physical address is 028000* In fact? since the
base of the Kernel is always at address 00000 0? a memory
location's logical address within the Kernel is the same as its
physical address* Within the Operating System process (level two
in the hierarchy) the logical address of this memory location is
018000? which is the displacement between the physical address of
the base of the Operating System process and the physical address
of the memory location itself* At the same time? this memory
location has a logical address within the User process* This is
obtained by subtracting the physical address of the memory

location (028000) from the physical address of the process base

(023500)* The resulting logical address is 004B00*

To allow the offset addresses for this memory location to be
specified? it is necessary to first specify the contents of the
registers which can be used as a base for addressing the memory
location* This will be illustrated by assuming the existence of
two addressing registers? termed the Primary Base Register arid the
T o p of Stack Register* At the same time? it will be useful to
assume that addresses 10-12 within the Base Page contains 001200
and will be treated as an External Base Register* This provides
three internal registers, (including the F'rocess Base register) and

one external base register which can be used to access data*

To illustrate the offset address? assume that the MCS65E4 is
executing the User process? the Primary Base register (PRM)
contains 023590 and that the External Base Register (logical

*********CONFIDENTIAL? MOS TECHNOLOGY?INC * ********* Page- 20

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

addresses 10-12 within the user process) contains 001200* The T o p
of Stack Register (T0S) is initially at 0 2 3 5 A 0 ♦ Under these
conditions* the Offset Address of memory location 023000 relative

to PRM is 004A 70♦ Likewise* the Offset Address to' T0S is 004A60

and the Offset Address to the External 'Base is 003900*

Du rind the execution of the User process software* it is possible
to modify the contents of the addressing registers introduced
above* Doing so* of course* modifies the Offset Address of each
memory location in the process relative to that register* It may
in fact eliminate the Offset Address since only positive offsets
are valid* This can be illustrated by assuming that PRM .is set at
logical address 000040 within the User process* Doing so sets the
register con tents to 023540* At this point* the Offset Address of
memory location 028000 becomes 004AC0* However* if the PRM is set
so that it points to address 029000 (logical address 0005B00
within the User process)* this register c 3n no longer be used to
access address 028000 arid therefore* this memory location no
longer has an offset to the PRM register*

It should be noted that all memory locations outside the limits of

a process have no logical addresses within that process* Likewise?
memory locations outside of a process which is being executed have
no Offset Address relative to the internal or external base

registers since these locations cannot be accessed by these
registers*

*********CONFIBENTIAL* MOS TECHNOLOGY>INC * ********* P a g e - 21

Fins! Design Specification for the M C S 6 5 E 4 Microprocessor

2 ♦0 Description of the MCS65E4 Pin Functions

2♦1 Introduction

The initial versions of the M C S 6 5 E 4 will be available in a
standard 40-pin dual-in-line package* This is made possible by
multiplexing the address? data and bus status information onto a
set of 24 Pins* The pin configuration is as follows*

Function t of pins

1* Address Bus Middle/ Address Bus Low

(A9/A1-A16/A8) 3
2 . Address Bus H i 3 h / Date Bus Lo

(A16/DB0-A23/DB7) 8
3. Bus Status/ Data Bus Hi2h

(IACK/DB8-MIC/DB15) 3
4 . Row Address Strobe (RAS) 1
5. Column Address Strobe (CAS) 1
6 . Chip power (V D D rV S S) 9

7 . O s c i 1lato r o

8. Bus Clock (B C L K) 1
10. Memory Ready (RDY) 1
11 ♦ Interrupt Input (INT) 1
12. Reset (RES) 1
13 . Write Enables (WEL> W E H) 9

14. Bus Error (BERR) 1
15. Hold (HLD) 1
16. Instruction Intercept (II) 1

TOTAL 40

of these sets of pins is described in detail below*

2*2 Address Bus M i d d 1e/Address Bus Low (A9/A 1-A 16/AS)

The low order sixteen address bits (above AO) are multiplexed onto
eight pins in a manner which is compatible with industry standard
64-Kbit dynamic RAMS* These lines enter the high impedance state
for external DMA operations (see HOLD)*

2*3 Address Bus/Data Bus/Bus Status (A 16 / D B 0 - A 2 3/ DB 7t

IACK/DB8-MIC/DB15)

The high order eight address bits and the bus status bits are

multiplexed with the bi-directional data bits* During memory write
operations* the timing for these signals is the same as for the
low order sixteen address lines* For a memory read operation? the
MCS65E4 output drivers enter the high impedance state and the
memory devices place data onto these lines*

The high order address bits are normally stored in external
latches to be used as chip selects for the memory and I/O devices*
These signals are strobed by RAS as are the bus status bits* The
bus status bits are used to control specific functions such as
interrupt and DMA*

*********CONFIDENTIAL> MOS TECHNOLOGY>INC♦********* Page-

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

Bit Status Function

5 1
52
53

54

55
56

57

SS

Interrupt Acknowledge (IA C K)
Hold Acknowledge (H 0 L D A)
Last Instruction Cycle C L I O
I/O Reset (IORES)
Processor Instruction Fetch (INST)
F'rocessor Data Fetch (DAT)

Refresh Cycle (REF)
External Microcode Fetch (MIC)

2*3*1 Interrupt Acknowledge (I A C K)

The IACK bit goes high to signal the Interrupt Controller that it
can place the active interrupt reauest information on the low
order eight bits of the data bus* This operation is described in
detail in Section 4*4*4*13*

2*3*2 Hold Acknowledge (HOLDA)

The Hold Acknowledge bit goes high to indicate that the processor
will enter the HOLD state at the end of the present cycle* During
the HOLD state* the RAS and CAS signals continue to run 3nd the

bus status signals are generated by the processor during RAS*
However^ no data* address or write enable (U EL* WEH) information
is generated and the corresponding drivers remain in the high
impedance state at the appropriate time*

2*3*3 Last Instruction Cycle (LIC)

The LIC bit goes high to indicate that the current cycle is the
last cycle of an instruction execution seauence * This is used in
conjunction with bus arbitration logic in multi-processor systems
to control access to shared resources*

2*3*4 I/O Reset (IORES)

This bit goes low to cause the system I/O devices to be reset*

This occurs when a System Reset instruction is executed* Causing
the RES input signal to go low does not c a use this bus status bit
to go low* This allows resetting the processor without effecting
the peripheral devices*

2*3*5 Processor Instruction Fetch

This bit goes high to indicate that the address on the address bus
comes from the Processor Program Counter arid that the data being
fetched from memory will be placed into the input Queue*

2*3*6 Processor Data Fetch

This bit goes high to indicate that the address on the address bus
was generated as the result of an instruction execution*

2*3*7 Refresh Cycle

*********CONFIDENTIAL> MOS TECHNOLOGY*INC ********** Page- 23

Final Design Specification for the MCS65E4 Microprocessor

This bit does high to indicate that the current cycle is a memory
refresh cycle*

2*3*8 External Microcode Fetch

This bit does high to indicate that the current cycle is art
external microcode fetch cycle*

2*4 Row Address Strobe (RAS)

The Row Address Strobe is a clock signal used primarily to latch
the middle eidht bits of the address into external latches* These
can be discrete TTL latches for interfacing to peripheral devices
or to conventional static memories* In most cases? however? they
will be located in the dynamic memory devices* In addition to the

middle byte of the address bus? this signal indicates the presence

of valid data on the high order address lines arid on the Bus

Status lines* RAS will be held low by RBY but will continue
running during a HOLD operation*

2*5 Column Address Strobe (CAS)

The Column Address Strobe is primarily used to latch the column
addresses (low order eight address bits) into external latches*
This signal is also used to indicate that valid data is present on
the data lines during a memory write operation and to enable the
memory output drivers during a memory read operation* This signal

is synchronous with the BCLK signal* The CAS signal is held low by
RDY but will continue running during a HOLD operation*

2*6 Chip Power (VDDfVSS)

The MCS65E4 will by powered by +5*0 Volts DC applied between the
VDD and VSS pins (VDD = +5? VSS = Ground)*

2*7 Oscillator (Osc In? Osc Out)

The 8 Mhz oscillator can be controlled by a auartz crystal
connected between the Oscillator In and Oscillator Out pins* In
addition? the chip can be con trolled by an external oscillator by
driving the Oscillator In pin with a TTL level sauare wave*

2*8 Bus Clock (BCLK)

The Bus Clock corresponds to the normal Phase Two clock. in the
6502 microprocessor system* Since this signal is always present?
it can be used to synchronize the RDY? HOLD and BERR signals and

to control data transfers between the MCS65E4 and any 6502
interface device*

2*9 Valid Memory Address

This bit goes high to indicate that there is a valid memory
address on the address bus *

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC♦********* Page- 24

Final Design Specification for the MCS65E4 Microprocessor

2*10 Memory Ready (R D Y)

The Memory Ready input can

processor when interfacing
This signal operates in
microprocessor system with
to stop on both a read and
are described separately

be used to control the operation of the
to slower memory or peripheral devices*
the same manner as in the 6502

the additional capability of being able
a write operation* These two operations
below* The dynamic memory refresh

operation is disabled 3S long as RDY is held low*

2*10*1 Operation of RDY during Read Cycle

At the beginning of a memory read operation? the processor places
A 9 - A 2 3 and the bus status information on the multiplexed
address/data lines* This is followed by RAS going low to cause
this information to be latched externally* The address and bus
status information is then changed to A 1 - A 8 arid D 0 - D 15 * This is
followed by CAS going low and BCLK going high*

Immediately after BCLK goes high* the RDY line can be pulled low
to cause the processor to stop in its current state* If RDY is
pulled low during a memory read operation* the processor stops
with the data bus lines in the high impedance state* The RAS and
CAS signals remain low as long as RDY remains low* This will hold
the address in the external latches allowing whatever time is

necessary for the memory outputs to become valid*

2*10*2 Operation of RDY during Write Cycle

Timing for the Write cycle is very similar to that described above
for the Read cycle* The Write Enable Signals (WEL* WEH) will go
low immediately after the beginning of the cycle (coincident with
A 9 - A 1 6 going valid)* Immediately after RAS goes low* the data to
be written into memory is placed on the DB0-DB15 lines* If RDY is
pulled low during this cycle* the RAS and CAS signals remain low
arid the processor output data will remain on the DB0-DB15 lines*
The Write Enable lines will go high coincident with the trailing
edge of the BCLK pulse during which the RDY line returns high*

2*11 Interrupt Input (INT)

The MCS65E4 processor can be interrupted through the Interrupt

Input* Setting the INT Pin low causes the MCS65E4 to enter an
interrupt seouence at the end of the current instruction if the
Interrupt Inhibit bit in the Process Control Register is cleared*
The operation of the interrupt function is described in detail in
Secti on 4 * 0 *

2*12 Reset (RES)

The processor can be reset by applying a low signal to this input*
For power-on reset* this can be accomplished by connecting an R -C
circuit to the RES pin* Positive control of the reset function in
the peripheral devices can be accomplished by connecting these

devices to the IORES Bus Status bit* As long as the reset input
stays low* the processor will not perform any write operations*

*********CONFIDENTIAL* MOS TECHNOLOGY * INC* ********* Page-

Final Design Specification for the MCS65E4 Microprocessor

2*13 Write Enables (LJ E L ? W E H)

The write-enable s i g n 31 s coritrol the direction of data transfers
betweeri the MCS65E4 and memory*. If a write-enable line is high
(Read)? data will be t r3nsferred from memory to the processor* If

this s i g n 3 1 is low? dat3 will be transferred into memory* WEL

controls writing into the lower byte im memory (even addresses)
while WEH controls writing into the the upper byte (odd
3dd re ss es)*

2*14 Bus Error

The Bus Error pin can be used to indicate that 3n error occurred
during the previous cycle* This error C3n be the result of a
Virtual Memory Address f3ult? 3 dsts error detected in an external
EDC chip? or any other form of error* When this occurs? the
processor immediately suspends its current execution sequence and
traps to the operating system* The operating system can process

the error and? if appropriste? can then return to the execution
seauence which was interrupted*

2*15 Hold (HOLD)

The Hold pin can be pulled low to c3use the processor to 'stop and
to pl3ce its sddress and data bus into the high impedance state*
This is used primarily for external DMA and multiprocessor
operations* As long as the HOLD pin is low? the RAS and CAS
signals continue to operate normally arid the processor continues
to put out the Bus Status bits* However? no address or d3ts
s i g n 31 s 3re genersted by the processor 3nd the corresponding pins
remain in the high- impedance state except as required to gener3te
the bus status information 3nd to perform the required refresh

operations* If the external memory refresh is enabled during the

hold state (Hold = Low)? the HOLDA bus status bit will return low
periodicslly to signal the external devices that the processor

will place refresh addresses on the address bus

2*16 Instruction Intercept (II)

The Instruction Intercept can be used to cancel the execution of
an instruction within the MCS65E4* If this line is pulled low? the
current instruction execution terminates immediately* The
processor then treats the next byte in program sequence as 3n O p
Code snd immedi3t e 1y enters the appropriate execution sequence*
This pin is used primarily by Auxiliary Arithmetic Processors to
cancel the execution of intercepted instructions*

*********CONFIDENTIAL? MOS TECHNOLOGY?INC* ********* Page- 26

Final Design Specification for the MC365E4 Microprocessor

3*0 Internal architecture of the MCS6 5E 4

3 * 1 Introduction

All aspects of the internal MC365E4 architecture are designed to
achieve the desired level of performance in the smallest possible
chip size* Most of the registers are organized into a single
dynamic array with all data modification taking place in a
high-speed 8-bit ALU* Four internal cycles are executed for each
external (processor) cycle* This ratio of internal to external
cycles combined with the fact that the ALU is utilized in nearly
every internal cycle allows full 2 MHz operation in a processor
containing a full 64 bytes of register within a chip size usually
associated with 8 bit processors*

It should be noted that the device described below is only the

first implementation of the architecture described in this
document* This implementation tries to achieve a balance between
chip size and capability with a strong emphasis on minimizing chip
cost* It is assumed that future implementations of this
architectute will result in devices with increased capability
through larger control ROMS? through the integration of additional
system functions (keyboard interface* etc*) onto the processor*
and ultimately* by expanding the internal organization from 8 to
32 bits* All of these configurations will be upward compatible
with the earlier devices*

The MCS65E4 is organized into an Execution Unit and an Execution
Control Unit* Each of the major components which comprise these
two units is described briefly below*

3*2 Execution Unit

3*2*1 ABL/ABM Registers

Those registers which 3re associated with the multiplexed low
order sixteen address pins are located in a single dynamic array*
These registers are!

1 * P r o g r a m C o u n t e r Low and Mi d d l e

2* R e f r e s h R e g i s t e r

4 ♦ Add ress R e g i s t e r 1 Low and Midd l e

5 * Add ress Reg iste r 2 Low and Middle

6* A dd r e s s R e g i s t e r “7 Low and M i d d 1e

These registers sre supported by an eight-bit incrementer which
operates in parallel with the ALU described below*

3*2*2 Register Array

The complete register array is contained in a matrix of dynamic
RAM cells* The traditional 3-2-2 dynamic RAM cell has been
expanded to allow two READ buses and one WRITE bus* The register
refresh operation is handled by a combination of hardware arid
software in a manner which is totally transparent to the user*

*********CONFIDENTIAL* MOS TECHNOLOGY * INC********** Page- 27

Final Design Specification for the M C S 6 5 E 4 Microprocessor

3*2*3 Arithmetic/Logic Unit (ALU)

Most of the data modification operstions take place in the ALU*
This includes normal execution operations as well as middle and
high order Program Counter incrementing a nd register incrementing?
decrementing? etc* The ALU is equipped with high speed carry

look-ahead to allow it to complete any operation within one

internal cycle* This allows an 8-hit ALU to perform most of the
data manipulation functions required by a 32-bit processor*

The specific functions performed in the ALU are as follows:

1 *‘ Da t a shifting
2* Address limit checking
3* 2's complement binary addition and subtraction
4* Packed BCD addition ancT subtraction
5* Logic AND
6* Logic OR
7* Logic EOR

3*2*4 Input Queue

Data which is fetched from memory under control of the program
counter is first loaded into the input queue where it is held

until it is needed by the control logic* The queue is usually
filled by 8p re -f e t c h i n g • the next instruction sequence during each
execution*

3*2*5 ABH/DB Registers

All of the registers associated with the Data Bus arid the Address
Bus High are located in a single dynamic array* This facilitates
the multiplexing of these signals onto a set of sixteen pins as

described in Section 2* These registers are as follows:

1* Program Counter High

2* Eiata Latch Low and High
3* Address Register 1 High
4* Address Register 2 High

5 * Address Register 3 high

The bus status signals are generated in the control section and
are multiplexed with the appropriate data bus signals at the
bonding pad*

3*3 Execution Control Logic

3*3*1 Control Registers

All of the registers needed to assure proper instruction execution
are contained in the Control Register Section* These registers
perform such operations as storing execution control flags?
selecting registers within the register array? counting execution
cycles and addressing the microcode array*

3*3*2 Microcode Array

*********CONFIDENTIAL? MOS TECHNOLOGY?INC********** Page- 2S

Final Design Specification for the M C S 6 ̂ E 4 Microprocessor

Both the microcode ROM and the Nanocode ROM are located in a
single array* This assures minimum chip size since only one set of

buses* decoder/drivers* etc* is required* In addition? this array
is organized in a manner which allows the total size of the ROM to
be varied without affecting the remainder of the chip* This will
allow the rapid generation of additional versions of the processor
which provide additional capability through expanded microcode*

*********CONFIDENTIAL> MOS TECHNOLOGY * INC * ********* F’ a g e - 2 9

Final Design Specification for the MCS65E4 Microprocessor

4 ♦ 0 MCS65E4 Microprocessor Software Architecture

4*1 Introduction

The primary goal of the MCS65E4 architecture is to shorten the gap
between the processor hardware and the high level language
architecture while at the same time retaining the generality which
will allow it to support a broad range of applications* In
particular? the software architecture of the MCS65E4 exhibits the
following characterictics J

1♦ Strong multi-tasking support*

2* Separation between data and program*

3* 1Three-operand" addressing* i* e * * all data operations
are memory-to-memory*

4* Data structures (array* record* etc*) directly
resembling high-level language practices*

4*2 MCS65E4 Internal Architecture

4*2*1 Introduction

The internal architecture of the MCS65E4 contains all of the
registers needed to support execution of the instruction set
described in Section 4*8* This set of registers is divided into

those which are visible to the programmer (hereafter referred to
as the Process Registers) and 3 set of temporary data registers

which are used during instruction execution* The process registers
are as follows!

1* Process Base Register (BAS)
2* Process Limit Register (LMT)
3* Process Program Counter (PPC)
4* Primary Base Register (PRM)
5* T o p of Stack-. Register (TQS)
6 * Process Control Register (P C R)

It should be noted that for speed purposes? the internal process
registers (PRM* TOS* LMT* and PPC) contain physical addresses
during process execution* However* the MCS65E4 user does not see

these physical addresses since they are converted to logical
addresses whenever the contents of one of these registers is

transferred into memory* This is accomplished by subtracting the

contents of the Process Base Register (BAS) from the address b e i n g
transferred into memory* Similarly* the logical addresses
contained in memory are converted to physical addresses when the
internal process registers are loaded*

4*2*2 Process Base Register (BAS)

The Process Base Register sets the lower limit of the memory space
in which the process must execute* This memory space starts at the
first byte of the page whose address is contained in BAS* i*e**
the BAS register contains the page number of the physical address
at which the process starts* For example* if the BAS register
contains 04E7* the lowest address which is available to the

*********CONFIDENTIAL* MOS TECHNOLOGY * INC * ********* Page- 30

Final Design Specification for the MCS65E4 Microprocessor

process is 04E700*

4*2*3 Process Limit Register (LMT)

The Process Limit Register sets the upper limit of the memory
space in which 3 process is to execute* At the 33me time? it

identifies 3 page in memory which is used to store exception

vectors 3nd other information required to control execution of the
process* The highest sddress 3V3il3ble to a process is the last
byte of the Limit Page* For example? if the LMT register contains
0D34? the highest available sddress in the process is 0D34FF*

4*2*4 Process Pr og r3m Counter (F’PC)

Execution of MCS65E4 programs proceeds under control of the
Process P ro g r3m Counter* The operstions sssociated with this
register are much the same as in any programm3ble processor*

4*2*5 Primary Base Register (PRM)

The Primary Base register is provided to control the accessing of

data during instruction execution* Address offsets contained in

the MCS65E4 instructions are added to the PRM register to obtain
the physical address of the dats*

4*2*6 T o p of Stack. Register (TOS)

The T o p of Stack Register controls access to the process stack
during instruction execution* The steck and To p of Stack Register
(TOS) operate in a conventional manner to store subroutine return

addresses? subroutine data? interrupt return addresses? etc* In
addition? the TOS C 3 n be used as 3 b3se register to control the
accessing of dats in memory utilizing offset, addressing* This

operates in exactly the same manner as does Offset Addressing

using the Prim3 ry B 3 s e (PRM) register*

4*2*7 Process Control Register (PCR)

The Process Control Register cont3ins 3 number of flsgs 3nd
control bits which sre used to control instruction execution
within the processor* The PCR register bits aret

Bit Designstion

0 K - Kernel Mode F 13 g
1 U - User/Supervisor Mode
9 I - Interrupt Inhibit Flag
3 E - Eneble Exterr»3l Memory Refresh
4 P - Enable Periodic Interrupt
5 S - Eneble St3ck Bound3ry Check
6 D - Debug Mode

7 T - Dis3ble All T r 3 p s

8-11 M - Microcode Select
12-15 R - Refresh R31e

******** CONFIDENTIAL? MOS TECHNOLOGY ?INC* ********* P 3 g e - 31

Final Design Specification for the MCS65E4 Microprocessor

4 * 2 * 7 * 1 Kernel Mode Flag (K)

The Kernel state (K = 1) represents the first level of the
operating system* This flag is set and cleared automatically as
the processor moves into arid out of the Kernel state*

4♦2 * 7 ♦ 2 User/Supervisor Mode (U)

The User/Supervisor flag is set to 3 logic 1 to enable execution
of 3 number of privileged instructions which are normally
available only to the operating system* This flag is set
automsticslly by the Reset input or when the processor exits from

3 User process* It is cle3red when a User process is invoked*

4*2*7*3 Interrupt Inhibit Flag (I)

The Interrupt Inhibit Flag can be set to disable interrupts on the
INT input*

4*2*7*4 Enable External Memory Refresh (E)

The E flag must be set to a logic 1 to enable the processor to
perform periodic external memory refresh operations* The internal
refresh logic will assure that each row in the dynamic memories
will be refreshed at a rate determined by the programmable Refresh
Control Counter*

4*2*7*5 Enable Periodic Interrupt (P)

The P flag can* be set to a* logic 1* to cause the processor to

execute a trap each time the memory refresh logic "rolls over**
This occurs at a rate determined by the Refresh Control Counter
(typically between 2 and 4 milliseconds)* This trap will occur

whether or not the external refresh operation is enabled*

4*2*7*6 Enable Stack Boundary Check (S)

The S flag can be set to cause the processor to execute a trap
whenever the stack crosses a P 3 g e boundary during a PUSH or POP
operation* This allows either the process or the operating system
to verify that the stack will not over-write data in memory*

4*2*7*4 Debug Mode (D)

The Debug flag can be set to allow single-instruction execution of

3 User process* Esch time the processor enters 3 User process it
will execute a single instruction and will then trap back to the
operating system? allowing the operating system to display the
effects of each instruction execution for debug purposes*

4 * 2 * 7 * 8 Enable Read Before Byte Write (W)

All trsps 3re d i s a h 1 ?d if this flag is set*

4 * 2 * 7 * 9 Microcode Select (M)

*********CONFIDENTIAL? MOS TECHNOLOGY >INC * ********* Page- 32

Final Design Specification for the MCS65E4 Microprocessor

These four bits directly reflect the contents of the internal
Microcode Select Register* This data is placed onto bits 12-15 of
the address bus during an external microcode fetch*

4*2*7*10 Refresh Rate

These four bits d i r ec 1 1y reflect the contents of the internal

Refresh Control Register* This data directly controls the rate at
which the MC365E4 refreshes the external memories*

*********CONFIDENTIALt MOS TECHNOLOGY ?INC********** P a g e- 33

Final Design Specification for the M C S 6 5 E 4 Microprocessor

. i iTl i t F' 3 g e

D y n a m i c
Memory

Base Page I

K e r n e 1 R e s e t Vector

Process Vactor'

Process Software

Process Stack

Free Memory

Dynamic Data (Heap)

Static Data

Global Data

Inter-process Control*

*~ Kernel and Supervisor Process only

Figure 4*0 Suggested Process Organization in the MCS65E4 System

*********CQNFIDENTIAL> MOS TECHNOLOGY ?INC * ********* Page-

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4*3 Process Struetu r e

4 .>3*1 Introduction

Those factors which inf11jence the organization of a process within
the MCS65E 4 are much the same as the factors which govern the
organization of memory within an MCS6502 system* These are 3s
f o .1 lows'

1* The vectors associsted with the processing of interrupts?

system calls? etc* are located in the Limit page? i* e*?
in high order memory* This generally dictates that
program memo ry be at the upper limit of the address space
allocated to the process*

2* The availability of short offsets from the Process Base
Register would seem to dictate that Read/Write memory be
located in the low order portion of the address space
allocated to a process* In addition? the first three
bytes of memory within the Kernel process arid within any
Operating System process must be read/write memory*

These factors lead to the general process organization shown in
Figure 4*0* However? this process structure is by no means

mandatory* This is particulsrly true if the entire process is

located in read/write memory* As long as the process vectors
remain in the addresses outlined* it is possible to place the

process software anywhere in the process address space? such as
directly above the static data are3* This would place the entire
dynamic data area (including the stack.) in high order memory*

4*3.2 Inter-process Contro 1

As mentioned above? the first three bytes of the Kernel arid
Operating System processes must be reserved for use by the MCS65E4
to control movement into arid out of the process* These addresses
must be located in read/write memory* The processor will transfer
data into arid out of this ares during the servicing of interrupts?
system calls? etc*

The MCS65E4 architecture does not require that the first three
bytes of the User process be reserved*

4*3*3 Global Data

The first 64 bytes of memory above the process base can be
accessed with a single byte of addressing information* In
addition? addresses 65 through 511 can be accessed with one
additional byte of offset (two bytes total)* For this reason? this
region should be used to store those static variables which are
accessed most f r e o u e n t l y *

4*3*4 Static Data

This area consists primarily of static variables which will be
utilized by the process software* This data should be accessed

*********C0NFIDENTIAL? MOS TECHNOLOGY?INC********** Page- 35

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

through the Primary Base Register or through the Process Base
R e g i s t e r ♦

4 v 3♦5 Dynamic M e m c ry

The dynamic memory area consists of three sections* These are the

dynamic data area* the free memory area and the process stack.*
Each of these is discussed separately below*

4♦3 * 5♦1 Dynamic Data

The first section is the dynamic data area in which the processor
allocates memory to dynamic variables during process execution*
This data can be accessed through the Primary Base Register arid
through the external base registers* This area may be used for a
process heap? or for the storage of higher level processes called
during execution of process software*

4* 3 * 5 * 2 Free Memory

The free memory area acts as a buffer between the dynamic data arid

the process stack* Since the MCS65E4 stack grows downward toward
lower-order memory? the optimum configuration would be that in
which the dynamic data area grows upward into the free memory area
while the stack, grows downward* The MCS65E4 architecture contains
provision for assuring that these two data areas do not overlap*

4 * 3 * 5 * 3 Process Stack

Transfer of data into arid out of the process stack is performed

under control of the T o p of Stack Register within the MCS65E4
processor* In the MCS65E4? the TOS register always contains the
physical address of the last byte of data placed onto the stack*

Therefore? the TOS register is decremented before data is placed

into the stack and is incremented after each t r ansf e r of data out
of the stack *

4*3*6 Process Software

The process software C3n generally be viewed as " static1? i*e*?
the memory requirements will not change during the execution of
the process* Therefore? this software should generally be located
outside of the dynamic memory area* As outlined above? MCS65E4
architecture requires that a set of process vectors be located in
fixed positions within the process address space* For this reason?
it will generally be more satisfactory to place the process
software in high-order memory alorig with these vectors*

4*3*7 Process Vectors

Processing of interrupts? system calls? arid system errors is

controlled by a set of vectors which must be located in the Limit

Page of the process*

4*3*8 Kernel Reset Vector

*********CONFIDENTIAL> MOS TECHNOLOGY>INC * ********* Page- 36

Final Design Specification for the MCS65E4 Microprocessor

In the Kernel Process? the high order four bytes of memory are
reserved for storing the Kernel Reset Vector ♦ This is used by the
processor during the system reset operation* The Reset Vector is
stored in the same format as the exception vectors*

4*4 Execution of Processes in the MCS6 5E 4

4*4*1 -Introducti o n

The registers described in Section 5*2*1 are designed to support
the execution of a hierarchy of processes in a multi-task
environment ijnder the cont ro1 of a sophisticated operating system*
One of the key aspects of this architecture is support from the

processor to initiate a new process? to exit from a process in the
event of a fault or interrupt? and to return to an interrupted

process* All of these inter-process operations are described in
this section*

4*4*2 Basic Inter-process controls

4 * 4 * 2 * 1 I n t r o d u c t i o n

The MCS65E4 provides five primary tools for controlling movement
into and out of processes* They are the following?

1* Kernel Reset Vector
2* Process Parameter List

3* Process Link
4* Pointer to Current Caller
5* Process Stack.

4♦4 * 2 * 2 Kernel Reset Vector

The high order four memory locations in the Kernel process
(physical addresses FFFFFC-FFFFFF) are reserved for storage of the
Reset vector*

4*4*2*3 Process Parameter List (PPL)

The Process Parameter List (PPL) contains the information
necessary to enter a process for the first time* The arguments in
this list are as follows*

1 * List Size

This eight-bit parameter specifies the number of bytes of
data contained in the list (not including the List Size
p a r a m e t e r) *

2* Process Base Address

The Process Base Address parameter specifies the logical
page address of the Base Page of the new process within
the caller's address space*

3* Process Size

*********CONFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 37

Final Design Specification for the MCS65E 4 Microprocessor

This 16-b i t parameter specifies the logical page address
of the Limit Page within the new process? it e *7 the page
address relative to the new process's base? not to the
caller's base * This data is used by the M C S 6 5 E 4 to load
the Process Limit Register during process initialization*

4* Program En t ry Address

This 24-bit parameter specifies the logical address

within the new process of the entry point for the process
s o f t w a r e * This data is used to load the Process P r o g r a m
Counter during process initialization*

5* PRM Initial Value

This 24-bit parameter specifies the logical address
within the new process of the initial Primary Base

Register contents* This data is used to load the PRM
register during process initialization*

6* TOS Initial Value

This 24-bit parameter specifies the logical address

wit hi in the new process of the initial top of stack* The
MCS65E4 uses this data to load the TOS register during
process initialization*

7 * Process Control Register Initial Value*

This 16-bit parameter specifies the initial contents of
the Process Control Register* This data is transferred
directly into the PCR during process initialization*

4 * 4 * 2 * 4 Po i rite r to Current Caller

During the execution of any process (other than the Kernel
process) it is very important that the MCS65E4 be able to exit
from the process and return to its caller* This is accomplished by

utilizing physical addresses 000000 through 000002 within the

Kernel process to store the physical address of the current
caller's T o p of Stack * This information will be utilized by the

MCS65E4 during the processing of any exceptions which require that
execution of the current process be suspended *

Addresses 000000-00000 2 within the Kernal Process are reserved and
should not be used by the Kernel software for general data
storage*

4 * 4 * 2 * 5 Process L i nk

For Operating System processes it is necessary that the MCS65E4 be
able to exit to both lower level and higher level processes* The
Pointer to Current Caller described previously stores the physical
address of the caller's top of stack? allowing a process to return
to its caller at any time* However? when a higher level process is

*********CGNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 38

.rial Design Specification for the M C S 6 5 E 4 Microprocessor

i nv ok ed ? it uill be necessary to store this pointer in a manner
which assures that it will be available when the MCS65E4 exits
f roiTi the higher level process and b e 3 i n s executing the

intermediate level process once sgain * This is accomplished by

storing 'the information contained in the Pointer to Current Ca 11 er
into the first three bytes of the intermediate process (logical
addresses 000000 through 000002) before exiting to the higher
level process* These three logical addresses will be referred to
as the Process Link*

It should be noted that the Process Link, is a reserved area arid
should not be used by the Operating System Process for general
data storage* In addition* this process link does not exist within
the User process since it is impossible to invoke additional
processes within the User process*

4 ♦ 4 ♦ 2 + 6 Process Stack

Throughout the inter-process operations described below? the
process stack is utilized for saving the internal registers when
exiting from a process*

4*4*3 Inter-process Operations

4 * 4 * 3 * 1 Introduction

The manner in which each of these architectural elements is used
in a system can be described most effectively through a detailed
discussion of the primary inter-process operations that must take
place during the operation of a full scale multi-task

microcomputer* Specifically? these operations are!

1* System Reset*
2* Invoking higher level processes*
3* Exiting from a process in the event of an interrupt?

system call? or bus error*
4* Returning to a process after an interrupt? system call 7

or bus error*

4 ♦ 4 * 3 ♦ 2 System Reset

When the MCS65E4 is reset? it immediately enters the Kernal mode
with the Base? Limit and Process Control registers initialized as
f o l l o w s !

Register

Process Base (BAS) Register

Process Limit (LMT) Register

Process Control Register (PCR)

Bit 0
Bit 1
Bit 2

(K)
(U)
(I)

Initial Contents

0000XX

FFFFXX

1

1

0

*********C0NFIDENTIAL> MOS TECHNOLOGY?INC ********** Page- 39

Final Design Specification for the MCS65E4 Microprocessor

Bit 3 (

B i t 4 (P
S

D
U

M
R

0

0

0

0

0

0

B i t 5 (

Bit 6 (
A.* I t / \

Bits 8-11 (
Bits 12-15 (

Bit 7

0 (2 MSEC Refresh rate)
The processor then fetches a 2 4-bit address utilizing the
information stored in the Reset Vector (addresses FFFFFFC through

FFFFFFF) arid begins executing the instructions located at this

address* The manner in which the Reset Vector information is

utilized to determine the Kernel starting address is described in
Paragraph 4*7 *6*2*

4 * 4 * 3 * 3 Invoking Additional Processes

Higher level processes can be invoked either from the Kernel
process or from an Operating System process by executing an 10S or
TASK instructors The single operand contained in the instruction
must point to the Process Parameter List for the new process* The
MCS65E4 begins execution of the IOS or TASK instruction by placing

the contents of the internal registers onto the current process
stack and then examining the Process Parameter List to determine
the operating parameters for the new process* More specifically?
the sequence proceeds as follows!

1* The contents of the Process registers are pushed onto the

current process stack* After this operation? the process
stack contains the following:

2* The processor then fetches the contents of the Pointer to
Current Caller (physical addresses 000000-000002) arid
places this information into the Process Link of the
current process (logical addresses 000000-000002 of the
current process)*

3* The Pointer to Current Caller is then updated by
transferring the data contained in the TOS register into
physical addresses 000000 through 000002*

M e m o r y
L o c a t i o n C o n t e n t s

T0S+11
T 0 S + 10
TOS + 9

TOS-f-8
TOS + 7
TOS + 6

TOS + 5

TQS + 4
TOS + 3

TOS + 2

T0S + 1
TOS

PCR? Bits 8-15
PCR? Bits 0-7
PRM? Bits 16-23

PRM? Bits 8-15
PRM? Bits 0-7
PPC? Bits 16-23

PPC? Bits 8-15

PPC? Bits 0-7
LMT? Bits 8-15

LMT? Bits 0-7

BAS? Bits 8-15
BAS? Bits 0-7

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 4 0

Final Design Specification for the MCS65E4 Microprocessor

There are several items worth noting in the preceeding operations*
The first is that the addresses which are placed onto the caller's
stack from the internal process registers are physical addresses*

No attempt is made to convert these physical addresses to logical

addresses. In addition ? the processor does not a 11 e m p t to format
this data in a manner which would facilitate subsequent

manipulation through the normal processor software* Both of these

are made possible by the basic nature of process execution wi thin
the MCS65E4 architecture* In particular? it is assumed that the
limits within which the new process will execute will not include
that portion of memory in which the caller's stack is located and
that it will not include the caller's Base Page or Limit Page*
Therefore? it will be impossible for any higher level process to
access this data* Similarly? the use of physical addresses on the
caller's stack is made possible by the fact that the caller cannot
be moved within the physical address space while a higher level

process is being executed*

After the preceeding operations are complete? the M C S 6 5 E 4 is ready
to enter the new process* This is accomplished 3S follows*

1* The processor first calculates the physical address of
the PPL for the new process* This is accomplished through
one of the normal operand addressing sequences described

in Section 4*5 utilizing the information contained in the
instruction* This physical address is then transferred
into one of the internal registers for use during the

remainder of this operation*

2* The first item in the PPL specifies the number of bytes
of data which are contained in the list* This list length
parameter is transferred into an internal register to
control termination of the IOS or TASK instruction*

3* The second parameter in the PPL contains the logical
address of the base of the new process* This is expressed

as a 16-bit logical page address within the calling

process* The physical address of the base of the new
process is determined by adding this data to the caller's
physical base address* The resulting physical page
address is loaded into the Process Base register*

4* The third item in the Process Parameter List specifies
the number of pages of memory which must be allocated to
the process* This information is added to the Process
Base Register* The resulting 16-bit physical page address
is transferred into the Process Limit Register*

5 * The fourth item in the PPL specifies the logical address

of the process entry point? i * e*? the 1 reset v e c t o r 1 for
the process* This 24 -bit parameter is added to the

contents of the Process Base Register? i * e * to the base

address of the new process? to determine the physical
address of the process entry point* This physical address

is loaded into the Process Program Counter*

*********CONFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 41

F i ns 1 Design Specification for the MCS65E4 Microprocessor

Those items listed shove represent a minimum length PPL* However?

*t is Possible to initialize additional process registers by
extending the length of the PPL* In this case? the MCS65E4 will
fetch additional parameters in the following ordert

1* The first parameter in the extended PPL specifies the
logical address of the initial T o p of Stack within the
new process* This data is added to the Process Base
Register* The resulting physical address is transferred
into the TOS register*

2 * The next parsmeter in the PPL specifies the initial

contents of the Process C o n t r o 1 Register* This
information is transferred directly into the PCR*

3* The next parameter specifies the initial value of the

Primary Base Register* This is expressed as a 24-bit
logical address within the new process* This data is

added to the contents of the Process Base Register* The
re suiting physical address is transferred into the
Primary Base register*

4 * 4 * 3 * 4 Exception Processing

4 * 4 * 3 * 4 * 1 Introduction

Exiting from the current software occurs whenever the MCS65E4
encounters one of a number of exceptions* These exceptions may be
the result of 3 sign3l on one of the processor's input pins
(interrupt? etc*)? it may be the direct result of process software

(System Call instruction? Data Access Trap? etc*)? or it may be
due to a problem in the data being processed* Any of these
conditions will cause the MCS65E4 to discontinue execution of the
current software and to begin execution of an exception handler*
Trie procedures involved in doing so are described in detail in
this section*

The MCS65E4 exceptions can be divided into 3 number of classes*
The first are those 'privileged* exceptions which must be serviced
by the operating system (by a Supervisor Mode process)* The second
consists of those which can be serviced within a User process* In
addition? a number of exceptions are recognized at the end of an
instruction execution sequence while others must be recognized and
processed immediately* As shown in the discussion below? each of
these exception groups is handled differently*

All exceptions? regardless of type? 3 r e serviced under control of
an exception vector located in a reserved portion of the Limit

Page* Within the User process? however? there is no provision for
storing vectors for the privileged exceptions* These exceptions
are serviced by returning immediately to the current process's
caller* For this reason? the User process vectors are a subset of
those which must be stored in the Supervisor Mode processes
(Operating System and Kernel)* All of these exceptions are
described in detail in Section 4*4*4* The Exception Vector format
and the manner in which the MCS65E4 utilizes the exception vector

*********CONFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 4 2

Final Design Specification for the MCS65E 4 Microprocessor

information to determine the address of the exception handler are
described in Section 4*7*6*

4 * 4♦3 ♦ 4♦2 Servicing Exceptions Within the Current Process

Many of the fault conditions occuring within the MCS65E4 system
can be serviced by the currently executing process* When a
n o n - p r i v e 1 e g e d exception occurs during the execution of a User
Process or when any exception occurs during execution of an
Operating System process? the MCS65E4 immediately checks the TRAP
bit in the appropriate exception vector* If this bit is a logical
zero 7 the exception is serviced in the current process as

described in this paragraph* If the TRAP bit is a logic 1? the
processor will return to the current caller for servicing the
exception* (Note that all exceptions which occur during execution
of the Kernel Process must be serviced within the Kernel Process
software*) The sequence of operations which tak.es place when an
exception is serviced within the current process depends on
whether the exception is recognized at the end of each machine
cycle or between instructions* For those exceptions which 3re
recogriized only between instructions? the sequence proceeds as
follows!

1* The physical address contained in the Process Program

Counter is con verted into the corresponding logical

address and is then pushed onto the current process
stack* The TOS Register is adjusted to point to the last

byte of data which was pushed onto the stack* After the
above sequence is complete? the process stack contains
the following?

M e m o r y
Location

TGS + 2
TOS+1
TOS

Contents

PPC 7 Bits 16-23
PPC? Bits 8-15
PPC? Bits 0-7

2* The MCS65E4 then loads the physical address of the

exception servicing software into the Process Program
Counter* This address is determined by adding the logical

address referenced by the exception vector to the
contents of the Process Base Register* The processor then
begins executing the software at this address*

After servicing of the exception is complete? the processor can
return to the process software at the point where the exception
occurred by executing a Return From Subroutine (RTS) instruction*
This transfers data from the process stack into the Process
Program Counter? adjusting the TOS Register to point to the last
valid byte of data in the stack *

For those exceptions which must be recognized at the end of a

processor cycle rather than at the end of the current instruction?

the processing sequence is much more complex than that Just

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* P 3 g e- 43

F i n a 1 Design Specif i Cot i on for the M C S 6 5 E 4 Microprocessor

described* This is caused by the fact that it will be necessary to

return to the middle of an instruction execution sequence after
exception processing is complete* This is accomplished by p 1 acing
the contents of all of the internal registers onto the stack?

including all of the Process registers (except the Process Base
Register and the Process Limit Register)? all of the temporary
data registers used during instruction execution and all of the
various latches? registers? etc* which control the instruction
execution sequences* This sequence of operations proceeds as
followst

1* The M C 3 6 5 E 4 first places the con tents of the Process

Registers? the temporary data registers? 3nd the rriisc*
execution control registers? latches? etc* onto the
stack.* The processor does not attempt to organize this
data in a mariner which will facilitate processing of this

information by the exception handler* After this
operation is complete? the process stack contains the

following*

Memory

Location

TQS+59

TOS+58
TOS + 57
TOS+56

TOS+55
TOS+54

TOS+53

TOS+52

TOS+51
T0 S +5 0•

TGS+49

TQS+48
TOS + 47

TOS+46
TOS+45
TOS+44
TOS+43
TOS+42
TOS+41

T0S+40
TOS+39
TOS+38

TQS+37

TOS+36
TOS+35
TOS+34

TOS + 33
TOS+32

TOS+31
T0S+30
TOS + 29
TOS+28
TQS+27

C o n t e n t s

Temporary Operand Register

Temporary Operand Register 7

Temporary Operand Register 6

Temporary Operand Register 5

Temporary Operand Register 4

Temporary Opera rid Register 3

Temporary Operand Register 2

Temporary Operand Register 1

Temporary Address Registers

*********CONFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 44

Final Design Specification for the MCS65E4 Microprocessor

TOS+26
TOS + 25
TOS+24
TGS+23
TOS+22
TOS+21
T0S+20

TOS+1?

TOS+18
TOS+17

TOS+16

TOS+15

TOS+14
TQS+13
TOS+12
TOS+11
T0S+10
TOS + 9
TOS + 8
TOS + 7
TOS + 6

TOS + 5
TOS + 4
TOS + 3

TOS + 2

TOS + 1
TOS

PRM y
* ?

Bits 16-23
Bits 8-15

Bits 0-7

Bits 16-23

Bits 8-15

PPC;

1 t

1 ? Bits 0-7
Literal Register

Internal Control Registers

Data Input Latch? Bits 8-15

> Bits 0-7
Data Output Latch? Bits 8-15

? Bits 0-7

2♦ The MCS65E4 then loads the physical address of the

exception servicing software into the Process F‘rograiTi
Counter* This address is determined by adding the logical
address referenced by the exception vector to the
contents of the Process Base Register* The processor then
begins executing the software at this address*

After servicing of the exception is complete? the processor can
return to the process software at the point where the exception
occurred by executing a Return From Exception (RTE) instruction*

This transfers all of the data previously placed onto the process

stack back into the appropriate processor registers* The TOS
Register is then adjusted to point to the last valid byte of data

in the stack* The MCS65E4 then begins execution of the instruction
sequences which had been interrupted by the exception*

4*4*3.4*3 Servicing Exceptions Within the Current Caller

If the TRAP bit is set within the
privileged exception occurs within
must exit from the current process
process's caller to service the e
operations is much more complex than
of the need to push the contents of
onto the stack, to allow a return to

The sequence of operations which tak
whether the exception was recognized

exception vector? or if a
a User Process? the MCS65E4
and return to the current

xception* This sequence of
that described above because
all of the process registers
the process at a later time*

es place depends primarily on

at the end of an instruction

*********CGNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 45

Final Ei e s i g n Specification for the M C S 6 5 E 4 Microprocessor

execution or during an instruction* In the latter case? the
processor will begin the exception processing by first placing the
contents of all of the internal registers in exactly the same

sequence as described above (Paragraph 4*4*3*4*2)* After this

o p © ration is complete? the remainder of the Process Registers are
placed onto the stack in a manner which is compatible with the

Process Parameter List described above* This allows the MCS65E4 to

return to the process at a later time utilizing the same IOS or
TASK instruction which was used to enter the process initially*

After this sequence of operations is complete? the processor is
ready to exit from the process and to return to the current
caller* This is accomplished as follows!

1* The processor first fetches the address of the current
caller's top of stack from absolute addresses
000000-000002* This is placed into the TOS Register*

2* If the processor is returning to an Operating System
process? the data in the Process Link is then moved into
the Pointer to Current Caller*

3* The Processor next transfers the data from the caller's
stack into the internal process registers* This allows

the processor to begin executing the caller's exception
servicing software*

4* Before executing the exception handler within the caller?
the processor first pushes the information which will
allow returning to the process which was interrupted by
the exception* This is accomplished by first calculating
the logical address within the caller of the T o p of Stack
for the interrupted process by subtracting the physical

address of the Caller's base from the physical address of

the T o p of Stack for the higher level process* This
information is then pushed onto the caller's stack*

5* If there are any exception qualifiers associated with the
exception? this information is then pushed onto the
caller's stack*

6 * The processor then fetches the appropriate exception
vector from the Limit Page of the caller* The logical
address referenced by this vector is transferred into the
Process Program Counter* The MCS65E4 then begins

executing the software located at this address*

4*4 * 3 * 5 Returning to a process after an interrupt? system call?
or bus error*

The procedures which allow returning to a process which had been

suspended by the occurrance of an exception are exactly the same
as those which are utilized for entering the process for the first
time* This is made possible by the fact that the processor created
a Process Parameter List on the stack of the suspended process
before exiting* When returning to the process? the single operand

*********C0NFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 4 6

Final Design Specification for the MCS65E4 Microprocessor

in the IOS or TASK instruction must reference this PPL* This is

facilitated by the fact that the logical address of this PPL
within the caller had been placed onto the caller's stack* This
logical address can be accessed by referencing the T o p of Stack
within the TASK or IOS instruction* Note that the amount of data
which must be transferred into the internal processor registers is
controlled by the List Length parameter which was placed on the
stack last* This allows the same procedures for returning to the
process whether the exception was recognized after an instruction

execution sequence or in the middle of an instruction*

4*4*4 Exception Vectors within the MCS6 5 E 4 Process*

4 * 4 * 4 * 1 Introduction

The Exceptions Vectors and their
a r e as f o 1 1 o w s I

location within the limit page

Non-privileged Exceptions

1 *

4 *
rrU *
6 *

7*

8*

? *

10 *

Undefined O p Code
Ur;defined data type
Subscript out-of-limits
Operator arid Operand not compatible
O v e r f l o w

Other arithmetic error (divide by zero; etc*
Non-conformable data types

Instruction Access Trap

Data Access Trap
Stack P3ge Boundary Trap

Add ress

F8-FB
F4-F7
F0-F3
EC-EF

E8-EB
E4-E7
E0-E3
DC-DF

D8-DB
D4-D7

Privileged Exceptions

(IRQ)

4 *

Interrupt Request
System Call
System Call with message

Channel Trap; Channel A
5* Channel Trap; Channel B
6* Bus Error
7* Access out-of-limit
3* Debug Trap

Address

D 0 - D 3
CC-CF
C3-CB
C4-C7
C0-C3
BC-BF
B8-BB
B4-B7

Each of these is described in detail below* Note that within the
User process; addresses D4 through FB are reserved for the storage
of exception vectors* Addresses B4 through It3 are available for

general data storage* In the Supervisor Mode processes; addresses

A8 through FB are reserved arid should not be used for general data
storage* Addresses FC through FF are used within the Kernel

process to store the Kernel Reset Vector* Addresses FC-FF cannot
be used for general data storage in either the Supervisor or User
Modes ♦

The exception vectors are 24-bit pointers stored in memory in a
format which is compatible with the data descriptor described in
Section 4*7* Within the exception vector descriptor header; the
TRAP bit is used to indicate when the exception is to be serviced

*********C0NFIDENTIAL; MOS TECHNOLOGY ?INC********** P a g e- 4 7

Final Design Specification for the MCS65E 4 Microprocessor

in the current process* If this bit is a logic zero? the vector is
assumed to reference a logical address within the current process*
The formst of the Exception Vectors and the manner in which the
the MCS65E4 utilizes the information in the Exception Vector to
determine the address of the exception handler are described in
S ec t i on 4*7*6*

4 * 4 ♦ 4 * 2 Undefined O p Code Trap

The MCS65E4 will trap through this vector whenever it encounters

an O p Code which is not supported in the standard instruction set*
This allows the process to either abort or to interpret the O p

Code through the exception processing software*

4*4*4*3 Undefined Data Type Trap

The MCS65E4 will trap through this vector when it encounters a
data type which is not supported in the standard instruction sat*

This allows the process to abort or to interpret the data type
information in the exception processing software*

4 * 4 * 4 * 4 Subscript out-of-limits Trap

The MCS6 5 E 4 will trap through this vector when the software

attempts to access a structure or array with a subscript which is

out of the limits specified in the data descriptor (see Section
4 * 7 * 4 * 3) *

4*4*4*5 Operator and Operand not Compatible

The MCS65E4 will trap through this vector when the software
attempts to perform an operation on a data field which is not
compatible with the operation* This allows the process to either
abort or to interpret the operation in the exception servicing
software*

4*4*4*6 Overflow

The MCS65E4 will trap through this vector when an arithmetic

overflow is encountered during execution of an arithmetic

i n s t r u c t i o n *

4♦4 * 4 * 7 Other arithmetic error (divide by zero? etc*)

The MCS65E4 will trap through this vector when it encounters any
arithmetic error other than overflow* Specifically? these errors
are the following*

1* Divide-by-zero*
2* Sauare root of negative number*

4*4>4*3 Non-conformable data types

The MCS65E4 will trap through this vector when the software
attempts to perform an operation on two incompatible data fields*
This allows the process to abort or to perform an automatic

*********CONFIDENTIAL? MOS TECHNOLOGY >INC * ********* Page- 4 3

Final Design Specification for the MC365E4 Microprocessor

conversion of one of the operands*

4 ♦ 4 * 4 * 9 Instruction Access Trap

The M C S 6 5 E 4 will trap through this vector when it begins execution
of an instruction in which the TRAF' bit is set*

4*4*4*10 D a t a Access Trap

The MCS65 E 4 will trap through this vector when it encounters a
descriptor with the TRAP bit set to a Iodic 1 ♦

4*4*4*11 Process Stack. Fade Boundary Trap

The MCS65E4 will trap throudh this vector when the Top-of-Stack
Redister crosses a pade boundary durind a Push or Pop operation*

This allows the process or the operatind system to verify that the

process stack has not over-written other data in the dynamic data

a r e a *

4*4*4*12 Debud Trap

The h C S 6 5 E 4 traps throudh this vector whenever it enters a User
process with the Debud flad set* This exception can only be
serviced in a Supervisor Mode process*

4*4*4*13 Interrupt Input (INT)

The MCS65E4 will trap throudh this vector when the Interrupt Input
does low durind process execution*

4*4*4*14 System Call

The M C S 6 5 E 4 will trap throudh this vector when it encounters an SC
instruction durind the execution af a process*

4*4*4*15 System Call with Hessade

The MCS65E4 will trap throudh this vector when it encounters an
SCM instruction durind the execution af a process*

4*4*4*16 Bus Error

The MCS65E4 will trap throudh this vector when the Bus Error input
signal does low durind instruction execution* This operation is

described in detail in F'aradraph 4*4*3*4*2*

4*4*4*17 Access out-of-limit

The MCS65E4 will trap throudh this vector when the processor
software attempts to access a Physical address which is outside of
the limits specified by the Process Base Redister and the Process
Limit Redister; i * e * > above address FF in the Limit pade or below
address 00 on the Base Pade*

4*5 Addressing within the MC365E4

*********C0NFIDENTIAL> MOS TECHNOLOGY > INC * ********* Pade- 4 9

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4*5*1 Introduction

There are three primary locations in which data can be stored
within the MCS65E4 architecture* These are t

1* In the internal processor registers*
2* In the instructions which form the process software *
3* In the data storage area of the process address space*

The MCS65E4 operand structure contains provisions for referencing

data in each of these locations* Referencing data in the internal

registers is accomplished by specifying the register in the first
byte of the operand* Immediate data cart be specified either in the
first byte of the operand (short form immediate addressing) or in
the operand extension bytes (long form immediate addressing)* All
other data references are accomplished by adding the value of an
offset contained in the instruction to the contents of a base
register* This base register c 3n be either one of the internal
registers or any three-byte location in the Base P3ge of the
process*

The most important advantages 3ssoci3ted with the use of b3se
registers to control the 3ccessing of dsta is that it sssures
complete relocatibility for both the process and for the dat3
within a process andr in addition* it facilitates the creation and
manipulation of dynamic dat3* This recognizes that most software
routines manipulate a relatively small amount of dat3 * Very seldom
does 3 progrsiTi find it necessery to access the entire 24-bit
sddress sP3ce while manipulating d a 13 * For this resson? it should
be possible to eccess most of the data with one or two bytes of
offset instead of the three, bytes which would be necessary if
conventional absolute addressing were the only . 3V3il3ble
addressing mode* Utilizing the base registers within the MCS65E4
in an effective manner c3n result in 3 significsnt reduction in
the t o 13 1 progrsm s t o r 3 g e requirements by red ucing the smount of
addressing information which must be provided*

The first byte of each operand specifies the following!

1* The internal register which contains the data (register
addressing*)

2* The value of the immediate dat3 (Short Form Immediate
Addressing) *

3* The number of extension bytes of immediste d 31 a which
follow (Long Form Immediste Addressing)*

4* The base register to be used (inter r»3l or externel)*

5* The offset between the base 3nd the desired data (Short
Form Offset Addressing)*

6* The number of bytes of offset which follow (Long Form
Offset Addressing)*

*********CONFIDENTIAL> MOS TECHNOLOGY 7 INC * ********* P 3 g e- 50

Final Design Specification for the M C S 6 5 E 4 Microprocessor

7 * The Variable Access Mode (Byte? Two-byte Integer?
Ordinal; or data field defined by a descriptor)*

The data contained in the first byte of the Opera rid (hereafter

referred to as the ’Opera rid Co nt rol Byte") can be organized into a

number of fields arid sub -fields* This organization is summarized

in Figure '4*1 below* Each of the divisions in this figure are
described in detail in subsequent paragraphs of Section 4*

*********CQNFIDENTIAL> MOS TECHNOLOGY >INC♦********* F' a g e - 51

Final Design Specification for the MCS65E4 Microprocessor

R e m a r k s

P r i iti a r y
Addressing
Group

Secoridary
Addressing

Group

Internal
Register
Addressing

I iti mediate
Data
Short Form

BAS Offset
Addressing
Short Form

PRM Offset

Addressing

Short Form

Figure 4 ♦ 1 ♦ Organization of Operand Control Byte

BIT

1 7 6 5 4 3 2 1 0 1

1
1 0
1

0
1 Number

1 E x t e n s
! Bytes

of I Base f Data
ion i Register i Access

1 Select 1 Format

I
1 0

I
1

1
I 0

1

1 Addressingl Auxiliary
0 1 Mode I Data

1 Select 1 Field

1

I 0

I
1

1
1 0

1

1

1 1 Register

i
1 0
1

1
1 i
1 1 1
I 1

Immediate Data

1
1 1
1

0
1
1
1

Offset from BAS

1

1 1
1

1

1

1

I

0 f f s e t from PRM

*********CGNFIDENTIAL> MOS TECHNOLOGY tINC ********** P a g e -

Final Design Specification for the MCS65E4 Microprocessor

4*5*2 Primary Addressing Group

4 * 5 * 2♦1 Introduction

The Process Base Register (BAS)? Primary Base Register (PRM); arid
T o p of Stack. Register (TOS) are the principal addressing registers
within the MCS65E4* In addition? any three consecutive bytes of

memory within the process Base Page can serve as a base register
during data accessing operations* For this reason? the Operand

Control Byte is organized in a manner which assures that each of

these r eg i s t e rs can be used with maximum effectiveness during
process execution* This is accomplished through the primary
addressing group arid by providing short form addressing for the
BAS arid PRM registers* This short form addressing is described in
• subsequent paragraphs of Section 5*6* Long form addressing for
these internal and external base registers is described in this
paragraph *

The addressing information provided in this group can be divided
into three fields* The first group specifies which of the
registers is to be utilized as the base register* The second
specifies the number of bytes of addressing information which
follows the Addressing Control Byte? arid the third specifies the
format of the data acauisttion* Each of these is described in

detail below*

4*5*2*2 Base Register Select Field

The Base Register Select Field specifies one of the base registers
as follows^

Bit 3 Bit 2 Selected Register

0 0 Process Base Register (BAS)
0 1 Primary Base Register (PRM)
1 0 T o p of Stack (TOS)

1 1 External Base (EXTXX)

As described previously? the physical address of the data which is

to accessed is determined by adding the offset contained in the
instruction to the register selected by this field* If External
Base Addressing is selected? the address of this base register

(within the Process Base Page) is specified by the byte following
the Operand Control Byte*

4*5*2*3 Data Access Format

The two bits of the Data Access Format field are used to control
the manner in which data is to be accessed* This is accomplished
as follows:

Bit 1 Bit 0 Format

0 0 Descriptor Access

Data is to be accessed through a descriptor*

*********CONFIDENTIAL> MOS TECHNOLOGY ?INC ********** Page- 53

Final Design Specification for the M C S 6 5 E 4 Microprocessor

The address in the instruction is assumed to

be that of a descriptor which con tains all
of the i n fo r m a t i o n required to properly

manipulate the desired data field*

Single Byte Access

The address contained in the instruction is
assumed to be that of a single byte of
unsigned integer data*

Two byte Integer Access

The address contained in the instruction is
assumed to be that of a sixteen-bit word of
2' s complement integer data* Low order data

is assumed to be located in the low order
add r es s *

Three byte ordinal Access

The address contained in the instruction is
assumed to be that of a 24 bit ordinal data
field* Low order data is assumed to be in
the low order address*

4 * 5 * 2 * 4 Number of Extension Bytes

The Number of Extension Bytes field specifies the number of bytes
of offset information which follows the Operand Control Byte* This
is specified as follows!

Number of

Bit 3 Bit 2 Addressing Bytes

0 0 None- The offset address is assumed to be
zero*

0 1 One- The high order bits of the offset are
assumed to be zeros*
(offset value t 0 <= offset <= 255)

1 0 One- Bit 3 of the offset is assumed to be a
logic 1* The remaining high order
bits of the offset are assumed to be
zeros*

(offset value ** 256 <= offset <= 511)

1 1 Two- The low order 3 a d d r e s s b i t s of the
offset follow the Opera rid Control
Byte* This is followed by bits 3-15*
The high order eight address bits are
assumed to be zeros*
(offset value I 0 <= offset < = 655365)

4*5*3 Secondary Addressing Group

*********CONFIDENTIAL> MOS TECHNOLOGY?INC********** Page- 54

Final Design Specification for the MCS65L4 Microprocessor

4 * 5 ♦ 3 * 1 I n t r c d u c t i o n

In addition to these primary addressing modes? there 3re several
addressing modes within the MC365E4 software architecture which do
not reauire the flexibility which is inherent in the a d d r e s s i n g
described in the previous paradraph* This is true for Limit Pa 3e

addressing (utilizing the LMT Resister as base) since this
operation never requires more than 3 single byte of offset*

Similarly? the PUSH arid POP operations do not require any

addressing information since the data is placed directly onto the

process stack without offset* Finally? the Immediate Addressing

requires only that the size of the immediate operand be specified
since the data follows directly after the Operand Control Byte*
These address!rig modes are selected by the Addressing Mode Select
field as Follows:

Bit 3 Bit 2 Addressing Mode

0 0 Limit Page Addressing

0 1 Process Stack PUSH / POP

1 0 Immediate Addressing (Long Form)

1 1 Process Base Addressing (Long form)

Each of these modes is described in detail below*

4 * 5 * 3 * 2 Limit P a ge Addressing

As described previously? the Limit Page within a process is used
to store the vectors which are used in the servicing of
interrupts? system calls? etc* during process execution* These
vectors can be manipulated directly by the process whenever
appropriate* Limit Page addressing provides an efficient method of

accessing these vectors* When Limit Page addressing is selected?
the Auxiliary Data Field (bits 0 and 1) specifies the Data Access
Format in exactly the same manner as that described above (See

Paragraph 5♦6♦2 * 3) ♦

4 * 5 * 3 *3 Process Stack PUSH / POP

The top of the process stack can be specified as the source (PO P)
or destination (PUSH) for data within most of the MCS65E4

instructions* This is accomplished by specifying PUSH/POP
addressing in the appropriate opera rid field* If this addressing is
specified within a source operand? the processor will execute a
POP operation in which the contents of the data field located on
the top of the process stack, will be transferred into an internal
data register* The TOS register will then be incremented by an
amount determined by the length of the data field* The TOS
Register then points to the next data field on the stack * If
PUSH/ POP addressing is specified in a destination opera rid? the

results of the instruction execution will be transferred onto the
process stack * As with all process stack, operations? the TOS

*********CONFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page-

Final Design Specification for the MCS65E4 Microprocessor

register is adjusted to point to the last byte of data which was
placed onto the stack* When PUSH/POP addressing is selected? the
Auxiliary Data Field specifies the Data Access Mode in exactly the
same manner as that described above for the primary addressing
modes*

The auxiliary data field (bits 1 through 0) of the operand
control byte are defined as follows for PUSH/POP operations?

hit 1 b i t O Operation

0 0 PUSH/POP a variable defined by
descriptor (P P D)*

0 1 PUSH/POP byte (1 byte) (PPEO*

1 0 PUSH/POP half word (2 bytes)
(P P HW)*

1 1 PUSH/POP triple byte (3 bytes)
(P PT B) *

The PUSH/P0P operations are illustrated in Figure 2*1 with the
following instruction!

Add P P D ? P P B ? P P H W (POP descriptor variable arid byte
* (variable from stack? add them
♦ (together and PUSH the results onto

* (the stack in a two byte
♦ ? integer field*

Figure 2*la shows the process stack before the add instruction*
Note the top two elements of the stack are a data field with
descriptor (Data Field * 1) and a single byte of data (Data Field
$ 2)* The TOS register initially points to the descriptor of the

Data Field * 1*

Figure 2*lb shows the process stack after the PPD POP operation*

After the operation is complete? the contents of this data have
been transferred into an internal data register arid the TOS
register has been adJucted to point to Data Field *2 * Note that
the POP operation does not change the contents of the memory
locations in which Data Field *1 is stored*

After the PPB (POP) operation? illustrated in figure 2*1C? the TOS
has been incremented by 1 and now points to earlier data stored on
t h e stack.*

The result of the add operation will be pushed onto the stack as a

*********CONFIDENTIAL ? MOS TECHNOLOGY ? INC * ********* Page- 56

l-inal Design Specification for the MCS65E4 Microprocessor

two byte integer* Note the TOS register has been adjusted to point
to the last byte of data accessed on the stack* F i g»jre 2 ♦ 1 d
depicts the PPHU (PUSH) operation *

*********CONFIDENTIAL? MOS TECHNOLOGY jINC * ********* Fade-

1" i n 3 1 Design Specification for the M C 3 6 5 E 4 Microprocessor

Figure 2♦1A - Memory and TOS register contents before POP

Continuation of
Process Stack

High Order Memory

Data
Field
*2

Data
Field
*1

Byte

Address or
Da ta

Descriptor < ---Contents of TOS

Register

Free Memory Low Order memory

Figure 2 ♦ 2 B - Memory and TOS register contents after PPD (POP)

Continuation of
Process Stack

Data

Field

*2

High Order Memory

<---Contents of TOS
Register

Free Memory

Low Order memory

*********CONFIDENTIAL> MOS TECHNOLOGY ,INC♦********* P a g e -

Final Design Specification for the MCS65E4 Microprocessor

Figure 2* 1C - Memory and TOS register contents before PPB (POP)

Continuation of
Process Stack

High Order Memory

< ---Contents of TOS
Register

Free Memory

Low Order Memory

Figure 2* 1D - Memory and TOS register contents after P P H W (PUSH)

Continuation of
Process Stack

Data I

Field I

£3 I

High Order Memory

< ---Contents of TOS
Register

Free Memory

Low Order memory

*********CONFIDENTIAL> MOS TECHNOLOGY tINC♦********* Page- 59

Final Design Specification for the MCS65E4 Microprocessor

4*s ♦3♦4 Immediate Addressing? Lons Form

The long form of immediate addressing allows «jp to three bytes of
osto or addressing information to be specified within the
instruction* This d a 13 follows directly behind the Addressing
Control Byte* When this form of addressing is selected? the
Auxiliary Data Field (bits 0 arid 1) specifies the number of bytes
arid the format of the immediate data as follows!

Bit 1

0

0

1

Bit 0

0

1

0

Format of Data

Unsigned Byte* Assumed to be

positive *

Signed 2 byte integer*

Three byte ordinal* Assumed to
be positive*

Not Used

4*5*4 Internal Register Addressing

This addressing mode allows the internal processor registers can
be specified as the source or destination of the data to be
manipulated by the instruction* The four-bit Register Select data
field selects the internal registers as follows!

Bit 3 Bit 2 Bit 1 Bit 0 Register Selected

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

1

1

0

0

1

0 Process Limit Register

1 Process Program Counter

0 T o p Of Stack Register

1 Primary Base Register

0 Process Control register

1 Microcode Select Register

0 Refresh Control Register

The LMT register is "read-only'? i * e * ? the process software
cannot modify the contents of this registers under any conditions*
The Process Control Register? Microcode Select Register? arid
Refresh Control Register are "read-only" in the User Mode and
“Read / Write* in the Supervisor Mode*

4*5*5 Immediate Addressing? Short Form

The first of the short form addressing modes allows five bits of
immediate data to be included in the Operand Control Byte (in bits

*********CONFIDENTIAL? MOS TECHNOLOGY?INC * ********* Page- 60

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

0 " 4) * T h i s a l l o w s i m m e d i a t e v a l u e s b e t w e e n - 1 6 a r i d + 1 5 t o b e

s p e c i f i e d w i t h i n t h e O p e r a n d c o n t r o 1 B y t e *

4 * 5 * 6 P r o c e s s B a s e A d d r e s s i n g ? S h o r t F o r m

T h e s h o r t f o r m o f B A S o f f s e t a d d r e s s i n g a l l o w s u p t o 6 b i t s o f

o f f s e t i n f o r m a t i o n t o b e i n c l u d e d i n t h e O p e r a n d C o n t r o l B y t e (i n

b i t s 0 - 5) * T h i s a l l o w s t h e O p e r a n d C o n t r o l B y t e t o d i r e c t l y

s p e c i f y d a t a f i e l d s w h i c h a r e a c c e s s e d t h r o u g h d e s c r i p t o r s l o c a t e d

i n t h e f i r s t 6 4 b y t e s o f t h e B a s e P a g e *

4 * 5 * 6 P r i m a r y B a s e A d d r e s s i n g S h o r t F o r m

T h e s h o r t f o r m o f P R M o f f s e t a d d r e s s i n g a l l o w s u p t o 6 b i t s o f

a d d r e s s i n g i n f o r m a t i o n t o b e i n c l u d e d i n t h e A d d r e s s i n g C o n t r o l

B y t e (i n b i t s 0 - 5) * T h i s a l l o w s t h e O p e r a n d C o n t r o l B y t e t o

d i r e c t l y c o n t r o l a c c e s s t o d a t a f i e l d s w h i c h a r e a c c e s s e d t h r o u g h

d e s c r i p t o r s l o c a t e d i n t h e f i r s t 6 4 b y t e s a b o v e t h a t m e m o r y

l o c a t i o n w h o s e a d d r e s s i s c o n t a i n e d i n t h e P r i m a r y B a s e R e g i s t e r *

F i g u r e 4 * 6 A a r i d 4 * 6 B b e l o w s u m m a r i z e s t h e a d d r e s s i n g m o d e s f o r t h e

M C S 6 5 E 4 *

*********CONFIDENTIAL> MOS TECHNOLOGY * INC * ********* Page- 61

Specify the valid data types

"*x

• : Terminal symbols which soecifv the form of

Reference mors liagram dv that

Program

SYNTAX DIAGRAM

I>
V

instruction i

i

ructio
OP-Code

1
. _ Nj

V /
1

Operand v:
"7»

ODerand Operand

Oioerand Ooerand Ooerand

OP-Code B Oicerand

A

OP-Code ! B a w

.Ficrare 5.6a

- (BASE) t offset

value tbV
y

-7* 0< value < 15,777,215 <ORD>

t./ ooerand
rir nr

-nd ontrol 3 f--r- — ■
J variai

, internaL iorrse^

rtarav'onr'a / , -1externajj
base

immediate
,<BYT>

or<2I>

/"
^ value
v _____

m .

offset=0
push/poo
descriDtor short

)< <255 ig\
I

J
2 56< <511

a) -

0<: <65,535

— oyte
variable

_^3norr
integer
variable

value

HW__> <3YT>-^ °-
or <21>

<15M

lescriDtor <:
variable

<2
< ll r

* only for BAS

Figure 5.6b

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4 ♦ 6 Data Structure With in the MCS6 5E4 System

4♦6 * 1 Introduc t i o n

Nowhere is the “high level* approach to architecture more apparent
than in the manner in which data is stored and accessed within an

M C 3 6 5 E 4 system* This was introduced in Section 4*5 which discusses

the o rgan i za t i on of the ope r a n d * Section 4*6 contains a detailed
description of the remaining aspects of these data accessing

mechanisms along with a description of the manner in which data is

stored within the MCS65E4 system*

The principal feature of the M CS 65E 4 data structure is the use of
descriptors to specify all of the pertinent details concerning a
data field* This contrasts sharply with the conventional approach
in which the field length is determined primarily by the O p Code

(8 bits* 16 bits; etc.) and the actual data fields are created by
utilizing the processor software to organize these simple fixed
length fields into groups to store complex data entities (10-byte
Real; 3-b y t e BCD; etc*)*

The principal advantage associated with this traditional approach
is that it is much simpler to implement in hardware* The

instruction set consists of a large number of relatively simple

operations* This is compatible with art environment in which

hardware is expensive; logic design is still somewhat
unsophisticated; arid the science of system programming is still in
its infancy* Implementation of this type of architecture at this
time; however; does not recognize the significant developments
which have'taken place in processor design techniques (multi-level
microprogramming; etc*)* In addition; it ignores the fact that
software design techniques have achieved a substantial degree of
maturity* S p ec if ica11y ; the compiler languages in use today

exhibit the following characteristics I

1* The algorithms arid data structures are kept as separate?

self-contained entities* For example; the state merit A = B + C

typically contains no information regarding the type of
data which is stored in A; B or C* Instead; the data type

is defined earlier in the program as integer; real; etc*

2* Data elements are treated as complete entities most of
the time* This means; for example; that the various
segments of a floating point variable will not be treated
individually by a user's application program*

3* In most instances; the form of the data within a data
field will not change during the life of a program*

4* The operations which are performed on a data field are
generally a function of the specific data contained in

the field; for example; the arithmetic operations which
are performed on a floating point data field will differ
sharply from those which are performed on an integer data

field*

*********CONFIDENTIAL; MOS TECHNOLOGY;INC********** Page- 63

Final Design Specification for the MCS65E4 Microprocessor

The architecture of the MCS6 5E4 is designed in a manner which

recognizes these characteristics* However? it also recognizes the
use of the phrases “most of the time"? 'in most instances*? and

"generally* in the above list* Specifically? it provides all of

the advantages of descriptors while still retaining the
flexibility needed by such languages as Fortran? and C in which
the definition of a data field can be altered during the execution
of a program* In addition? it recognizes the need to allow
efficient manipulation of the descriptor arid other key elements of
the data structure*

All data manipulation instructions within the MCS65E4 consist of
an Op Code and up to three operands* The Op Codes specify the
operation to be performed while the operands specify the location
of the data to be manipulated* This data can be accessed directly
or it can be located in one of the complex data structures

described below* In all cases? however? processing of the operand
must result in the generation of the address of a basic data

element since all data manipulation operations are performed only
on these elements*

Within the MCS65E4 system most data is . accessed through
descriptors* Hereafter? these descriptors contain the type? format
and location information which allows the processor to manipulate
the data in a data field* After a brief description of the basic
data elements? the organization arid operation of these variable
descriptors are discussed in detail*

*********CONFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 64

(B)
FORM 0ur i HE DATA

(HW)j

'riois
lyte (T3)

■iord (W)

31

Double
'lord (DW)

iord (LW)

n-3yte
3tring(n3

53

u

0

! »
1 • u
79

/ I

8n-l o

-Data Tyoe Meaning Size

3Ym byte 3 Binary = 0 to 25 5
BCD =" 0 to 99

2 21 2 byte signed
integer

HW I
i
j

-55 ,535 to 55 , 535

3 ORD Ordinal-3 byts
unsigned intes

s T3 0 to 15,777,215 1

i+ M-I byte
s i gn e d i n t e ge]

w -231 to 2^-1

5 M* byte real |
i

W | ± i o - j / to i o T - d j
7 decimal digit of precision

5 4D 4- byte BCD w -7 decimal digit

7 31
1

3 byte
integer signeci

DW
1

-253 to 253 -1

3 3R 8 byte real DW
j

± I Q - 3 0 3 zo l o 3 0 3
15 decimal digit of precision

9 3D j 3 byte BCD DW +15 decimal digit

i q I0R 10 byte real j LW
I
|

il0-t+932 t0 101+932

19 decimal digit of precision

1 2 STR
i
I
I
i

String

|

0 to
32767
bytes

n ,,262,136
Binary: 0 to 2

65 5^4
Decirral: 0 to 1C '

| i 1

Note: 1-11 will be refered to as scalar

Final Design Specification for the MC365E4 Microprocessor

4*6+2 The Basic Data Elements

The group of basic data elements is composed of 10 simple data

fields arid 1 string data field* The simple data fields (hereafter

referred to as scalers)? consist of signed arid unsigned binary
data? BCD data? or floating point (REAL) data in varying length
fields* Each of these Basic Data Elements is stored in one of

seven different field sizes (Byte? Half Word? Triple Byte? Word?
Double Uord? Long Word? n- Byte String) which is depicted in Figure
5 * 7 ♦ 2 a

*********CGNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 66

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4*6 * 2 ♦ 1 Unsigned Binary Data Fields

The unsigned binary data fields are type byte and o r d i na 1 ♦ They
are assumed to be positive and thus have no sign information
associated with them* A byte is 8 bits and an o rdina 1 is 24 bits*
The range of these field sizes are indicated in figure 5*7*2b*

4 * 6 ♦2 * 2 Signed Binary Data Fields

The signed binary data fields are two? four? and eight byte

integer* They are stored in two's compliment binary format* The
range of these fields are indicated in figure 5*7*2 B *

The M C 3 6 5 E 4 supports four and eight byte BCD fields stored as
packed binary integer and signed magnitude* The most significant
four bits of the field contains the sign information (i*e 0000 = >■
positive number? 1111 = > negative number)* The range of these
fields are indicated in figure 5 * 7 * 2b *

4*6*2*4 Floating Point Data Fields

The floating point data fields are compatible with the proposed

IEEE floating point standard* The are stored in three parts!
mantissa? biased exponent? 3nd sign* Both the mantissa and the
exponent are stored in two's compliment binary format with the

most significant bit being the sign indicator (i*e* 0 = >
positive? 1 => negative)* The range of these fields are indicated
in figure 5 * 7 * 2B *

4*6*2*5 String Data Fields

String data fields are treated as unsigned binary data*

Figure 5*7*2C depicts the format of the Basic Data Elements

*********CGNFIDENTIAL? MOS TECHNOLOGY?INC ********** Pa g e- 6 8

A

Is!

li~30 23 22

A+7

8R

63 52 52

A+9

10R
Is e______ J____
79 73 5*+ 53 52

At 3

M-D n I
31--- TT

digit

A+7

3D n 15 disit
63

A+n-1
-- _

n Byte String I „ | ,
, >Yn byres

s = sign

e - exponent

f - fraction

K - key

M - message
j - 1-bit integer part

n = siqn 0000
1111

<ORD >

< - u r > , O R > ,<>D>

< 8I > , < 8R > , < 8D ->>

< 10R>

\ STR> with length n

<21 >

Final Design Specification for the MCS65E4 Microprocessor

4*6*3 0 rg a n i z a t i o n of the Variable Descriptor

4 * 6 ♦ 3 * 1 Introduction

The Variable Descriptor is the primary means by which the MCS65E4
determines the format of the data field* With the exception of the
one byte unsigned binary field? the two byte signed integer field?
arid the three byte ordinal which can be accessed directly (without

going through a descriptor)? all data fields must be accessed

through a descriptor* This ass u res that all instructions will be
executed iri a manner which is appropriate to the type of data

which is being m a n i p u 1 a t e d *

The Variable Descriptor is com posed of one or more of the
following elements!

1* Descriptor Header
2 * Addressing Information (optional)
3* Auxiliary information (optional)

All Variable Descriptors must begin with a Descriptor Header*
However? the addressing information must be provided only when the
data field is not attached directly to the descriptor arid the

auxiliary data must be provided only when referencing the more

complex data structures (strings? records? etc*)*

4*6*3*2 Organization of the Descriptor Header

4 * 6 * 3 * 2 * 1 Introduction

The organization of the Descriptor Header can be depicted as
follows!

7 6 5 4 3 2 1 0

I Trap! Flag I Data Type I Access I
I I I i Mode i
I (T) I (F) I (D) I (M) I

Each of these fields is described briefly below* A detailed

description of the operation of the descriptor is contained in the
remaining paragraphs of this section*

4 * 6♦3♦2 * 2 Trap Bit (Bit 7)

The trap bit in the descriptor can be set to cause a Data Access
Trap to occur when the processor attempts to access the data
field* Within the Exception Vector field? the TRAP bit is used to
specify that the exception will be serviced in the current

process's c a 11e r *

4 * 6 * 3 * 2 * 3 Access Mode (Bits 1 arid 0)

The Access Mode field specifies the manner in which the location

*********C0NFIDENTIAL? MOS TECHNOLOGY?INC♦********* Page- 70

Final Design Specification for the MCS65E4 Microprocessor

of the data field will be determined* Specifically* the data can
be attached to the descriptor? it can be located at a specified
offset from the descriptor or it can be located at a specified

logical address within the process* The two bits in this field
specify one of four access modes as follows*

Bit 1 Bit 0

0
0
1
1

0
1
0
1

Descriptor

Attached
Short Relative
Long Relative
Logical Addressing

Field Descriptor or
Element Descriptor

Attached Relocatable
Short Relocatable
Long Relocatable
Logical Addressing

4*6*3*2*3*1 Attached

If the Attached Access Mode is specified? the variable descriptor
consists of a descriptor header and? if appropiate? an auxiliary

data field* No addressing information is required since the data
field is located in memory immediately following the descriptor*

4♦6 * 3 * 2 * 3 * 2 A t t a c h e d R e l o c a t a b l e

W i t h i n 3n e l e m e n t d e s c r i p t o r in an array s t r u c t u r e or a field

d e s c r i p t o r in 3 record? the 3 t t 3 c h e d 3 d d r e s s i n g b e c o m e s s t t s c h e d

r e loca tabl e* The 3 t t 3 c h e d r e l o c a t a b l e a d d r e s s i n g mode o p e r a t e s in
much the same ma nne r as a t t a c h e d ex c e p t o 11 a t ths d 3 trs is a s sume d

to be a t t a c h e d to the a d d r e s s which was p r e v i o u s l y c a l c u l a t e d

d u r i n g the d e s c r i p t o r p r o c e s s i n g * This is i l l u s t r s t e d in detsil in
the e x a m p 1e s below*

4 * 6 * 3 * 2 * 3 * 3 Short Rel3tive

If the short relative access mode is specified? the data field is

located at a specified offset from the address of the descriptor*
The offset is contained in a single byte of addressing information

immediately following the descriptor header* The d a 13 field c 3n

therefore be locsted within the r3nge of -123 to +127 bytes from
the address of the descriptor* If auxiliary information is

required for sccessing the data field? this information follows
immediately after the single byte of offset* (refer to descriptor
flowchart)

4*6*3*2*3*4 Short Relocatable

The short relocatable access mode is exactly the same as short
relative addressing mode except that the offset information is
added to the 'previously calcul3ted address" within an array

structure or record* See example below for accessing dat3 within a

multi-dimensional array or record*

4 * 6 * 3 * 2 * 3 * 5 Long Relative

If the long relative access mode is specified? two bytes of offset
infomation are included in the varisble descriptor* The descriptor
header is followed by the low order 3nd high order bytes of a

*********C0NFIDENTIAL7 MOS TECHNOLOGY ?INC ********** Page- 71

Final Design Specification for the MCS65E4 Microprocessor

16-bit offset field* This allows the data field to be located

within 3 range of -32868 to +32767 bytes from the address of the
descriptor* If the data field is one of the ■ more complex

structures described below? the required auxiliary data will
follow the two byte offset in the descriptor*

4 * 6 * 3 * 2 * 3 * 6 Long Relocatable

The long relocatable access mode is exactly the same as long
relative addressing mode except that the offset information is
added to the •previously calculeted address" within an array
structure or record* See the example below for accessing dat3

within a multi-dimensional array or record*

4♦6♦3 ♦ 2♦3♦7 Logical Addressing

If Logical Addressing is specified? the descriptor header will be
followed by s three-byte ordinal which is the logical address of
the data field* This logical address is added to the contents of
the BAS register to determine the physical address of the data
field* This 3llows the data field to be placed anywhere in the
address space of the process* As before? any auxiliary information
which is required will follow the three bytes of addressing
information* (Refer to descriptor flowchart)

*********CONFIDENTIAL? MOS TECHNOLOGY ?INC* ********* Page- 72

T
pr

T ' n

1 1 / attacnec

!__s,. snort ;3 u>
! V relative I J (

! r
o< s a r ’ • j S k

j |
jHwy

Field
Discriptar x
Element
Discriiotor

Header 3
Attached

! Relocatable

/ Short
7 Relative

Long
HB '
i /

-^scalar
A

Logical
Address

scalar (initiate a fetch of
array subscript operand in the instruction)

string /string tyt>e\
----- 5---MS length iHW:- 4 binary stririg or BCD string

string string type \ v(initiate a fetch of the ------7

array

- v. y L i . a u ? 3 . i . ? U w i i U i . L U ?

length |HŴ / subscript operand in the instruction)

î. (initiate a fetch of field select. J ,viiiiLidcs a reicn or rieia. select. ^
byte in the instruction) [Discriptor

retch another descriptor

arr a v

structure
•̂/unit ! .

I \Length____ jHWf'

initiate a retcn ,
tof the subscriot-i

operand m tne
instruction)

l̂err.ent
Discriotc-

array

structure
with limit
check

maximum
lement |

i

Final Design Specification for the MCS65E4 Microprocessor

4 * 6 ♦ 3 * 2 ♦ 4 Data Type Field (hits 5 - 2) arid F 1 a d (hit 6)

The Data Type Field and the FI a5 operate together to specify the

exact nature of the data field* The D field specifies the size of
the field and the type of data stored in the field as follows;

**** Bit ****
5 4 3 9 Data Type

0 0 0 0 Not Used (Reserved for future expansion)

0 0 o 1 Byte (BYT) < ---f <-— -----[
0 0 1 0 Ordinal (ORD) 3 1
0 0 1 1 Two-Byte Integer (21) C B D E
0 1 0 0 Four-Byte Inteder (41) A A A L
0 1 0 1 Eidht-Byte Inteder (31) L S T E
0 1 1 0 Four-Byte Real (4R) E I A M
0 1 1 1 Eidht-Byte Real (SR) R C E
1 0 0 0 Ten Byte Real (10 R) 1 T
1 0 0 1 Four-Byte BCD (4D) 1 S
1 0 1 0 Eidht-Byte BCD (SD) < ---! !

i

1 0 1 1 S t r i n d (S T R) < ----------
1

-----j

1 1 0 0 Deferred Descriptor/Record

1 1 0 1 Array Structure

1 1 1 0 Not Used (Reserved for future Expansion)

1 1 1 1 Not Used (Reserved for future Expansion)

For the first 11 items in this table (byte throudh string) >

setting the FLAG to a Iodic 1 specifies that the data field is an
element in a single dimension array* In this case? the processor

will fetch the next operand from the instuction and use the value
as the index information to determine the location of the data in
the array* If the FLAG is a Iodic 0/ the descriptor points
directly to the data field*

If the Data Type field specifies that the data field is an array
structure <D=1101)> the FLAG is used to enable and disable
automatic check i n d of the index contained in the instruction to
assure that it is not less than 0 or dreater than the maximum

value specified in the descriptor* If the Data Type field contains

a binary 1100 (Deferred Descriptor/record)f the FLAG is used to
select between the Deferred Descriptor arid the Record*

The followind table summarizes the use of the FLAG bit within the

descriptor header!

Data Type FLAG Value Definition
j ------------ -----I ---------------l ------- ---------------------- I

I Byte I 0 I Descriptor Access i

*********CQNFIDENTIAL> MOS TECHNOLOGY,INC * ********* F'ade- 7 4

Final Design Specification for the M C S 6 5 E 4 Microprocessor

i through 1 - 1------------------------------ 1

1 String 1 1 1 Array Access 1
i — 1 —

1 1 0
— 1 — — — — 1

i No Range Checking i
1 Array 1 -- „ 1------------------------------ |

1 Structure !
1 _ _ 1 — .

1 1 Perform Range Check i n g i
— 1 _ _ ______ _ _ _ _ _ __ __ 1

1 Deferred 1 0
1 — — — — — 1

1 R e c 0 r d 1
1 Descriptor !-- 1------------------------------ |

I or record I
1----------------- 1 --

1 I Deferred Descriptor 1
„ 1------------------------------ j

The dsts type classifications depicited above can be organized
into three groups* The first group contains all of the basic data
elements which are the data fields that are operated upon by all
of the data manipulation instructions* The elements in this group
are identified by a 0001 through 1011 in the Data Type field (byte
through string)* The second group contains all of the simple data
structures (arrays ? records? etc*)? while the third contains the
Deferred Descriptor*

The seauence of operations which the MCS65E4 goes through to
access 3 basic data element is shown below (refer to the flow
diagram - the seauence numbers corresponds to the diagram)*

1* The processor accesses the descriptor block.
through any of the MCS65E4 addressing mode (see section

_____ .)* Set Y = the address following the addressing

information*

2* A check is made to determine whether the descriptor
indicates an basic data type* If it is not? the processor
continues to determine the desecriptor's type*

3* If the descriptor indicates basic data type? the MCS65E4
gets the addressing information from the descriptor

block.*

4 * The addressing information and the access mode bits
together determine the starting address of the raw data*
(In the flow diagram? this calculated address is saved in
variable Y - an internal register* For attached mode? Y =

Y + 0* For relocatable mode? Y = Y + relative* For

logical mode? Y = the physical address*)

10* A check is made to determine if the basic
data is of type string* If it is? the next two bytes are
fetched from the instruction and are used as the string

length*

11* If the basic data type is not type string
the length is determined by the data type* The length can be
either 1? 2? 3? 4? S? or 10 bytes*

*********C0NFIDENTIAL? MOS TECHNOLOGY ? INC * ********* Page- 75

POINT TO
DESCRIPTOR BY
OPERAND CONTROL
BYTE PLUS OFFSET

(i0s)

Final Design Specification for the MCS65E4 Microprocessor

4*6*4 The Data Structures

4 *6*4*1 I n t r o d u c t i o i"j

In addition to the simple data fields described previously? the
M C S 6 5 E 4 directly supports the storage of data in a number of
simple data structures* These aret

1* Single-dimension arrays
2* Array Structures
3* Records

In addition? these structures can be organized into complex data

structures such as multi-dimensional arrays? arrays of records?
etc* The simple data structures are described in this section* The
manner in which these simple data structures can be used to build
the complex data structures is best illustrated by example*

4*6*4*2 Single-Dimension Arrays

The single-dimension array is the simplest of the data structures
which are directly supported by the M C S 6 5 E 4 * This is selected by
setting the FLAG bit in the variable descriptor to a logic 1* The
processor then assumes that the scalar or string which is to be
manipulated by the instruction is an element of an array* To
access this element? the processor fetches an index from the

instruction*

The sequence of operations which the MCS65E4 goes through to

access an element within a single dimension array is as follows:
(refer to the flow diagram - the seauence numbers corresponds to
the d i a g r a m) *

1* The processor accesses the descriptor block.
through any of the M C S 6 5 E 4 addressing mode* Set Y = the
address following the addressing information*

2* A check is made to determine whether the descriptor
indicates single dimesion array* If it is not? the
processor continues to determine the desecriptor's type*

3* If the descriptor indicates single dimension array (F L A G = 1) ?
the MCS65E4 gets the addressing information from the
descriptor block *

4* The addressing information and the access mode bits
together determine the starting address of the raw data

for the first element of the array (In the flow diagram?
this calculated address is saved in variable Y - an
internal register* For attached mode? Y = Y + 0* For
relocatable mode? Y = Y i relative* For logical mode? Y =
the physical address*)

5* To determine which element in the array to access?
the processor fetches the data specified by the next

*********C0NFIDENTIAL? MOS TECHNOLOGY?INC********** Page- 77

Final Design Specification for the MCS65E 4 Microprocessor

operand in the instruction* This data is treated as the
index (In the flow diagram this value is referred as
variable I) *

10* A check, is made to determine if the basic
data is of type s t r i n 3 ♦ If it is? the next two bytes are

fetched from the instruction and are used as the string
length *

11* If the basic data type is not type string
the length is determined by the data type* The length can be
either 1? 2? 3? 4? 8? or 10 bytes*

8* The element length (EL)? the index value (I)? and the
previous calculated address (Y) are used to address the
sought after element within the array structure* The
formula for the address calculation is Y = Y + (I I EL)*
Note that the location of this element can be determined
without regard for the exact nature of the data being

stored in the array*

*********CONFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 7 8

:POINT TO DESCRIPTOR.
|3Y OPERAND CONTROL ;

START — '■ ■■ IgYTE PLUS OFFSET

CONTINUE TO
DETERMINE
DESCRIPTOR
rTTV D ‘P

\
SINGLE '
DIMENSION sC 2

ADDRESSING /'T
INFO FROM

DESCRIPTOR!

jPOINT TO
jBEGINNING 1
OF NEW
^ATA

SET NEXT
3YTE FRCM
ENSTRUCTI
■OR INDEX

S .

LENGTH BUILT
INTO DATA TYPE
CAN BE EITHER:
1,2,3,4,8 or 10

BYTES

:cn

GET NEXT 2
BYTES FOR
STRING LENGTH

POINT TO RAW
DATA BY
Y=Y+I*EL

EONE

Final Design Specification for the MCS65E4 Hicroprocessor

4♦6♦4♦3 Array Structure

In addition to the simple array described in the previous
paragraph? the M C 3 6 5 E 4 supports the storage of data in arrays in
which elements can be more than the basic data elements* This is
termed the 'array structure" arid is selected by setting the Data
Type to 1101 (binary)*

When an array structure is specified? the descriptor header

contains no information regarding the type of data which is stored
in the array* Instead? this is contained in the auxiliary data

field which follows the addressing information* Also? when FLAG

eauals 0 (i * e * no limit checking)? the maximum index field within
the array descriptor block, is omitted*

The format for the descriptor block? with 3nd without limit
checking? which references an array structure is shown below:

I i i
(T) 1 1 I 1 1 0 1 1

1 I 1

-----j

I

(M) I
I

-- Descriptor Header

Addressing

Information

i

1
I

1

1

Element*

-----j

1
1

I#
Length i A n*

---- - j u F
Maximu m ! x 0
I n d e x 1 i r

-----j 1 m
1 i a

Element 1 a t

Discriptor 1 r i
1 y o

Array Descriptor

1
— ---I

Block (with

n
1

limit checking field)

i S 1
(T) 1 0 1 1 1 0 1 1

! I I

----- I
1

(M) i
i

-----i

<-- — Descriptor Header

Addressing
Information

*********C0NFIDENTIAL? MOS TECHNOLOGY ?INC * ********* P a g e- 80

Final Design bpecification for *t h 0 MCS65E4 Hie p o p rocessor

1 Element i !
1 Length I 1

... 1 i

1 Auxiliary
1 Element 1 I n f 0 r m a t i 0 n
I Descriptor ! 1

1 1

1 i

Array Descriptor Block (without limit checki n g field)

*********CONFIDENTIAL> MOS TECHNOLOGY r INC***#**#*** P a g e -

Final D e s i d n Specifi c a t i o n for the M C S 6 5 E 4 Microprocessor

The format of the Descriptor Header in the Variable Descriptor

must be as described in Paragraph 4*6*3*2 with the Data Type field
set to 1101* The actual data within the array is accessed through
the addressing information of the descriptor block.* Note that the
attached mode is not valid for the array structure si nee the
actual array data can not immediately follow the descriptor
header*

The first item in the auxiliary data is the Element Lensth* This
field specifies the number of bytes in each element of the array*
This information must be compatible with the information contained
in the element descriptor to assure proper accessing of the data

in the array* The Maximum Index field is used to check, that the

index contained in the instruction does not exceed the bounds of

the array* This check, will only be performed if the F 1 a d field is
set to a Iodic 1* The last field in the descriptor is the array

element descriptor* This is a normal Variable Descriptor which
specifies the format of the array element* In deneral? all of the
access modes? data types? etc* are permitted in this descriptor*
However? the operation of the address accessing modes is different
from that described above for the normal Variable Descriptor (i*e*

the attached mode becomes attached relocatable and short and land
relative becomes short arid 1 ond relocatable respectively) This is
specifically designed to facilitate the direct support of complex
data structures (multi-dimensional arrays? arrays of records?
etc*) * If the lodical addressind access mode is specified? the
specified lodical address replaces the previous address

calculated*

The seauence of operations which the MCS65E4 does throudh to

access a raw data item within an array structure is as follows
(refer to the flow diadram below throudhout the discussion - the
seauence numbers correspond to the d i a d r a m) t

1* The processor accesses the array descriptor block (A D B)

throudh any of the MCS65E4 addressind mode* Set Y = the
address followind the addressind information*

2* A check, is made to determine whether the descriptor
indicates an array structure* If it is not? the processor
continues to determine the desecriptor's type*

3* If the descriptor indicates array structure? the MCS65E4
dets the addressind information from the descriptor

block.*

4* The addressind information and the access mode bits
todether determine the startind address of the raw data
for the first element of the array (In the flow diadram?
this calculated address is saved in variable Y - an
internal redister* For attached mode? Y = Y + 0* For
relocatable mode? Y = Y + relative* For lodical mode? Y =
the physical address*))♦ Note that the attached mode is
not valid for an array structure since the actual raw
data does not follow the descriptor header*

*«******C0NFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Pade- 8 2

Final Design Specification for the MCS65E4 Microprocessor

5 * To determine which element in the array to access?
the processor fetches the data specified by the next
operand in the instruction* This data is treated as the
index (In the flow diagram this value is referred as
variable I) *

6 * However? before the element is accessed? the MCS65E4
determines if the index value is greater than or eaual to

zero and less than or eaual to the maximum index value
contained in the array descriptor* The check, will not be
performed if FLAG eauals zero (see section 4*6*3*2*3*4)*

If FLAG eauals one in the descriptor header 3nd the index
value is invalid? the processor terminates execution of
the current instruction and will execute a trap seauence*

7 * The processor then gets the element length from the
descriptor block* The element length (in the flow
diagram? this value is refered to as variable EL) within
the array descriptor is the number of bytes of each
element in the array*

S* The element length (EL)? the index value (I)? arid the
previous calculated address (Y) are used to address the

sought after element within the array structure* The

formula for the address calculation is Y = Y + (I * EL)*
Note that the location of this element can be determined

without regard for the exact nature of the data being
stored in the array*

9* If th*e element descriptor specifies a basic data type
(byte through string)? the processor can process its
address information to get the address of the raw data*

Once the processor has the address of the raw data
element? it can proceed to move the data into the chip*
If however? the element discriptor is an array structure?

the above seauenee (3 through 9) will repeat* When a
basic data element is encountered? only 3 and 4 will be
performed to fetch the data field* In both cases? 4 has a

different meaning since Y now contains the address to the

base of the array* Therfore? attached mode (in this case
called the attached relocatable mode) is used to access

the first element of the array* Relative mode (in this
case called short or long relocatable mode) now contains
the the offset from previously calculated address instead
of that of the descriptor*

*********CONFIDENTIAL? MOS TECHNOLOGY?INC* ********* Page- 83

START

j POINT TO ARRAY
j DESCRIPTOR SLOCK

j (AD3) 3Y OPERAND
I CONTROL BYTE PLUS
! OFFSET

ADI \
"7

! A ̂ ^acc i r> T
! : '■ j -
^ | inrormation

; Ele. cr-rhUw,i3

f M ax C Optional]

; T 1 .O .

t
Descrio j

J

Addr’ Info.

Ele
!

Length

Max (Optional

i
j Desr •

i

!

Array
Descriptor
Block

©Attached Mode
not allowed here

Final Design Specification for the MCS65E4 Microprocessor

4 * 6 * 4 * 4 Record

A record consists of a number of related but dissimilar data
fields which are organized into a single data structure* When the
MCS65E4 encounters a record descriptor during an instruction

e x e c u t i o n i it fetches the next byte of data from the instruction*
This is assumed to be an offset from the first field descriptor to
a field descriptor* The field descriptor then provides the

information reauired to access the raw data* The format of the
Record Descriptor is as followst

Descriptor
Header

Addressing
Information

Field Descriptor
Field *1

Field Descriptor

Field *2

Field Descriptor
Field *3

As with all Variable Descriptors? the record descriptor begins

with a Header* The Data Type field must be 1100 (binary) and the
flag must be a logic 1* The Access Mode field can be either of the
relative modes or the logical addressing mode* The attached Access
Mode is not supported for the same reason mentioned above for the
array structure* Therefore? the addressing information is not
optional in the Record Descriptor*

The format of the Field Descriptor is exactly like that of the
normal Variable Descriptor* However? the operation of the offset
and logical addressing access modes is different from that
described above for the normal Variable Descriptor arid similar to

that described for the Variable Descriptor* This is specifically

designed to facilitate the direct support of complex data

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 85

Final Design Specification for the M C S 6 5 E 4 Microprocessor

structures (mu 11 i-dimensiona 1 arrays? arrays of records* etc ♦) ♦ If
the short or long relocatable offset is specified in the field
descriptor? the offset will be added to the previous address

calculated* If the attached relocatable addressing mode is

specified? then zero is added to the previous address calculated*
It the logical addressing access mode is specified? the specified
logical address replaces the previous address calculated* This is
illustrated in detail in the examples below*

The seauence of operations which the MCS65E4 goes through to
access a raw data item within a record structure is as follows
(refer to the flow diagram below throughout the discussion - the
seauence numbers correspond to the diagram)!

1* The processor accesses the record descriptor
block (RDB) through any of the MCS65E4 addressing modes*

2* A check is made to determine whether the descriptor

indicates a record structure* If it is not? the processor
continues to determine the desecriptor's type*

3* If the descriptor indicates array structure? the MCS65E4
gets the addressing information from the descriptor
block*

4* The addressing information arid the 3ccess mode bits
together determine the starting address of the raw data
for the first field* In the flow diagrsm? this
calculated address is saved in variable Y - an internal
register* For attached mode? Y = Y + 0* For relocatable
mode? Y = Y + relative* For logical mode? Y = the
physical address*

5* To determine which field within the record to access?

the processor fetches the data specified by the next
operand in the instruction* This data is treated as the

offset into the record descriptor to obtain the field
descriptor *

«*******C0NF I DENTIAL? MOS TECHNOLOGY?INC ********** Page- 86

POINT TO RECORD
DESCRIPTOR BLOCK
(RDB) 3Y OPERAND
CONTROL BYTE PLUS
o n ,CTTrP

RECORD
DESCRIPTOR

Y

GET ADDRESSING

INFORMATION FROM

RECORD DESCRIPTOR

POINT TO beginning;
OF RECORD's ROW
DATA. THIS IS j
OBTAINED BY ACCESSj
MODE BITS, AND 1
ADDRESS INFORMATION
hvj ETELD___________ !

PH

A

RECORD
STRUCTURE -
. fmmm'j
ADDRESSING I
INFORMATION 1....
r IELD

DESCRIPTOR 1 :

FIELD
r̂'DTP'TPR ? *

I

J

• 1

GET FIELD

Final Design Specification for the MCS65E4 Micros

This p-3^e intentionally left blank

*********CONFIDENTIAL> MOS TECHNOLOGY? INC.***#*****

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

4*6*5 Deferred Descriptor

The deferred descriptor contains no information redardind the type
of data which is stored in the data field which is to be accessed
by the instruction* For this reason* the deferred descriptor does
not directly refer to the raw data* Instead? it points to another
descriptor which can contain data type information* It should be
rioted that this second descriptor is exactly the same as any
variable descriptor (i * e * ? the second descriptor could very well
be another deferred descriptor)* In all cases? it is necessary

that the processor encounter data type information before raw data
can be fetched from memory* The operation of the deferred
descriptor is illustrated in F'arsraph 4*6*6* 4*

A summary of all the data types is depicted belowt

*********CONFIDENTIAL? MOS TECHNOLOGY?INC * ********* P a 3 e - 89

Final Design Specification for the M C S 6 5 E 4 Microprocessor

4+6*6 Application of the MCS65E4 Data Accessing Mechanisms

4 * 6 * 6 * 1 Introduction

The data accessing mechanisms described above are used throughout
the MCS65E4 architecture for storing raw data ̂ array indexes ?

exception vector addresses? etc* For this reason? they are a very
important key to understanding the operation of this processor*
Therefore? a number of examples of data structures are described
in detail below* It is hoped that these will contribute to the
readers understanding of the manner in which data is stored arid
accessed within the MC365E4 system*

4*6*6*2 Accessing Data in Multi-Dimensional Array Structures

The manner in which the data storage and accessing techniaues
described above can be extended to control the accessing of data
in complex array structures can be described most effectively by

reviewing the seauence of operations which tak.es place when the
MCS65E4 encounters the Array Descriptor* As described previously?

the addressing information contained in the descriptor specifies

the address of the first element in the array being accessed* The
element length information contained in the descriptor is then

combined with the next operand in the instruction to determine the
location of the array element being accessed*

After the physical address of the array element has been
determined? the processor then references the element descriptor
to determine the manner in which the element is to be processed*
As noted above? the format for the element descriptor is
essentially the same as for any of the normal descriptors*
Specifically? this means that the element descriptor can specify
any of the normal data types such as the scaler (byte? ordinal?

real? e t c *) * Even more important is the fact that the element
descriptor can specify that the element is a simple array? an

array structure? or a record* This is the key to accessing complex

data structures in the MCS65E4 system*

The operation of the element descriptor can be illustrated by
examining the manner in which the MCS65E4 would access data in a
simple 3 X 4 two- dimensional array (termed DATA(X?Y) below)* The
twelve elements in this array would be stored in contiguous memory
locations as follows*

*********CGNFIDENTIAL, MOS TECHNOLOGY?INC********** Page- 91

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

H i 5 h - order Memory

(3*4)

(3 * 2)

(3*1)

(2/4)

(2^3)

(2 * 2)

(2*1)

(1*4)

(1*3)

(1*2)

(1 * 1)

Low-Order Memory

Address of array

To create the descriptor for this array* the structure must be
viewed 3s a single-dimension array in which each element contains
four data fields* This can be illustrated as follows}

Full Array* Sirid 1 e-Dimension Depiction*

! I
IHidh-order Memory!
1 1

I 1
1Hidh-order memory!
1 I

j ----------- ---- ------j

1 (3*4) I

1 _ ___ !

1 1
i — i
i (3*3) I ! Element !
j „ ------------------------ --j 1 - 3 - !
1 (3*2) I
i — — i

! 1
i — i
1 (3,1) 1
1 — — !

1 !
i — — i1 !

1 (2*4) 1
i i
1 1

j ---j j - - j

*********CGNFIDENTIALf MQS TECHNOLOGY * INC ********** Fade- 92

Final Design Specification for the MC365E4 Microprocessor

1 (2 ? 3) i
j--------------------- |

1 (2 ? 2) I
i--------------------- j

1 (2? 1) 1

1 Element 1

1 " j

i i
i — — ii — — i

1 (1,4) i ! I
1 — — — — — — — 1
1 <1,3) 1 1 Element 1
1--------------------- | 1 - 1 - J
1 (1,2) 1 1 1
1 — — — — 1

1 (1,1) 1 I 1
\ — — — — _ iI — — — — I

i \
ILow-Order Memory 1

1 1

i i
I Lou-order Memory 1
1 1

The descriptor which specifies the form of this single-dimension
array must contain an element length which is four times the
actual element size* For example? if the raw data is ten byte real
then the element length in the array descriptor would be forty*If

the index is to be checked for maximum size? the descriptor must
specify 3 as the maximum for the first index into the array* Usind

the procedures described above? the MCS65E4 will first utilize the

addressing; element size arid index information to determine the
location of an element in this single-dimension array* For

instance? if the instruction references element (2?3) in the
array? the processor will first determine the address of element 2
in the single-dimension array by evaluating the following formula*

Physical Address = (Contents of Specified Base Register)
+ (Array Address) i (Element Size * Index)

Motet * = multiplication

After this operation is complete? the MCS65E4 bedins processing
the element descriptor* This operation is very similar to normal
descriptor processing except that the Relative arid Attached

addressing becomes short and lond relocatable as reauired for
accessing data in the array structures* Rather than addins the
displacement to the address of the descriptor? the processor
instead adds it to the address which was determined during the
previous phase of the addressing seauence in progress* In the
example above (accessing element (2?3) in the array)? the address
determined during the first phase of the addressing seauence would
be that of element (2?1) in the 3rray* This corresponds to element
2 in the single-dimension depiction illustrated above*

For the 3 X 4 two-dimensional array described previously? there
are two methods which could be utilized for specifying the element
descriptor* If each element in the total array is a scalar and if
no index checking is reauired? the element descriptor C 3 n specify

that each element in the single-dimension array is a simple scaler

array* If index checki n S is desired? then the element descriptor

must specify that each element of the single-dimension array is an

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Fade- 93

Final Design Specification for the MC365E 4 Microprocessor

array s t r u c t u r e * This e l e m e n t d e s c r i p t o r would then cont a i n a

second e l e m e n t d e s c r i p t o r which would spe c i f y the exact data type
for the array element*

The above discussion becomes somewhat confusing because of the
"levels" which the processor must go through during the addressing
sequence* This can be illustrated more clearly by continuing the
example from above* Most importantly ? the reader must understand
the fact that during the initial processing of the descriptor? the
MCS65E4 views this two-dimensional array as a single-dimension
array structure* This 'first-level' of addressing allows the
processor to access array elements in sets of four (for example?
(2 j 1) ? (2 > 2) ? (2? 3) arid (2*4))* The element descriptor within this
array descriptor must therefore contain the information reauired
for accessing the "second level*? i * e * ? for determining the exact
location of the desired element within the groups which are

accessed during the first level* The total descriptor for the
example above (assuming index checking is reauired and that each

element of the array contains a byte data type) would therefore
be :

*********CONFIDENTIAL, MOS TECHNOLOGY >INC♦ ********* Page- 94

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

Total I---- >
Array I
Descriptor I

I I
I Descriptor
I for 'first
I 1 eve 1 *
I element

Low-Order Memory

Descriptor Header

Addressing
Information

Element Size 1

Maxi murn In d e x V a 11 j e

Element
Descriptor

Addressing
Information

Element Size 2

Maximum Index Value

Element Descriptor

Header

Addressing
Information

High-order Memory

There are several important points which can be noted from
this illustration* The element descriptor's addressing
information in the previous example can be eliminated since

attached addressing mode (in this case called attached
relocatable mode) is utilized* The physical address of (2 > 3)
0 G U 3 1 S ♦

(contents of specified base register) +
(base of array logical address) +
(element size 1 * index 1) +
(element 2 addressing information) +
(element size 2 * index) +
Data Addressing Information

If this is a 3 X 4 array of 10 byte Reals? the address is

calculated 3 S follows!

Data Address = Physical Address of the base of array +
(40 * 1) + 0 + (1 0 * 2) 4-0

*********C0NFIDENTIAL> MOS TECHNOLOGY >INC♦********* P a g e - 95

Final Design Specification for the M C S 6 5 E 4 Microprocessor

™ Physical address of the base of array + 60

Note that index 1 = 2 - 1 = i ? index 2 = 3 - 1 = 2♦ The element

addressing information eauals 0 for attached mode and offset for

short or lend relocatable* There is no way for the processor to
determine the total length of the array descriptor* This is the
reason that attached addressing is not valid in the first

Descriptor Header* Also? it should be noted that the nesting of
the second level descriptor into the first level descriptor can be

extended to any level of complexity* This means that the second
element descriptor shown in this diagram can? in fact? be another
array descriptor or even a record descriptor* In all cases?
however? care must be taken to assure that the element length be
specified properly arid that all addressing be specified in a
manner which allows the processor to process each level of

addressing*

Low-Qrder Memory

Descriptor Header

Addressing

Information

Element Size

Maximum Index Value

Element Descriptor
Header

EDI

TAD

ED2
I
I

ED3

Addressing

Information

Element Size

Maximum Index Value

Element Descriptor
Header

Add ress i ng
Information

Element Size

Maximum Index Value

Element Descriptor

for array element

* thi rd level 1

High-order Memory

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* P a g e- 9 6

Final Design Specification for the M C S 6 5 E 4 Microprocessor

TAD t Total Array Descriptor

EDI t Element Descriptor For First Level Element
ED2 t Element Descriptor For Second Level Element
E D 3 t Element Descriptor For Third Level Element

4 * 6 * 6 * 3 Example of Accessing Multi-Dimensional Array

For our next example we assume we have a FORTRAN data area where
data within the area can be accessed either as single eight-byte
integers or single four-byte reals through an eauvalence

statement* The data in memory has 'holes" in it (i * e ♦ the real or
integers are not contiguous)* However? the MCS65E4 descriptor can
be setup to be able to access the data properly (i*e* to by-pass
the "holes*)♦ Assume we have a three dimensional array? A? with
maximum dimension C 15 ? 10 ? 51 * The data is stored seauentislly as I

A(Q7Q?Q)? A(0?0?1)? ♦♦♦? A (0 ? 0 ? 4)

A (0 ?1? 0) ? A (0 ? 2 ? 0) ? ***? A (0 ? ? 7 4)
A (1? 0 ? 0)? A (2 ? 0 ? 0)? ***? A (9 ? 0 ? 0)

A(14?9?4) (without showing 'holes*)

Geometrically? the array consists of fifteen planes where each
plane consists of one 10x5 matrix plus some imbedded 'holes'* The

plane is depicted below* Remember there are fifteen of these

planes to form a solid geometric structure*

j — ---------------J

I 5 byte 1
1 hole 1

1 4 byte
1 hole

4 byte
real

4 byte
real

4 byte
real

4 byte
real

4 byte 1
real 1

1 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte 1
1 hole real real real real real 1

1 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte i
I hole real real real real real 1

1 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte i
I hole real real real real real 1

1 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte 1
1 hole real real real real real 1

1 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte 1
I hole real real real real real 1

1 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte 1
1 hole real real real real real 1

1 4 byte ! 4 byte 1 4 byte 1 4 byte i 4 byte 1 4 byte 1

*********CQNFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 97

Final Design Specification for the MC365E4 Microprocessor

hole I real I real I real I real I real

4 byte ii 4 byte !i 4 byte i 4 byte ! 4 byte t 4 byte
hole 1i real i1 real ! real i1 real 1 real

4 byte 1 4 byte 1 4 byte ! 4 byte 1 4 byte 1 4 byte
hole 11 real 1 real 1I real 11 real 1! real

The descriptor for this array is shown below with a description of
how each field is derived*

Logical
Address

Define Array Structure

I

Logical of raw data
I

Element Length

lElement Descriptor (array)

Short Relocatable Addressing

Maxi m urn Index Value

Element Length

Element Descriptor (REAL4)

Short Relocatable Addressing

Descriptor for Multi-Dimensional Array

Field Description

1* Specifies first dimension as array structure with
logical addressing*

2 ♦ Specifies the logical address of the array (123456)

3* Specifies the element length for first dimension*
Element length = HI + MAX2 * (H2 + (MAX3*L))

(where HI = hole 1

MAX2 = second dimension size
H2 = hole 2

MAX3 = third dimension size
L = length of element)

i — — -
1* 011FF0 1 T 1

i —
I 0 1 1101 i 11

i
2 * 1

i
56

i
1 34
i — _____i — — — — —

1 12
ii

3* I -
1____

F5 -

i
4 ♦ 1 T i

i
1 I 1101 1 01

i
5 * 1

i ___
5

t —

6 ♦ I -
i___ _

9 -
i

7 * | -
i ___i

18 -

i
3* I T !

i _
1 I 0110 11 01

i —

9 * 1
i ____

4

*********CQNFIDENTIAL> MQS TECHNOLOGY>INC♦********* Page- 98

Final Design Specification for the MC365E4 Microprocessor

Element length = 5 + 10 * (4 + (5*4))

= F 5 (hex) using above formula*

4 * Specifies second dimension as array structure with
short relocatable mode addressing

5* Specifies the five byte offset (i*e* skip 5 byte
hole at beginning of each plane)*

6 * Specifies maximum index value for s e c o n d dimension

7 * Specifies element length for second dimension*
Element length = 4 + 5*4

= 18 (hex) using formula*

Element length = HI 4* MAX3*L

(where HI = 4 hole
M A X 3 = third dimension size)

3* Specifies the third dimension as an array of
four-byte reals (this as accomplished by setting
FLAG = 1) with short relocatable offset mode
a d d r e s s i n g ♦

9* Specifies the four byte offset (skip over the hole)*

The processor will 3 c c e s s A C 10 ? 8 ? 3] * This assembles into*

I PRM + 1 I 10 1 *0A I *08 I +03 I
I Ext Byte I i I I I
I-------------|---------- |---------- ,---------- j-----------|

The contents of the PRM register is 011FE0* To get to the address
of the array descriptor the processor will add the contents of the
primary register (011FE0) with the next byte in the instuction
(10) giving 011FF0* The next byte (* 0 A) is an operand control byte
and will be used by the processor to calculate the first index of
the sought after element and #08 for the second index and *02 for
the third* Using the array descriptor? the processor calculates
the address of A C 10 ? 3 ? 2 3 with the following formula*

Q = AID + (ELI * I I) +
E2A +

(EL2 * 12) +
E3 A +
(L * 13)

where AID = Address Information of Descriptor
ELI = Element 1 Length
II = Index 1
E2A = Element 2 Addressing Information (relocatable)

********CONFIDENTIAL? MQS TECHNOLOGY ?INC********** Page- 99

Final Design Specification for the M C S 6 5 E 4 Microprocessor

EL2 = Element 2 Length
12 = I n d e x 2
E3A = Element 3 Addressing Information (relocatable)
L = Data Length
13 = Index 3

Substituting the example data into the above formula we g e 11

Q = 123456 + (F 5 * OA) +

5 +

(18 * 08) 4*
4 i

'(4 * 3)
Q = 123EBD

At logical address 123EBD is the data for element A [1 0 j8 f33

If we access element A C I ? J ?K 3 where 1 = 1? j J = 5 ? and K= -3? the
processor will not trap out for 1element-out-of-rsnge' since both
I arid K do not have range check ins specified in the desrciptor ♦
However when 1=0? J = 10 ? and K = 1 the processor will trap out when J

is processed since J is greater then 9 (i * e ♦ 9 is the max index
as specified in descriptor)*

This FORTRAN data area can also be accessed as a two dimensional

array £ f eight-byte integers through an equivalence state merit* The

array? By has maximum dimension 10X3* Each row of data is now

treated as three eight-byte integers instead of five four-byte
reals* Note that the four byte hole at the beginning of each row
will now be utilized* The descriptor for array B will be as
follows*

1 T 1 0 1 1101 1 0 1 1

1 03 1

1 - 13 -1

1 T 11 1 1 0101 11 00 1

Field Definition

1* Specifies array structure with short relocatable
addressing mode*

2* Specifies the short relocatable offset

3* Specifies the element length of the first dimension*
Element length = M A X 2 * L

= 3 * 8
= 18 (hex)

*********CONFIDENTIAL? MOS TECHNOLOGY>INC* ********* Page- 100

Final Design Specification for the MCS65E4 Microprocessor

4 > Specifies an array of 8-byte integers with
attached addressing mode*

which willNote that the descriptor for array B is five bytes long
fit into the five byte “hole" in the beginning of each plane* If

external base addressing we can modify the base pagewe ijse

address any plane within the a r r a ̂ :or example t.o acce*:

and

B C 3 r 2] :

I
I External
1 Base with
I n g o f f s e t

The Qridinal 20 into the BAS page is 123DE3 which is the address
of variable B * Note that this by-passes the first dimension of the
previous example (A C 10 ? 8 * 31)♦ Using the above formula we can

address A C 10 ? 8 y 31 by specifying B C 8 ? 2 3 *

Q = 123DEA+ {see note below>

3 +

18*08+
02*3 +

= 123EBD

note ♦ The relative calculation will start from the byte
following the address information*

Note that element AC10?8y3Il is referring to element BC8>23 (i*e*
both generated addresses are eoual) ♦ This is shown below*

j-------- j------------ j -- -----|---------|-------- j----- ------ 1 Third Element

I hole 1 0 1 1 1 2 1 3 1 4 I of Array A
,---j

(both have same address) =

----------- I-------------------- 1-------------------- - I Second Element
0 I 1 I 2 I o f A r r a y B
--------------------- ------------ ---------------- - |

*********C0NFIDENTIAL> MOS TECHNOLOGY j INC ********** Page- 101

Finsi Design Specification for the M C S 6 5 E 4 Microprocessor

4 ♦6 * 6*4 Example of Accessing Data in a Complex Record Structure

The complex record structure can best be described by referring to
a diagram arid following the operations the processor must perform
to access the data* Assume we have a PASCAL-like record shown
belowt

A = Record
B : ARRAY Cl♦♦153 of INTEGER*2?
C : B C D 4 ?
D : REAL40 ? •

E = Record
BB : BYTE?
CC : ORDINAL

End 7

F : ARRAY C l ♦*260] of CHAR;
G : INTEGER*4

End 7

-Cdefine 2 byte integer array>
{define 4 byte BCD f i e 1d >
-Cdefine pointer to 4 byte REAL)
{define new record)

■Cdefine a byte field>
-Cdefine an ordinal fie 1 d>
{end record)

-Cdefine a 260 byte string)
-Cdefine a 4 byte integer field)

-Cend record)

As previously described a record is 3 group of related but
dissimilar data fields which are organized into a single data
structure* The descriptor for an MCS65E4 record consists of a
record header? addressing information? and field descriptors*
Basically? the header defines the da1 3 type as record? the
addressing information gets the processor to the start of the raw

data and the field descriptors define the specific fields within

the record* There is a one-to-one correspondence between a field
descriptor and the dat3 field in the record* Within the field

descriptor is 3ddressing information which is the offset from the
base of the record* The base address of the r3w d a 13 (contsined in
the record descriptor) 3nd the offset (contained in the field
descriptor) provide the processor with sufficient information to
address any field within the record* The following example
illustrates accessing a complex record by depicting a record's

descriptor and raw datat

*********C0NFIDENTIAL? MOS TECHNOLOGY?INC* ********* P a g e - 1 0 2

Final Design Specification for the MC365E4 Microprocessor

Logical
A d d r e s s

123456

123474

123473

12347C

12347D

12347E

1235AA

125656

01F234

Relative
Address

6

7

3

2C

1st 2 byte integer

2nd 2 byte integer

15th 2 byte integer

4 byte BCD field

T I 0 I 0110

125656

11

Byte

Ordinal

1st byte of string

260th byte of str*

4 byte Integer

Field B

I

Field C

Field D

Field E.BB

Field E.CC

::---I

I
Field F

Field G

Raw Data For Complex Record

11

33

44

Real D at3 Field

T I 0 I 1100 i 11

56

34

I

Define Record

with
Logical

*********CONFIDENTIAL, MOS TECHNOLOGY yINC.#*******# Page- 103

Final Design Specification for the M C S 6 5 E 4 Microprocessor

01F238

01F239

01F23B

01F23D

01F23F

01F241

01F242

01F244

01F248

* - Note:

0

1

6

7

8

9

A

B

C

10

12

1*1 0011 I 00

0 I 1001 I 01

IE

1101 I 01

T I 0 I 0010 I 01

23

T I 0 I 1100 I 01

26

T I 0 I 0001 I 00

T I 0 I 0010 I 01

01

0 i 1011 01

28

04

01

0 I 0100 I 10

2C

01

Base Addressing

Define Field A ♦ B

Define Field A.C

Define Field A.DS
(deferred descriptor)

Define Field A ♦ D

Define Record with

short relocatable

addressing

Define Field A.E.BB

Define Field A.E.CC

Define Field A .F

I

I
Define Field A.G

I

Single Dimension Array

Descriptor For Complex Record

*********C0NFIDENTIAL> MOS TECHNOLOGY,IMC.********* Page- 104

Final Design Specification for the MCS65E4 Microprocessor

The field A ♦ F is to be accessed* The instruction assembles into*

BAS + 3 e xt
bytes

F 2 01 OC

I

operano
c o n t r o 1
byte

-----+-3 extension b y te s---------• field
selection
byte

The operand control byte followed by three extension bytes will

point to the descriptor at logical address O IF 234 (assume BAS

register eauals 0)* After determining that the descriptor is
logical addressing mode the processor uses the next three bytes
(starting at 01F235) to point to the start of the raw data for the
record* Since the descriptor specifies that it is record data
type? the MCS65E4 then fetches the next byte from the instruction
(OC in our example) and uses this as a displacement into the
record descriptor to obtain the appropiate field descriptor* In
our example this is located at 01F244 (01F238 + OC)* The field

descriptor header indicates string data type with short
relocatable offset* The offset in our example is 23 which is
located after the descriptor header < 01F 2 4 5) * This offset is then

added to the start of the raw data (123456 + 23 = 12347E) which is
the address of the first byte of the string* The next two bytes of
the field descriptor is ’the string length*

As another example? the field A ♦ D 0 is to be accessed* The

instruction assembles into:

I---------------- j----- ----------,---------- ---- |------------- |------------,

I BAS + 3 ext I 34 I F2 I 01 I 03 I
I bytes I I I I I

operand <--------- 3 extension byt es ---------> field
control selection

byte byte

The operand control byte followed by three extension bytes will

point to the descriptor at logical address 01F234 (assume BAS
register eauals 0)* After determining that the descriptor is
logical addressing mode the processor uses the next three bytes
(starting at 01F235) to point to the start of the raw data for the
record* Since the descriptor specifies that it is a record data
type? the MCS65E4 then fetches the next field selection byte from
the instruction (03 in our example) and uses this as a
displacement into the record descriptor to obtain the appropiate
field descriptor* In our example this is located at 01F23B (01F233
+ 03)* The f i e l d ’descriptor header indicates deferred type with
short relocatable offset* The offset? 22 in our example? is added
to 123456 giving 123478* Since this a deferred descriptor? the
data contained at 123478 is not raw data but another descriptor*

The descriptor? located at 123473? is then processed the same as

*********C0NFIDENTIAL? MGS TECHN0L0GY ?INC* ********* Page- 105

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

any other d e s c r i p t o r ♦ In our e x a m p l e ? the descriptor indicates
four-byte real type with logical base addressing (i*e* the data is
located at 125656)* Therefore? the actual raw data is 11223344
(see diagram above)*

Similarly? the

assembles into;
field A * D can be accessed* The instruction

I BAS 4- 3 ext
1 bytes

F 2 01

operand
control
byte

---------3 extension byte s---------; field
selection
byte

The A ♦ D differs from A ♦D 0 in that the former refers to the logical
address that points to the four-byte real* Therefore the field
descriptor indicates Ordinal data type with short relocatable
offset* The offset is 23 (one more byte than A * D 8)? so it points

to the logical address iristead of the four-byte real descriptor*
Using this techniaue we can implement any pointer data? such that
P is a pointer to pointer to pointer to the four-byte real ? i*e*?
P ? P 0 ? P 0 0 ? P 0 0 0 * All have meaning arid can all be implemented by
the MCS65E4 data structure*

For the last example? field A*E*BB
instruction assembles intot

1 s to be accessed* The

i BAS + 3 ext!
I bytes I
j------------- ,

34 F 2 01 07 00

operand

c o n t r o 1

byte

extension byt es---‘ field

select

byte

field

select
byte

The operand control byte followed by three extension bytes will
point to the descriptor at logical address 01F234 (assume BAS
register eauals 0)* After determining that the descriptor is
logical addressing mode the processor uses the next three bytes
(starting at 01F235) to point to the start of the raw data for the

record* Since the descriptor specifies that it is a record data
type? the MCS65E4 then fetches the next field select byte from the
instruction (07 in our example) and uses this as a displacement

into the record descriptor to obtain the appropriate field
descriptor* In our example this is located at 01F23F (01F238 +

07)* The field descriptor header indicates record type with short
relocatable offset* The offset? 26 in our example? is added to

123456 giving 12347C* Since this is another record? the processor
must get another byte from the instruction to determine the offset
from the base of the record descriptor* In our example? this byte
is 0 which is added to 01F241 giving 01F241 which is the field

****##***CQNFIDENTIAL? MOS TECHNOLOGY?INC * ********* Page- 106

I" i n s 1 Design Specification for the HCS65E4 Microprocessor

descriptor for A *E * B B ♦ This field descriptor indicates byte data

type with attached (relocathle) addressing mode (i ♦ e ♦ Add 0 to
12347C giving 12347C)♦ Therefore? the raw data for A * E ♦ B B is
located at 1 2 3 4 7 C * The processor calculates the address of a field
in the record by u s i n g the following f o r m u 1 a 1

(record address + (field descriptor 1 + (field descriptor 2
information) relocatable offset) relocatable offset)

4 * 6 * 6 * 5 Exception Vectors

4♦6♦6♦5♦1 Introduction

Each of the exception vectors listed in Section 4*4*4 is stored in
a four - byte field in a manner which is compatible with the

MC365E4 data structure* The first byte of the vector contains a
descriptor which primarily specifies that the logical address of
the exception processing software is either "attached" to the

descriptor or is located in a "remote" data structure* If the
address is attached? the three bytes following the descriptor are
assumed to be the logical address of the software which will
service the exception (exeception h a n d l e r) * This address will be
added to the contents of the Process Base Register to determine
the corresponding physical address* This address is then
trsnsfered into the Process Program Counter* The processor then
begins execution of the exception software* In addition to the
simple "attached" form of the exception vector? the logical

address car! be located in a data structure which is separate from

the four byte exception vector* In this case? the three bytes
following the descriptor contains the logical address of the data

structure in which the address of the execution software is

stored* In all cases this vector format must conform to the
MCS65E4 data structure described above arid the data field which is
referenced by the vector must be a three byte ordinal* This
ordinal is assumed to be the logical address of the exception
handler*

The use of complex data structures within the exeption vector is
particularly useful for interrupts? systems calls? etc* in which a

byte of information is Generated by the exeption to be used as an
index value into the array* A dood example of this is the System
Call in which a byte of data is passed to the operating system*

In addition to placing this "exeception Qualifier" onto the stack?
the data is retained in an internal working register for use
during the exception vector processing* This allows the use of an

array of ordinals to implement a direct vectored system call?

direct vectored interrupts? etc* Each of these options will be
illustrated in the examples below* These "exception Qualifiers"

are described in detail in the discussion of the exception
vectors*

4 * 6 * 6 * 5 * 2 Descriptor Format

The descriptor arid associated data within the exception vector
must conform exactly to the format described above for the MCS65E4
data structure* The TRAP bit is used to indicate whether the

*********CQNFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 107

Final Design Specification for the MCS65E4 Microprocessor

exception can be serviced within the current
the T bit is a logical 1 ? the processor will
level process to service the exception*
(ordinal) is valid* If the data type is a
array? only a single byte of additional
for use in determining the index value
Therefore? the exception vector represents
the data types which the MCS65E4 supports*

process (T = 0)* If
return to the lower

Only one basic data type
single dimension ordinal
information is available
of the ordinal array*

limited sub-set of

4*6*6*5*3 Example of Attached Address Exception Vector Format

The simplest form of exception vector is one in which the logical
address of the software which will service the exception
(exception handler) directly follows the descriptor* This is
illustrated below for an Overflow Trap whose handler is located at
logical address 0034A0* Note that the TRAP bit in the descriptor
is set to logic 0 arid that the MODE field contains 00? specifying
attached data* The contents of the exception vector will be as
follows^

Address Contents

E8* T ? 0 ? 0010 ? 00

Remarks

Descriptor

E?> A0 (HEX) Low order byte of exception handler
add ress *

EA* 34 (HEX) Middle order byte of exception handler
address *

EB* 00 (HEX) High order byte of exception handler
address *

0 03 4A0 Actual exception handler code for overflow condition

* - Page address within LMT page

4+6*6*5*4 Example of Remote Exception Vector

In many processes? particularly within the Kernel and Operating
System processes? it is very likely that the exception vectors
will be located in Read-Only Memory* In this case? use of the
attached form of the exception vector would not allow the vector
address to be modified during process execution* However? use of
the remote exception vector allows the vector address to be placed
in READ/WRITE memory* This will be illustrated by describing a
Data Access Trap Vector in which the address of the handler is
located in logical addresses 000003 through 000005 within the
process* The exception handler begins at logical address 01C450

within the process* In this case? address DS within the Limit Page

contains a descriptor which specifies a remote ordinal data field*
The remaining bytes of the vector contain logical address 000003*

This causes the processor to fetch the address of the exception
handler from logical address 000003 through 00005*

*********C0NFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 108

Final Design Specification for the M C S 6 5 E 4 Microprocessor

A d d r a s <

D 3*

D9*

DA*

DB*

Contents

T?0,0010:

03 (HEX)

00 (HEX)

00 (HEX)

11

000003** 50 (HEX)

000004** C4 (HEX)

000005** 01 (HEX)

Remarks

Descriptor
\

Low order byte of the pointer to the
exception handler*

Middle order byte of the pointer to
the exception handler*

High order byte of the pointer to
the exception handler*

Low order byte of exception handler
address *

Middle order byte of exception
handler address*

High order byte of exception
handler address

01 C 4 5 0 Actual exception handler code for data access trap

* - Page address within the LMT P 3 g e
** - Logical address within the process

*********C0NFIDENTIAL> MOS TECHNOLOGY >INC* ********* Page- 109

Final Design Specification for the HCS65E4 Microprocessor

4♦7 The MCS6u£4 Instruction Set

4*7*1 Introduction

The use of descriptors to control accessing data within the
MCS65E4 has a significant impact on the nature of the instruction
set which is executed by this processor* Host importantly? it
allows the use of "generic* instructions; i* e*? instructions
which do not specify those aspects of the operation which are data

dependent* For example* like most processors? the MCS65E4

instruction set contains art arithmetic ADD instruction* However?

this instruction only specifies that an add operation is to be
performed between two data fields* The exact nature of the add

operation is determined by the data contained in the data fields
(BCD add for BCD data? etc)* This tech nioue for con trolling the
details of an instruction execution introduces several important
characteristics of the instruction set described below* The first
is that there are many combinations of data type arid instruction
which are not valid* In addition? for those instructions which
reauire two operands? the data type for the two data fields which
are to be manipulated by the instruction must be similar* Finally?
the use of descriptors results in a significant reduction in the
total number of instructions in the instruction set? while at the
same time the operations which can occur during the execution of

each instruction can be Quite complex because of the broad range

of data types which are supported by the processor* This is
reflected in the instruction descriptions below* Each of these

paragraphs contains a general description of the instruction? a
listing of the applicable data types? a description of the
execution seauence for each data type? and a listing of the
applicable hexidecimal Op Codes*

4*7*2 Format of the MCS65E4 Op Codes

All MCS65E4 instructions are contained within one byte* Bit 7 of
each O p Code is reserved for use as a TRAP bit to cause an
Instruction Access Trap* The remaining bits are used to specify
one of sixteen instruction modes (bits 0-3) and one of the
instructions within the selected mode* This format can be depicted

as follows^

b i t : 7

The instruction set C3n be organized into three major groups* The
first group contains the basic data manipulation instructions
(Add? subtract? etc*)* The second contains all instructions which
control program flow (branches? Jump to subroutine? etc*)* Group 3
contains the advanced arithmetic and logic operations* Each of
these groups is discussed separately below*

Figure 5*3 below summarizes the instruction set format for the

*********CGNFIDENTIAL? M0S T E C H N O L O G Y ?INC * ********* Page- 110

Final Design Specification for the MCS65E4 Microprocessor

Format Mnemonic

i I ? I ? R 1 ADD f SUB > HUL» DIV 1
1 1 AND f OR > E Q R , MOD 1

1 1 1 IR 1 ADD? S U B , MULf DIV 1
1 1 AND f ORf E O R , MOD 1

1 1 ,R i ABSf NEGf I N C , DEC 1
1 1 SORT f MOV f LEADZf LEAD1 1

1 IR 1 ABS , N E G , INC? DEC 1
1 1
1—— — _ _ _ _ ____ __I__

SORT f CLRf SET 1
1 — — — — — --- — — j — -

1 If If* 1 BEGf B N E , B G T , BGE 1
1 1,1,** i
i — — — _ (_

1 I»* i BEQZ » BNEZf BPOSt BMI 1
1 If** 1

i I ? I ? R 1 C E Q , C N E , C G T , CGE 1

1 I » IR » S 1
I _ _ ______ __J___

FIND j DETCf NDETf DETR !

1 (ItI,R)»(IfIR) 1
1 — — — — — _ __ «. 1 _ _

SHM

I------ --- 1
1 I 1 CALL f JMP I
1 1
1 _____________ 1 _

TASK f IOSf RTE I
j -------- --- j - -

1 (IR) ? (I ? I) ? * 1
I--------------------j BRf J S R , BDECf BCOND 1

1 <I R)? (I ?I) ? ** i

1 No Opera rid i
i _ _ __j

RTS > R E S E T , SCf SCM 1

i i

1 I t R 1
I____ ________ _ |

F'TRf DTYPf CNVT 1
1 — — — — I

1 Special 1
1--------------------|

EVAL

Rt Result? It Input? RIt Input and Result? St String
() t Optional

*********CONFIDENTIAL? MOS TECHNOLOGY ?INC♦********* Page- 111

Final Design Specification for the MCS65E4 Hicroprocessor

4*7*3 Basic Arithmetic

4*7,3*1 Introduction

* n d Logic Operations

The arithmetic arid logic instructions can be organized into a set
of operations which must be performed on two separate d3ta fields
arid a set of operations which involve only a single data field*
The first set of instructions will contain either two or three
operands while one or two operands must be provided in the second
se t *

The following is a summary of the mnemonics? O p Codes and format
for the basic arithmetic and logic instructions*

Group 1 Instructions (utilizing two data fields)

Instruction Mnemonic
Two Opera rid

O p Code
Three Operand

O p code

Add ADD
Subtract SUB
Multiply MUL
D i v i d e d i v

Modulus MOD
Logic And AND
Logic Or OR
Exclusive Or EOR

Format

Three opera rid *♦ Qp-Code 0P1?0P2?0P3

0 p e r a n d 1 (0P1) - Specifies the
0 p e r a n d 2 (0 P 2) - Specifies the
Operand 3 (0 P 3) - Specifies the

Two operand! Qp-Code 0 P 1 * 0 P 2

Operand 1 (0P1) - Specifies the
Ope rand 2 (0 P 2) - Specifies both

field and the

Instructions (utilizing one data field)

Single

Ope rand
Instruction Mnemonic O p Code

Absolute Value ABS
Negate NEG
Increment INC
Decrement DEC
S q u are Root SORT
Move MOV
Convert CNVT
Clear CLR

Two Operand
O p code

*********CONFIDENTIAL? MQS TECHNOLOGY?INC* ********* Page- 112

Final Design Specification for the MCS6 5E4 Microprocessor

F o r m a t

Two operand: Qp-Code 0P1?0P2

Operand 1 (0P1)~ Specifies the only source field

Operand 2 < 0 P 2)- Specifies the result field*

One operand: Qp-Code 0P1

Operand 1 (0P1)- Specifies both the source field
and the results field*

*********CONFIDENTIAL> MOS TECHNOLOGY?INC********** Page- 11

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* ADD *

4 * 7 * 3 * 2 Add

Formati ADD 0P1?0P2?QP3

ADD 0Pli0P2

Description:

Adds the contents of the data field specified by opera rid 2
to the contents of the dat3 field specified by operand 1 and

places the results in the data field specified by either

operand 2 (two operand addressing) or opera rid 3 (three
operand addressing)*

Valid Da t a Types:

Binary (Byte? Integer arid String)

Performs a binary add operation treating the byte and
string data as a positive integer*

Real
Q*

Performs a floating point add operation* Input data is
assumed to be normalized* After the add operation is

complete? the results are normalized before being stored
in the resuIts field* Real operands cannot be mixed with
Binary or BCD data fields*

BCD

Performs a signed? packed BCD add operation* All operands
must be the same type and length*

Immediate Operands

Immediate operands can be specified in combination with
any of the other data types* The immediate operand
assumes the data type of the second input operand* If
both input operands are Immediate data? the data type is
assumed to be integer*

O p Codes:

Two operand addressing- ____
Three operand addre ssing-_______

*********CONFIDENTIAL? MOS TECHNOLOGY?INC* ********* Page- 114

Final Design Specification for the MCS65E4 Microprocessor

* SUB *
* * ̂ * * * * * *

4 * 7 * 3 * 3 Subtract

Format: SUB QF’l * 0P2 y QP3
SUB 0P 1 ? 0P 2

Description:

CASE1 : Subtracts the contents of the data field specified
by operand 1 from the contents of the data field specified
by operand 2 and places the results in the data field
specified by operand 3 (three operand addressing)* Example t
SUB aib jc = > c = b - a

CASE2 : Subtracts the contents of the data field specified
by operand 1 from the contents of the data field specified
by operand 2 and places the results in the data field
specified by operand 2 (two operand addressing)* Example ♦
SUB a ib => b = b - a

Valid Data Types: Same as Add Instruction*

O p Codes:

Two operand addressing- _______
Three operand a d d r e s s i n g - _____ __

*********CONFIDENTIALr MOS TECHNOLOGYj INC********** Page- 115

Final Design Specification for the MCS65E4 Microprocessor

* MUL *

4*7*3*4 Multiply

Format; MUL Q P i >Q P 2 >0P3
MUL 0Plf0P2

Description:

CASE1 : Multiplies the contents of the data field specified
by opera rid 1 times the contents of the data field specified
by operand 2 and places the results in the data field
specified by operand 3 (three operand addressing)*

CASE2 : Multiplies the contents of the data field specified

by operand 1 times the contents of the data field specified
by operand 2 arid places the results in the data field
specified by operand 1 (two operand addressing)*

Valid Data Types:

yes no

Integer I x I i

Bed I x I I

Real ‘ I x I I

String I x I I

Notes:

If the data field specified by 0P1 and 0P2 are string type?
only the first eigth bytes will be used for multiplication*
If the result field is string data type; the multiplication
of the inputs (either string or integer) will be stored into
the first sixteen bytes of the resultant string (assuming
the result field is greater than or eaual to 16 bytes)*

R e s t r i c t i o n s :

The length and type of operands 1 and 2 must be eaual*

O p Codes:

Two operand addressing- _____
Three operand addressing- _______ _

*********CONFIDENTIAL? MOS TECHNOLOGY,INC * ********* Page- 116

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* DIV *

4*7*3*5 Divide

Format: DIV QP1>0P2>0P2
DIV 0P1 >GP2

Descriptiont

CASE1 I Divide the contents of the data field specified by

operand 2 by the contents of the data field specified by
operand 1 and places the results into the data field

specified by operand 3 (three operand addressing)*

CASE2 I Divides the contents of the data field specified by
opera rid 2 into the contents of the data field specified by
operand 1 arid places the results into the data field
specified by opera rid 2 (two opera rid addressing)*

Valid Data Types*

yes no

Integer I x I I

Bed I x i I

Real I x I I

String I x I I

Restrictions^

The length and type of operands 1 and 2 must be eaual*

O p Codes:

Two operand addressing- .________
Three opera rid a d d r e s s i n g - _______

*********CONFIDENTIAL> MOS TECHNOLOGY?INC********** Page- 117

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

'4'^ 4^ «*|N /jv /yv /fv

* AND *

4 ♦ 7 ♦ 3 ♦ 6 A n d

Format: AND 0P1?0P2?0P3

AND 0P1?0P2

Description:

CASE1 : Performs a logic ANIi operation between each bit of
the data field specified by operand 1 and the corresponding
bit of the data field specified by operand 2 arid places the
results in the data field specified by operand 3 (three
opera rid addressing)* The following diagram depicts the AND
operation:

0P2
0 1

op:
0

1

0

0

0

1

= > 0P1

CASE2 : Performs a logic AND operation between each bit of
the data field specified by operand 1 and the corresponding
bit of the data field specified by operand 2 and places the
results in the data field specified by opera rid 2 (two
operand a d d r e s s i n g)* The following diagram depicts the AND
operation:

0P1 = = > OP 1

Valid Data Types:

yes n o

I n t e g e r

Bed

R e a 14

Rea 18

Rea 110

*********CONFIDENTIAL? MOS TECHNOLOGY?INC* ********* Page- 113

Final Design Specification for the MCS65E4 Microprocessor

String I y% (i
I |---- ,

Restrictions^

The length and type of operands 1 and 2 must be eoual*

O p Codes:

Two operand addressing- _______
Three operand addressing- _______

*********CONFIDENTIAL> MOS TECHNOLOGY j INC********** Page-

h i n 3 1 Design Specification for the M C S 6 5 E 4 Microprocessor

* OR *
■•V ̂ 'V 'V ‘-V'n 'P> o' 'P ̂ -r* o'

4 ♦ 7 ♦ 3 ♦ 7 Or

Format: OR Q P 1 >0 P 2 *QP3
OR OP 1 f0P2

D e s c r i p t i o n ;

CASE! : Performs a logic OR operation between each bit of
the data field specified by operand 1 arid the corresponding
bit of the data field specified by operand 2 and places the
results in the data field specified by operand 3 (three
operand addressing)* The following diagram depicts the AND
operation:

0P2
0 1

0P3 =
0

1

0

1
= > 0P1

CASE2 : Performs a logic OR operation between each bit of
the data field specified by operand 1 and the cor responding

bit of the data field specified by opera rid 2 and places the
results in the data field specified by operand 2 (two
operand addressing)* The following diagram depicts the OR
operation:

0

1

0P2

1
O

1 I 1
^

1
O

1
!

1

l

l l

= > 0P1

Valid Data Types:

yes no

I n t e g e r

Bed

Re a 14

RealS

ReallO

*********CONFIDENTIAL> MOS TECHNOLOGY >INC♦********* Page- 120

Final Design Specification for the MCS65£4 Microprocessor

j---j----

String I x I

Restrictions^

The length arid type of opera rids 1 3nd 2 must be eaual ♦

Op Codes:

Two operand addressing-
Three operand addressing-

******** CONFIDENTIAL? MOS TECHNOLOGY rINC********** Page-

Final Design Specification for the MCS65E4 Microprocessor

^ ^

EOR *

4 . 7 . 3 . 8 Exclusive Or

Format J EOR 0P1»0P2»0P3
EOR 0P1»0P2

DescriptionJ

CASE1 J Performs a logic EOR operation between each bit of
the data field specified by operand 1 and the corresponding

bit of the data field specified by operand 2 3nd places the

results in the d3ta field specified by operand 3 (three

operand addressing). The following diagram depicts the EOR
o p e r a t i o n !

OP 2
0 1

OP
0

1

0

1

1

0
= > 0P1

CASE2 I Performs a logic EOR operation between each bit of

the data field specified by operand 1 and the corresponding

bit of the data field specified by opera rid 2 and places the
results in the data field specified by operand 2 (two
operand addressing). The following diagram depicts the EOR
operationJ

OF'2
0 1

0P3 =
0

1

0

1

1

0
= > 0P1

Valid D31 3 Types;

yes no

Integer I x I I

Bed I x I I

Res 14 I x I I

Rea 18 I x I I

*********CONFIDENTIAL> MOS TECHNOLOGY>INC.********* Page- 122

Finsi Design Specification for the MCS65E4 Microprocessor

R e a 110 I I y, I
I---i----- i

String i x I I
j---j----- j

Restrictions^

The length arid type of opera rids 1 arid 2 must be e a u a 1 ♦

Op Codes:

Two operand addressing- ______
Three operand addressing- _____

*********CONFIDENTIAL> MOS TECHNOLOGY ?INC♦********* Page-

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* MOD *

4*7*3*9 Modulus (Remainder Function)

Format: MOD 0P1>QP2>0P3
MOD OF*1fOP2

D e s c r i p t i o n :

CASE1 : Divide the contents of the data field specified by
operand 2 by the contents of the data field specified by
operand 1 and places the remainder into the data field
specified by operand 3 (three operand addressing)*

CASE2 : Divides the con tents of the data field specified by

opera rid 2 by the con tents of the data field specified by
operand 1 arid places the remainder into the data field
specified by operand 2 (two operand addressing)*

Valid Data Types:

yes no

Integer ! x I I

Bed I x i I

Real I i x !

String I x l I

Restrictions:

The length and type of operands 1 and 2 must be eoual*

Valid Data Types:

O p Codes:

Two operand addressing- _______
Three operand addressing- _______

********CONFIDENTIAL? MOS TECHNOLOGY >INC********** Page- 124

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* ABS *

4 * 7 * 3 * 1 0 A b s o l u t e V a l u e

Format: ABS 0P1?0P2
ABS 0P1

Description:

CASE1 : Changes the d a1 3 field specified by operand 1 into a
positive number storing the results into the data field
specified by operand 2 (two operand addressing)*

CASE2 : Changes the the dats field specified by operand 1
into a positive number storing the results into the same
d a 1 3 field (single operand sddtessing)*

Valid Dots Types:

yes no

I n t e g e r I x I I

Bed I x I I

Resl I x l I

3 1 r i n g I I x l

Notes: For integer d3t3 type? chsnging 3 neg3tive number into 3
positive number will involve more than changing the sign bit
since integer dat3 is stored in 2 7 s complement form*

O p Codes:

One operand addressing- _______

Two operand addressing- ______

******** CONFIDENTIAL? MOS TECHNOLOGY?INC ********** Psge- 125

Final Design Specification for the MCS65E4 Microprocessor

* NEG *
& & "k & 'in 'x it £/{ \ /|S ^ ^

4♦7♦3♦11 Negate Value

Format; NEG 0P1?0P2
NEG 0P1

Description i

CASE! I Inverts the sign of the data field specified by
operand 1 storing the results into the data field specified
by operand 2 (two operand addressing)*

CASE2 t Inverts the sign of the data field specified by
operand 1 storing the results into the same data field
(single operand addtessing)*

Valid Data Types!

yes no

Integer I x I I

Bed 1 x I !

Real I x I i

String I I x I

Notes t

For integer type? the negation will be more than Just change
the sign (i*e* twos compliment arithmetic)*

O p Codesi

One operand addressing- _______
Two operand addressing- ______

********CONFIDENTIAL? MOS TECHNOLOGY?INC * ********* Page- 126

Final Design Specification for the MCS65E4 Microprocessor

* INC *
O' O' 'T* <T* O* O' -T* -h ‘V-

4.7.3.12 Increment

Format: INC 0P1»OP2
INC OP 1

Description*

CASE1 ! Adds one to the date specified by operand 1? storing

the results back into the data field specified by operand 2
(two operand addressing).

CASE2 t Adds one to the data specified by the operand
storing the results back into the same data field (single
operand addressing).

Valid D 3 13 Types!

yes no

Integer I x I I

Bed I ;< I I

R e 31 I I I

String I I x l

O p Codes!

One oper3nd addressing-
Two operand addressing-

####**CONFIDENTIAL> HOS TECHNOLOGY*INC.**#*#* Page- 127

Final Design Specification for the MCS65E4 Microprocessor

* DEC *

4 ♦ 7 ♦ 3 ♦ i 3 Decrement

Format: DEC 0P1>0P2
DEC 0P1

D e s c r i p t i o n :

CASE1 : Subtracts orie from the data specified by operand 1?
storing the results into the data field specified by opera rid
2 (two operand a d d r e s s i n g) ♦

CASE2 : Subtracts one from the data specified by the
operand? storing the results back into the same d3ta field
(single opera rid addressing) ♦

Valid Data Types:

yes no

Integer 1 x I

Bed i x S

Real I I x

String I ! x

O p Codes:

One operand addressing-

Two operand addressing-

********CONFIDENTIAL? MOS TECHNOLOGY >INC♦********* Page- 128

Final Design Specification for the HCS65E4 Microprocessor

* SORT * *

4*7*3*14 S q u are Root

Format: SQRT QP1*0P2
SQRT 0P1

Description:

CASE1 : Determines the s q u are root of the data specified by
operand 1 r storing the results into the data field specified
by operand 2 (two operand addressing)*

CASE2 : Determines the s q u are root of the data specified by
the operand? storing the results into the same data field
(single operand addressing)*

Valid Data Types;

y e s no

Integer I x l I

Bed I x I I

Real I x l I

String I I x l

O p Codes:

One operand addressing-

Two operand addressing-

********CONFIDENTIAL* MOS TECHNOLOGY >INC♦********* Page- 129

Final Design Specification for the M C S 6 5 E 4 Microprocessor

^ v if ^ vy \Lr ^ \Lr
^ ^ 4v ^ ^ ^

*̂ MOV *

4 ♦ 7♦3♦15 Move

Format: MOV 0 P 1 f0P2

Description:

Transfers the contents of the data field specified by

operand 1 into the data field specified by opera rid 2 »

Valid Data Types:

yes no

Integer I x i i

Bed I x I 1

Real I x l 1

String 1 x 1 1

Restrictions:

The length and type of operands 1 o a n d 2 must be e q u a 1 ♦

O p Code- _______

*********CONFIDENTIAL> MOS TECHNOLOGY ?INC♦********* Page- 130

Final Design Specification for the MCS65E4 Microprocessor

* LEADZ *
******** *<|v*

4♦7♦3 ♦ 16 Leadz

Format: LEADZ GP1?GP2

Descript i o n ;

Searches the data field referericed by opera rid 1 for the
first occuranee of a zero bit* The results are returned in
the data field specified by operand 2*

Valid Data Types for QPi:

yes no

Integer4

Integers

Bed

Real

String i x l

Restrictions:

The data field referenced by 0P2 must be an integer*

For ten byte real only the mantissa will be searched*

Example:

If the first zero is in the fifth position of the fourth
byte then a value of 30 < (4-l)*8 + 4)) will be returned*
If the first zero bit is the first position then a value of
0 will be returned*

Op Code-

********CONFIDENTIAL? MOS TECHNOLOGY?INC********** Page- 131

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* LEAD1 *

4*7*3*17 Leadl

Format! LEAD1 0P1>QP2

Description:

Searches the data field referenced by opera rid 1 for the

first occuranee of a one bit* The results are returned in
the data field specified by operand 2*

Valid Data Types for 0P 1 :

y e s no

I n t e g e r 4 { x 1 I

Inte g e r s 1 x I I

Bed I x 1 i

Real I x l 1

String I x l 1

Restrictions:

The data field referenced by Operand 2 must be an integer*

For ten byte real only the mantissa will be searched*

Example:

If the first one is in the second position of the third byte then
a value of 17 < (3-l)*8 + 1)) will be returned*

Note: If the first one bit is the first position then a value of 0

will be returned*

O p Code- _______

*********CQNFIDENTIAL> MOS TECHNOLOGY >INC♦********* Page- 132

Final Design Specification for the MCS65E4 Microprocessor

******* **

* CLR *

4 ♦ 7*3♦18 Clear

Format: CLR QF‘l

Description:

Loads an arithmetic zero into the data field specified by
the single operand contained in the instruction*

Valid Data Types:

yes n o

Integer i x l I

Bed I x l I

Real I x l 1

String I x l I

O p Code- _______

*********CONFIDENTIAL? MOS TECHNOLOGY?INC ********** Page- 133

Final Design Specification for the MCS65E4 Microprocessor

* SET *
r 'Af v i/ %L *Xr ^

✓fw • / f . ^ ^ ^ ^

4*7*3*19 Set

Format* SET OF* 1
I

Description:

Set on all bits (i*e makes bits logic 1) in the data field
specified by the single opera rid contained in the
instruction *

Valid Data Types:

yes no

Integer I x I

Bed I x I

Real i x l

String I x I

O p Code-

*********CONFIDENTIAL> MOS TECHNOLOGY >INC* ********* Page- 134

Final Design Specification for the MCS6 5E4 Microprocessor

7*5 Pr o g r a m Control Instructions

7*5+1 Introduction

The set of program control instructions described in this
section consists of those operations which directly affect
program flow during process execution* This includes
conditional branching? unconditional bran c h and Jump
instructions? subroutine call and return? system call and
return? and miscellaneous process control intructions* These
instructions will be organized into four groups 3S follows!

1* Compare and branch operations*
2* Test and branch operations*
3* Single operand control functions*
4* Miscellaneous (no operand) control functions*

*******CONFIDENTIAL? MOS TECHNOLOGY?INC * ********* Page- 135

i“ i n a 1 Design SpeeifiC3tion for "the M C S 6 5 E 4 Microprocessor

OL/ •±r vLr - i/ \L* sir *Jj 'hr
/ v* ' t ' ^ 'p

* BEQ *
%y ^ •-!* * JL* '±r ‘±r ^ ^•* 'n 'ft *T* ■'ft 'ft 'ft 'ft 'ft

4 * 7 * 5 * 2 Csm p are 3nd Br3nch If E q u 3 1

Forinst: BEQ GP1?GP2>*
BEQ 0 P 1 fGP2>**

Description:

CouiP3re the d 3 to field referericed by OP 1 with the d3t3 field
referenced by OF’2 and b r 3 n c h conditionslly ($: one byte
offset? two byte offset) if they are e au31 ♦

Notes:

Loc3tiori f is determined by subtrsctirig the progrsiTi counter
from the brsnch d e s t in 3 1 i o n ♦ This offset must be grester
t h 3 n or e a u 31 to -123 3rid less t h 3 n or eausl to -1*127 bytes

from the start of the next instructions opcode*

Loc3tiori is deter mined by subtrscting the p r o g r 3 m counter
from the brsnch destinstion* This offset must be grester

than or eaua 1 to -65536 3nd less th3 n or e a u 31 to +65535
bytes from the stsrt of the next instructions opcode*

Restrictions:

The d3 13 fields referenced by OF'l 3nd 0P2 must be the seme
type 3nd length*

O p Codes:

*********CONFIDENTIAL> MOS TECHNOLOGY rINC********** P3 g e- 136

Final Design Specification for the MCS65E4 Microprocessor

* BNE *

4 * 7 * 5 * 3 Comapre and Branch If Not Eaua 1

Format: BNE 0P1>0P2**
BNE 0P1>QP2***

D e s c r i p t i o n ♦

Compare the data field referenced by 0P1 with the data field
referenced by 0P2 and branch conditionally ($ one byte
offset? two byte offset) if they are not eoual*

Notes:

Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -128 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location is determined by subtracting the program counter
from the branch destination* This offset must be greater

than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*

Restrictions:

The data fields referenced by 0P1 and QP2 must be the same

type arid length*

O p Codes!

*********CONFIDENTIAL> MOS TECHNOLOGY >INC********** Page- 137

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* ********
* BGT *

4*7*5*4 Compare and Branch If Greater Than

Format: BGT 0F‘1?0P2?*

BGT 0P1?GP2?*#

D e s c r i p t i o n ♦

Branch c o n d i t io n a11y (t one byte offset? location two
byte offset) if the data field referenced by OF' 1 is greater
than the data field referenced by Q P 2 ♦

Notes:

Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -128 arid less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location ♦♦ is determined by subtracting the program counter
from the branch destination* This offset must be greater

than or eaual to -65536 3nd less than or eaual to +65535

bytes from the start of the next instructions opcode*

Restrictions;

The data fields referenced by 0P1 and QP2 must be the same
type and length*

O p Codes:

********CONFIDENTIAL? MOS TECHNOLOGY?INC********** Page- 138

Final Design Specification for the MC365E4 Microprocessor

* BGE *

4 * 7 * 5 * 5 Compare and Branch If Greater Than

Format; BGE 0P1?0F‘2?*
BGE 0P1'?QP2?«

Description:

Branch conditionally (# one byte offset? location # * two
byte offset) if the data field referenced by OF11 is greater
than or eoual to the data field referenced by 0P2♦

Notes:

Location t is determined by subtracting the program counter

from the branch destination* This offset must be greater

than or eaual to -123 arid less than or eoual to +127 bytes
from the start of the next instructions opcode*

Location #4 is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*

R e s t r i c t i o n s :

The data fields referenced by OF'l and 0F*2 must be the same
type and 1e n g t h *

O p Codes:

*********CONFIDENTIAL? MOS TECHNOLOGY?INC * ********* Page- 139

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* BEQZ *

4♦7 * 5♦6 Branch if Eaual

Format: BEQZ DPI?#
BEQZ QPlf**

Description:

Branch conditional! (# one byte offset; location ** two
byte offset) if data field referenced by QP1 is eaual to
zero*

Notes:

Location f is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -128? and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location £ # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*

0 p Codes:

*********CONFIDENTIAL* MOS TECHNOLOGY?INC* ********* Page- 140

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* BNEZ *

4♦7♦5♦7 Branch If Not Eaual

Format: BNEZ QF’l;*

BNEZ 0P1,**

Description;

Branch conditionally (t one byte offset? location -t # two
byte offset) if data field referenced by OF' 1 is not eaual to
zero * *

N o t e s :

Location ♦ is deter mined by subtracting the program counter
from the branch destination* This offset must be Greater

than or eaual to -128 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location * * is determined by subtracting the program counter
from the branch destination* This offset must be Greater
than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*

O p Codes;

*********CONFIDENTIAL> MOS TECHNOLOGY jINC * ********* F‘a3e- 141

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* BROS *

4*7 *5♦3 B ranch If Positive

Format: BPOS 0 P 1 j *
BPOS Q P 1 >**

Description:

Compare the data field referenced by 0P1 arid branch
conditionally < $ one byte offset? two byte offset) if
the most significant bit is set to logic 0*

Notes ;

Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -123 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 arid less than or eaual to +65535
bytes from the start of the next instructions opcode*

For bed? integer and real? the sign bit which is always in

the most significant bit? will be tested for logic 0* If the
value is positive a branch will occur* The BMI instruction

(see Section 4*7*5*?) can be used for branch on negative
numbers *

O p Codes:

*********C0NFIDENTIAL? MOS TECHNOLOGY ?INC * ********* Page- 142

Final Design Specification for the MCS65E4 Microprocessor

* BM I *

4*7*5*9 Branch If Minus

Format; BMI 0 P 1 ? #

BM I OP if**

Description;

Co m pare the data field referenced by OF' 1 arid branch
conditionally (* one byte offset? location ** two byte

offset) if the most significant bit is set to 1o 2 i c 1 *

Notes :

Location * is determined by subtracting the program counter
from the branch destination* This offset must be Greater
than or eaual to -128 and less than or eaual to 4*127 bytes
from the start of the next instructions opcode*

Location ** is determined by subtracting the program counter
from the branch destination* This offset must be Greater
than or eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*

For bed? integer arid real? the si2 ri bit which is always in
the most significant bit? will be tested for 1 o 2 i c 1* If the
value is negative a branch will occur*

O p Codes J

*********CONFIDENTIAL ? MOS TECHNOLOGY ?INC * ********* P a 3 e - 143

Final Design Specification for the MCS65E4 Microprocessor

* BR *

4 ♦ 7 ♦ 5 ♦ 1,0 Branch Relative Unconditionally

F o r m a 1 1 B R £
BR **

D e s c r i p t i o n *

Branch (t orie byte offset? location * t two byte offset)
unconditionally*

Notes t

Location # is determined by subtracting the prodraui counter
from the branch destination* This offset must be greater

than or eaual to -123 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location t £ is determined by subtracting the program counter
from the bra rich destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535
bytes from the start of the next instructions opcode*

Locations $ and ** can not specify a variable which could be
used for indirect addressing* Instead? the generated address
is a positive or negative offset from the opcode of the next
instruction* Indirect addressing can be accomplished with
the JMP instruction (see Section 4*7*5*11)*

*********C0NFIDENTIAL ? MOS TECHNOLOGY?INC* ********* Page- 144

Final Design Specification for the MCS65E4 Microprocessor

* JMP *

4*7*5*11 Jump Logical Address Unconditionally

Formatt J M P OF' 1

Description;

Jump unconditionally to the address contained in the data
field referenced by OP 1 ♦

Notes :

If the destination location is fixed (i»e» not calculated at
run time but rather assemble time) the data field referenced
by 0P1 should be an immediate value* However? if the
destination address is not known at assemble time then 0P1
should be a variable* In fact? O P 1 can define an array
structure which could be used to establish an array of

addresses* Thus? a 'case' type of instruction can be formed
(see example below)*

Example

JMP TABLE C I 3

LABLA

0P1 = References an array structure*

LABLB

LABLC

TABLE =

Descriptor Header

LABLA

LABLB

LABLC

The processor does the following to obtain the JMP address:

Get TABLE'S operand control byte which indicates primary

* ** ** ****CONFIDENTIAL? MOS T E C H N O L O G Y ?I N C * ********* Page- 145

Final Design Specification for the MCS65E4 Microprocessor

based descriptor accessing and a two byte offset* The
contents of the primary register plus the two byte offset
point to the descriptor header*

Determine that TABLE is 3 simple array of attached ordinals
(TABLE'S descriptor header indicates this)*

Fetch subsript operand (variable I) for the index into the
array*

Determine the address of TABLECI1 (the address of the raw
data is TABLE + 3*1 (see S E C T I O N _______) for traversing
th rough an array) *

The data field (three byte ordinal) referenced by TABLECIU
is the logical address for the program counter*

The program continues with the appropiate program counter*

In the above example if I eauals 0 then the program will
Jump to LABLA* If I eauals 1 then the program will Jump to

LABLB and if I eauals 2 then the program will Jump to LABLC*

*********CONFIDENTIAL> MOS TECHNOLOGY?INC * ********* Page- 146

Final Design Specification for the MCS65E4 Microprocessor

* BSR *

4♦7♦5♦12 Branch to Subroutine

Format: BSR *
BSR **

Dascription!

Branch to subroutine at location $ (one byte offset) or

location * * (two byte offset) unconditionally*

Notes:

Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -128 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*

Locations t and ** can not specify a variable which could be
used for indirect addressing* Instead? the generated address

is a positive or negative offset from the opcode of the next
instruction* Indirect addressing can be accomplished with

the JSR instruction (see Section 4*7*5*13)*

The return address from the subroutine is saved onto the

stack as described in S ec ti on ___________* Exiting from the
subroutine is accomplished by executing the return from
subroutine (RTS) instruction (see Section 4*7*5*18)*

*********CQNFIDENTIAL> MQS TECHNOLOGY ?INC********** Page- 147

Final Design Specification for the MCS65E4 Microprocessor

^ ^ ^

* JSR *

4,7.5.13 Jump To Subroutine

Format; JSR DPI

Description t

Branch to subroutine at the address contained in the data
field referenced by 0P1.

Notes J

If the destination location is fixed (i.e. not calculated st
run time but rather assemble time) the data field referenced
by 0P1 should be an immediate value. However) if the
destination address is not known at assemble time then OF'l
should be a variable. In fact* QP1 can define an array
structure which could be used to establish an array of
addresses (see example below).

The return address from the subroutine is saved onto the

stack as described in S ecti on___________. Exiting from the
subroutine is accomplished by executing the return from
subroutine (RTS) instruction (see Section 4.7.5.18).

Examp 1 e

JSR TABLECIIl 0P1 = References an array structure,

LABLA

LABLB

LABLC

TABLE =
Descriptor Header

LABLA

LABLB

i LABLC I

*********CONFIBENTIAL> MOS TECHNOLOGY>INC.********* P 3 g e - 148

Final Design Specification for the MCS65E4 Microprocessor

The processor does the following to ohtairi the subroutine address:

Get TABLE'S operand control byte which indicates primary
based descriptor accessing and a two byte offset* The
contents of the primary register plus the two byte offset
point to the descriptor header*

Determine that TABLE is an array of attached ordinals
(TABLE'S descriptor header indicates this)*

Fetch subsript operand (variable I) for the index into the
array*

Determine the address of TABLECIU (the address of the raw

data is TABLE + 3*1 (see SECTION _______) for traversing
through an array)*

The data field (three byte ordinal) referenced by TABLECI3

is the logical address for the program counter*

The program continues with the appropiate program counter*

In the above example if I eauals 0 then the program will
Jump to LABLA* If I eauals 1 then the program will Jump to
LABLB and if I eauals 2 then the program will Jump to LABLC*

*********CONFIDENTIAL> MOS TECHNOLOGY;INC * ********* Page- 14?

Final Design Specification for the MCS65E4 Microprocessor

* BDEC *

4 ♦ 7 ♦ 5 * 14 Decrement arid Branch

Format I BDEC 0 P 1 ? -t !

BDEC OPlf*#

Description t

Decrement the data field referenced by GPl and branch

conditionally (t one byte offset? location £ # two byte
offset) if it is not eaual to 0*

Notes*

Location # is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -128 and less than or eaual to +127 bytes
from the start of the next instructions opcode*

Location is determined by subtracting the program counter
from the branch destination* This offset must be greater
than or eaual to -65536 and less than or eaual to +65535

bytes from the start of the next instructions opcode*

This instruction is very useful in a loop situation* GPl

first contains a positive integer which serves as a counter*
The MCS65E4 will execute the loop until this counter reaches
zero and will then proceed to the next instruction*

O p CodesJ

********CONFIDENTIAL? MOS TECHNOLOGY>INC♦********* Page- 150

Final Design Specification for the MC365E4 Microprocessor

* BCQND *
******* * * * *

4*7*5*15 Brarich On Coriditiori

Format: BCOND aPl?0P2?GP3

Description:

Add the data field referenced by 0P1 to the data field
referenced by 0P2 storing the results back into the field
referenced by OF‘2* The result is compared to the field
referenced by O P3♦ The processor will then conditionally
branch to location * (one byte offset) or location ** (two
byte o f f s e t) *

Notes:

The BCOND instruction is similar to the FORTRAN do loop* The
field referenced by 0P1 is the 'stepping value*? the field

referenced by OF*3 is the limit value? arid the field

referenced by OF’2 is the current value within the loop*

The “stepping v a l u e - can either be positive or negative* If
it is positive the current value is incremented until it is
greater than or eaual to the limit value* If the “stepping
value* is negative the current value is decremented until it
is less than or eaual to the limit value*

Relative Value t is determined by subtracting the program
counter from the branch destination* This offset must be
greater than or eaual to -123 3nd less than or eaual to +127

bytes from the start of the next instructions opcode*

Relative Value $ * is determined by subtracting the program

counter from the branch destination* This offset must be

greater than or eaual to -65536 and less than or eaual to
+65535 bytes from the start of the next instructions opcode*

Locations * and ** can not specify a variable which could be
used for indirect addressing* Instead? the generated address
is a positive or negative offset from the opcode of the next
instruction*

*********CONFIDENTIAL? MGS TECHNOLOGY?INC* ********* P a g e - 151

Final Design Specification for the MCS65E4 Microprocessor

* SC *

4♦7♦5♦16 System Call

Format: SC

Description:

Causes the processor to execute a t r 3P through the exception
vector located at the a d d r e s s _____________ _ on the limit page*

This operation is described in more detail in Section

Restrictions X

Must be serviced within operating system process (U = 0)*

********CONFIDENTIAL? MOS TECHNOLOGY?INC♦********* P a g e - 152

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* 3CM *

4*7*5*17 System Call Message

Format! SCM *

Description t

Causes the processor to execute a trap through the exception
vector located at address ------- within the limit page* At

the same time? the 8 bit message ($> which follows the
operand is passed to the operating system* This operation is
described in more detail in Section ___________♦

Restrictions;

Must be serviced within operating system process*

*********CONFIDENTIAL? MOS TECHNOLOGY >INC********** Page- 153

Final Design Specification for the MCS65E4 Microprocessor

* * * * * ̂ * * *

* RTS *

4♦7 ♦ 5 ♦ 18 Return From Subroutine

Format: RTS

Description:

Return from subroutine*

Notes:

The JSR or BSR was used to C3ll the subroutine arid
subsequently the return address was saved on the process
stack* The RTS instruction is used to get back to the
caller*

* * * * * * * * * C 0 N FID E N T IA L ? HQS TECHNOLOGY?INC* ********* Page- 154

Final Design Specification for the MCS65E4 Microprocessor

sj^ ^

* RTE *

4*7*5*19 Retrurn From Exception

Format: RTE DPI

Description:

Return to the middle of instruction execution* The data

field referenced by 0P1 contains all the necessary return
information*

N o t e s :

This instruction should only be executed when returning to
an instruction within the same process* The TASK or IOS
instruction should be used when returning to 3n instruction
within another process*

********CONFIDENTIAL? tfOS TECHNOLOGY>INC♦********* Page- 155

Final Design Specification for the MCS65E4 Microprocessor

\Lf s ir \Lr *i^ * lf
^ sf%

* I OS *

4*7*5*20 Initiate Operating System

Format: IOS 0P1

Description:

Initiates a higher - level operating system process* The
user/supervisor flag remains logic 0* The kernal flag is set
to a logic 0* The operation is described in detail in
Section _________ ♦

N o t e s :

The data field referenced by OP 1 specifies the logical
address of the new process*

R e s t r i c t i o n s :

Must be serviced within an Operating System or Kernel
p r o c e s s *

*********C0NFIDENTIAL> MOS TECHNOLOGY ? INC* ********* Page- 156

Final Design Specification for the MCS65E4 Microprocessor

* TASK *
■;k ± ± 'Jz £ £ 'k & %• P ns /yv / f \ /p *X«

4 ♦ 7 ♦ 5♦21 TASK

Format: TASK 0P1

Description;

Initiates a user process* Both the user/supervisor flag and
the kernsl flag 3re set to 0♦ This operation is described in
detail in Section _________ ♦

Notes ;

The data field referenced by 0 P 1 specifies the logical
address of the process parameter list (PPL) for the new
process*

Restrictions;

Must be serviced within 3n operating system process*

********CONFIDENTIAL? MOS TECHNOLOGY>INC♦********* Page- 157

Final Design Specification for the MCS65E4 Microprocessor

4*7*6 Advanced Operations

4 ♦ 7 ♦ 6♦1 Introduction

This group of instructions contains a number of powerful instructions
which greatly facilitate the control of program sequencing within

the M C S 6 5 E 4 software* These instructions allow the processor to compare tw

data fields and to set a Boolean variable as a function of the data in the
two fields* In addition? a full set of string instructions? data shifting

instructions and data conversion instructions is provided along with a num
of instructions which are specifically designed to facilitate the control
of the data within the M C 3 6 5 E 4 process* Each of these instructions is
described below*

*********CONFIDENTIAL? MOS TECHNOLOGY?INC* ********* Page- 158

Final Design Specification for the M C S 6 5 E 4 Microprocessor

* RESET *

4 ♦ 7 ♦ 6 ♦ 2 Reset

Format: RESET

Description;

Causes the IORES bit in the bus status word to go low for 16
cycles ♦

Notes!

The instruction has no operands*

*********CONFIDENTIAL> HQS TECHNOLOGY?INC * ********* Page- 15?

Final Design Specification for the MCS65E4 Microprocessor

* CEQ *

4 ♦ 7 ♦ 6 ♦ 3 Compare Two Opera rids For Eauality

Format: CEQ 0P1*QP2>QP3

Description:

Compare for eauallty the data field referenced by 0P1 with
the data field referenced by 0P2 and place the boolean

result into the low order bit position of the field
referenced by 0P3*

Notes :

If the field referenced by 0P1 is eaual to the field
referenced by OF'2 then the value 0000 0001 will be put into
the data field referenced by OF'3* If the fields are not

eaual the value 0000 0000 will be put into the field
referenced by OP 3 ♦

The data field referenced by OF'3 should be byte data type*

If it is not? only the least significant byte will be
affected by the instruction*

Restrictions:

The fields referenced by 0P1 and 0P2 must be the same type
and length*

E x a m p l e :

Before CEQ instruction:
OF* 1 = References a data field whose value is 16
OF’2 = References a data field whose value is 16
0P3 = References a data field whose value is 0111 0001

After CEQ instruction:
QF‘1 = References a data field whose value is 16

0P2 = References a data field whose value is 16
OF*3 = References a data field whose value is 0000 0001

*********C0NFIDENTIALi H0S TECHNOLOGY*INC********** Page- 160

Pinal Design Specification for the M C S 6 5 E 4 Microprocessor

* CNE *

4 ♦ 7 ♦ 6 ♦ 4 Co hi pare Two Operands For Ineauality

Format! CNE 0P1>0P2>0P3

Description ;

Compare for ineauality? the data field referenced by OF' 1
with the data field referenced by OF'2 and put the boolean
result into the low order bit position of the field
referenced by 0P3 *

Notes;

If the field referenced by 0F‘ 1 is not eaual to the field

referenced by 0P2 then the value 0000 0001 will be put into
the data field referenced by O P 3 ♦ If the fields are eaual
the value 0000 0000 will be put into the field referenced by

0P3 ♦

The data field referenced by OF'3 should be byte data type*

If it is not? only the least significant byte will be
a f f e c t e d ♦

Restrictions;

The fields referenced by OP 1 and OF'2 must be the same type
and length*

Example;

Before CNE instruction;
0P1 = References a data field whose value i s 13
0P2 = References a data field whose v a 11 j e is 1 6
0P3 References 3 data field whose v a 1 * j e is 0111 0001

After CNE i n s t r uc t io n;
0P1 = References a data field whose value i s 13
0P2 = References 3 data field whose v a 11 j e is 16
OF‘3 = References 3 data field whose value i s 0000 0001

*********C0NFIDENTIAL? M0S TECHNOLOGY ?INC********** Page- 161

Final Design Specification for the MCS65E4 Microprocessor

L- -J/ •<, X, -J.- -V -.U -4/
.j-. f - • r ' f r 'r - ' I ' /»*•

* CGT *
* -V 'k * 'V

r- • ! ' * r* •T'><»' 's'-

4 * 7 * 6 * 5 C o hi p 3 r e Two O p e r a n d s For G r e a t e r T h a n

Format: CGT 0 P 1 ?0P2?0P3

D e s c r i p t i o n :

Compare the data field referenced by 0P 1 with the data field
referenced by QP2* If the data field referenced by 0P1 is

greater than the data field referenced by O P2 then put the
boolean result into the low order bit position into the

field referenced by OF’3*

Notes :

If the f i e 1d r e f e r e nc e d by 0 P 1 is greater than the field
referenced by 0P2 then the value 0000 0001 will be put into

the data field r e f e r e n c e d by 0 P 3 else the v a lue 0000 0000

will be used*

The dats field referenced by OF’3 should be byte data type*
If it is not? only the least s i g n i f i c a n t byte will be

affected*

Restrictions:

The fields referenced by 0 P 1 arid OF’2 must be the same type
and length*

Example:

Before CGT instruction:
OF* 1 = References a data field whose value is 47
OF’2 = References a dat3 field whose value is 16
OF’3 = References a data field whose value is 0111 0001

After CGT instruction
0 P 1 = References a data field whose value is 47
0F‘2 = References a data field whose value is 16
OF'3 = References a data field whose value is 1110 0011

*********CQNFIDENTIAL? MOS TECHNOLOGY?INC * ********* P a g e - 162

F i n s 1 Design Specification for the M C 3 65 E 4 Microprocessor

■ V ■(/ • ! / -,Lr •»/ \ (/ •,<.*
• i-. •) ' ■?• f‘- • ! ' -t>

4 * 7 * 6 * 6 C o hi p a r e Two Operands For G r e a t e r Than Or Eaual

Format: CGE 0Pl*QP2i0P3

Description:

Compare the data field referenced by 0P 1 with the data field
referenced by 0P2♦ If the data field referenced by 0P 1 is
greater than or eaual to the data field referenced by 0 P2
t h e n put the boolean result into the low order bit p o s i t ion
into the field referenced by 0P3 *

Notes:

If the field referenced by 0 P 1 is greater than or eaual to
the field referenced by 0P2 then the value 0000 0001 will be
put into the data field referenced by 0P 3 else the value
0000 0000 will be used*

The data field referenced by 0P 3 should be byte data type*

If it is not? only the least significant byte will be
affected*

Restrictions t

The fields referenced by OF’ 1 arid OF’2 must be the same type,
arid length*

E x a m p l e :

Before CGE instruction:
0P 1 = References a data field whose value is 47
OF‘2 = References a data field whose value is 16

0P3 = References a data field whose value is 0111 0001

After CGE instruction:
OF* 1 = References a
OF‘2 = References a
OF*3 = References a

data field whose value is 47
data field whose value is 16
data field whose value is 0000 0001

*********C0NFIDENTIALj MQS TECHNOLOGY ?INC * ********* Page-

Final Design Specification for the MCS65E 4 Microprocessor

•I.* *.V -X- \J/ \^r * ir \ y \ i r '« /
/,■. •■f* *r* *t > -r> •r« •{•

* FIND *
• v -v v •> -V *V --k 'k/ f . . f . . f . .fv .-fs -r* •P' -r-

4 * 7 * 6 * 7 Find S t ri ng

Format : FIND 0P1?0P2?0P3

Description

Find the first occurance of 3 specified data item within a
gi ve n string*

o p i :

The dat3 field referenced by OF’ 1 contains the search

argument and must be of type byte? integer* ordinal or
string*

0P2J

The data field referenced by OF’2 contains the starting point
of the string d3ta field referenced by 0P3*

GP3:

The dats field referenced by O P 3 represents the string field
to be searched* The starting point within the dats field
referenced by OF‘3 is contained in the data field referenced
by OF‘2 *

Notes!

The data referenced by Opera rid 3 must be of type string* The
length of this string is defined by its descriptor*

If the data referenced by Opera rid 1 is of type string? then
only the first 8 bytes are used for the search argument*

It is the users responsibility to initialize the data field
referenced by OP2 with the initial starting point within the
string* The search will begin from the first byte of the
string if the data field referenced by 0P2 contains -1* If a
match is detected? the dats field referenced by OF*2 will
contain a positive number which will indicate the byte

position within the string* When the se3rch is complete? the
data field referenced by GP2 will contain -2*

Example:

Before FIND instruction:

OF11 = References a dats field whose value is: NOW BR
OF12 = References a data field whose value is: -1
O P 3 = References a dats field whose value is: HOW MOW BROWN COW*

********CONFIDENTIAL? MOS TECHNOLOGY ?INC * ********* P a g e - 164

Final Design Specification for the MCS65E4 Microprocessor

After FIND instruction?

OF'l = References a data field whose value is* NOW BR
0 P 2 = R e f e r e nc es a d a t a field whose value is? + 9
O P 3 = References a data field whose value is? HOW N0U BROUN COW

*********CONFIDENTIAL» MOS TECHNOLOGY»INC.********* Page- 165

Final Design Specification for the MCS65E4 Microprocessor

##***:***#*
* 'f| :r — p

***#*#*###

4*7 ♦ 6 * 8 Detect Character in String

Format: DETC 0P1?QP2?QP3

Description:

Find the first byte in a string which matches a byte from a
given set of bytes*

o p i :

The data field referenced by OPI contains the set of bytes
which will be matched against the search string*

0P2:

The data field referenced by 0P2 contains the starting point

of the string data field referenced by OF’l*

o p 3:

The data field referenced by O P3 represents the string field
to be searched* The starting point within the data field
referenced by OF‘3 is contained in the data field referenced
by 0P2*

Notes :

The data referenced by Operand 3 must be of type string* The
length of this string is defined by, its descriptor*

If the data referenced by Operand 1 is of type s t r i n g ? then

only the first 8 bytes are used for the search argument*

It is the users responsibility to initialize the data field

referenced by OF'2 with the initial starting point within the
string* The search will begin from the first byte of the
string if the data field referenced by OF'2 contains -1 *

The search stops if any byte from the set of bytes matches a
byte within the search string* In that case? the data field
referenced by OF’2 will contain a positive number which will
indicate the byte position within the string* When the
search is complete? the data field referenced by OF’2 will
cor«tain -2*

Example J

Before DETC instruction:

OPI = References a data field whose value is: XYZW
0 P 2 = References a data field whose value is: -1

******** CONFIDENTIAL? MOS TECHNOLOGY?INC* ********* Page- 166

Fin3 1 Design Specif'ic3t i o n ■for the MC365E4 Microprocessor

0P3 = References s data field whose value is: HOW NOW BROUN COU.

After D E T C instruction:

0 P 1 = References a d a t a field whose value is: X YZ U
0F‘2 = References a data field whose value is: +2
OF'3 = References s data field whose value is: HOW NOW BROUN COW.

*********CONFIDENTIAL> MOS TECHNOLOGY>INC♦********* p 3 o 0 — 167

Final Design Specification for the MCS65E4 Microprocessor

###*#***##

% NDET t
#**###***#

4 * 7 * 6 ♦ ? Detect Character not in String

Format: NDET 0P1?0P2?0P3

Description:

Find the first byte in a string which does not matches a
byte from a given set of bytes*

o p i :

The data field referenced by 0P1 contains the set of bytes
which will be matched against the search string*

QP2:

The data field referenced by QP2 contains the starting point

of the string data field referenced by GP3*

QF'3 :

The data field referenced by OF'3 represents the string field
to be searched* The starting point within the data field
referenced by OF’3 is contained in the data field referenced
by 0P2 *

Notes:

The data referenced by Operand 3 must be of type string* The
length of this string is defined by its descriptor*

If the data referenced by Operand 1 is of type string? then
only the first 8 bytes are used for the search argument*

It is the users responsibility to initialize the data field

referenced by OF'2 with the initial starting point within the
string* The search will begin from the frrst byte of the
string if the data field referenced by OF’2 contains -1*

The search stops if any byte from the set of bytes does not
match a byte within the search string* In that case* the
data field referenced by 0P2 will contain a positive number
which will indicate the byte position within the string*
When the search is complete? the data field referenced by
0P2 will contain -2*

Example:

Before NDET instruction:

0F‘2 = References a data field whose value is: ABCMCS

OF* 1 = References a data field whose value is: -1

******#**CONFIDENTIAL> MOS TECHNOLOGY>INC * ********* Page- 168

Fin31 Design Specification for the MCS65E4 Microprocessor

0P3 = References a data field whose value is I HCS65E4

After ND E T instruction!

0P1 = References 3 data field whose value is: ABCMCS
0 P 2 = References 3 data field whose value i s { +3
0P3 = References a data field whose value ist MCS65E4

*********CONFIDENTIAL> MOS TECHNOLOGY>INC,********* P a 2 e - 16?

Final Design Specification for the M C 3 6 5 E 4 Microprocessor

!/ £ ;•'/ ;£ 'V -4/ ;£ •£

;:v f! F T R >K

4,7,6*10 DETR

Format: DETR GF‘1?0P2?0P3

Description:

Search strind for a sirisle byte which is within a defined
ranSe *

0P1 :

The data field referenced by 0P1 contains the two byte rande
field which defines the lower and upper bound* The least
significant byte of this field defines the upper bound and
next consecutive byte defines the lower bound*

0P2:

The data field referenced by OF'2 contains the starting point
of the string data field referenced by 0 P 3 *

QP3:

The data field referenced by QF‘3 represents the string field

to be searched* The starting point within the data field
referenced by .OF'3 is contained in the data field referenced

by 0P2 *

N o t e s :

As stated above? the least significant byte of the field
referenced by OP 1 defines the lower bound and the next
consecutive byte defines the upper bound of the r a n2 e *
During the search operation? any byte from the data field
which is referenced by OF'3 which is greater than or eaual to

the lower bound and less than or eaual to the upper bound

will halt the search operation*

It is the users r es po ns ib i 1ity to initialize the data field
referenced by 0P2 with the initial starting point within the
string* The search will bedin from the first byte of the
string if the data field referenced by OF'2 contains -1* When
a byte is within the defined ran^e? a positive number will
be returned which indicates the byte position within the
string* When the search is complete? the data field
referenced by OF*2 will contain -2*

Examp le :

Before DETR instruction:

OF’ 1 = References a data field whose value .is: AB12 B 4D 7

*********C0NFIDENTIAL? MOS TECHNOLOGY ?INC* ********* P a 2 e - 170

Finsi Design Specification for the M C S 6 5 E 4 Microprocessor

OF* 2 = References a Q3 ta field w h o S Q v slue is* -i
OF‘3 = References a data field whose v a 11 j e is: 2 •* b F 4567

After D E T F: in s t r j j c t ion I

OPI = References a data field whose v a 1 1 j e i s { A B 1 2 B 4 D 7
OP 2 = References a data field who s e v a I u e i s * + 1
OF‘3 = References a data field whose value i s t 22BF 4567

In this example the lower bound = D7 and the upper bound
Since BF is greater than or eaua 1 to D 7 and less than or
to B 4 f the data field referenced by 0 F’3 will contain r 1 ♦

ooi p
<_< / J . i

8? IF

= B
ecu

#***#*#**CONFIDENTIAL> MOS TECHNOLOGY? INC♦********* F' age- 171

Final Design Specification for the MCS65E4 Microprocessor

* 3 H M *
* * $ % * * * $ %

4 , 7 ♦ 6 , 11 Shift Multiple

Format: SHM GP1?GP2?0P3 >
SHM OPlf0P2

Description:

C A S E 1 : Shift the data field referenced by DPI
of bit positions specified by the data field
OF’2 storing the results into the data field
0F*3 (three operand addressing).

by the number

referenced by
referenced by

CASE2 : Shift the data field referenced by OF'l by the number
of bit positions specified by the data field referenced by
OF'2 storing the results back into the field referenced by
OF'2 (two operand addressing).

N o t e s :

If the field referenced by OF’2
occur, A negative number will

is positive a left shift w :
cause a right shift*.

11

The lenth of the data field to be shifted is specified in

the descriptor of the field referenced by OF’l or in the

opera rid control byte in the case of byte* integer or
ordinal ,

Logic 0 will
shift right
integer. In
extend (i ,e ,
positions) ,

fill the bit positions ere a ted by shift left or
unless the data field referenced by OF'l is an

this case? a right shift operation will sign
the most significant bit will fill the bit

For ten byte real? only the mantissa will be shifted.

Example :

♦
♦

*

SHM 0P1 ? 0 P2 ? 0F*3

Before SHM instruction:
OF’ 1 = References a one byte field whose- value is 1011 0001
OF*2 = References a data field whose value is -2
OF’3 = References a data field whose value is 1111 1111

After SHM instruction:
OF11 = References a one byte field whose value is 1 0 1 1 0 0 0 1

*********CQNFIDENTIAL? MGS TECHNOLOGY ?INC,********* Page- 172

w
ro

Final Design Specification for

= References a data field whose
= References a data field whose

va 1 u e is -2
value is 1110 1100

the MC365E4 Microproce sso r

*********CQNFIDENTIAL? MOS TECHNOLOGY?IN C ******** * * Page- 173

Final Design Specification for the MCS65E4 Microprocessor

U y - - V 4 / ir -J/ - 4 - 1 / - 4 .*^ -f- -t-t- -r* - r-
* PTR *
\ V 4 / ■ • i ' v U 'V ■ • i ' * 4 - ' • j ' 'i - *. r. . f . /i% .r \ . r . 4 ’. . r-

4*7*6*14 Point to Data Field

Format; PTR OPI ? 0 F* 2

Description*

Returns the Logical Address of a Data Field*

OPI : •

The PTR instruction will determine the logical address
within the process of the field referenced by OPI* This
field c3n be any dat3 type but it can not be an immediate
value or an internal register*

QP2:

The 24 bit result will be placed in the field referenced by
0P 2 which must be of type oridinal*

N o t e s :

The results of this operation will return the logical
address of q i t * * >r strind cr scalar < e ? g » byte? integer?

real? etc*) type data* If the data field referenced by OPI
is not string or scalar type dat3 (i * e ♦ record or array

type) the processor will search through the data structure
until it encounters a basic data element from the structure*

This instruction is very useful to speed u p the operation in
the loop instead of having to calculate the address of the
operand everytime* All that is needed is first calculate the

address of the d a 13 item then update the pointer address*

E x a m p l e 4* PTR TABLECI3 ?B

TABLE = 12345678 <0th element - logical address = 001 C O O

23456789 <8th element - logical adreess = 001C20>

Before PTR instruction:

OF* 1 = References the d3t3 field whose vslue is 23456789 with
1o g i c 3 1 3ddress 001C20*

B = References the dsta field whose value is 00 0000

*********CGNFIDENTIAL? MOS TECHNOLOGY * INC * ********* P a g e - 174

Final Ei e s i 3 n Specification for the MCS65E4 Microprocessor

After PTR instruction*

0P1 = References the dsts field whose value is 234 5678<i
logical address 001C20*

B = References the data field whose value is 001C20

with

*********CONFIIiENTIAL j MOS TECHNOLOGY>INC.********* P a 2 e - 175

Final Design Specification for the M C S 6 5 E 4 Microprocessor

'V M' 'V -4/ y V -V 'V *4̂
/ f . /’js rff. /|% 4*. / f . . f .

* D TYPE *

4*7,6*15 Get Date type

Format: DTYPE OF’l ?0F‘2

Description:

Determines the Data Type of a Data Field*

OPI :

The DTYPE instruction will determine the data type of the
field referenced by OPI* This field can be any data type but
it can not be an immediate value or an internal register*

O P 2 :

The results will be placed in the first byte of the field

referenced by 0P2 according to the table listed below (
Result Table), If the resultant data type is string the next
two consecutive bytes of the field referenced by 0P2 will
contain the string length*

Notes :

The results of this operation must return either string data
type or scalar <e*g* byte* integer? real? etc *) data type*
If the data field referenced by OF’ 1 is not string or scalar
data type (i*e* re.cord or array type) the processor will
search through the data structure until it encounters a

basic data element from the structure*

The data field referenced by OF’2 (result field) will contain

a value which will reflect the descriptor header field*

These values are shown below in the Result Table:

Field Referenced By Field Referenced By
OPI 0P2

Byte 04
Ordinal 08
Two Byte Integer OC
Four Byte Integer 10
Eight Byte Integer 14
Four Byte Real 18
Eight Byte Real 1C
Ten Byte Real 20
Four Byte BCD 24

Eight Byte BCD 28

Ten Byte BCD 2C
String 30

Examp 1e :

*********CONFIDENTIAL? MGS TECHNOLOGY ?INC * ********* Page- 176

Final Design Specification for the MCS65E4 Microprocessor

Eefore DTYF'E instruction

0F‘ 1 = References the 4th element of an array of two bate integer,
0P2 = References the data field whose value is 00,

After DTYPE instruction

QF’l = References the 4th element of 3n array of two byte integer,
QF'2 = References the data field whose value is 0C,

*********CONFIDENTIALf MOS TECHNOLOGY>INC.********* Page- 177

Final Design Specification for the M C S 6 5 E 4 Microprocessor

V/ *V ̂ 'A' -i- -if • Jr- 'V 'V • V
'r * *?• •T ' *<> -T‘ •t - r- • r ' t - -t *

* CNVRT *
\ l r \ l t '4 / \ \ f \1/ \ty - it ' i t -.J? '. It
• i ' -f* • '! ' 'P- *T* *'»' -T* *T* -r> M-

4*7.6.16 CNVRT

Description^

Transfers the contents of the data field specified by

operand 1 into the data field specified by operand 2?
converting the format of the data to that of the second data
field in the process,

Valid Dat3 Types;

O p Code- _______

*********CONFIDENTIAL, MOS TECHNOLOGY>INC.********* Page- 173

Final Design Specification for the MCS65E4 Microprocessor

% EVAL *
#**#**#**#

4,7,6.17 EMAL

The E V A L instruction allows the M C S 6 5 E 4 to directly evaluate an
arithmetic expression. This is accomplished by organizing the
expression into Reverse Polish notation and attaching it to the
EVAL O p Code,

The procedures for incorporating an expression into an EVAL
instruction are as follows!

1♦ All of the data accessing procedures operate in the

normal manner except that the data fields must be contained

in memory? i, e , ; data contained in the internal registers
cannot be referenced within the arithmetic expression,

2 ♦ Those opera rid control byte codes which would normally
reference the internal registers (see Section ____) are

replaced by the arithmetic and logic instructions described
above. This specifies the operations to be Performed as
follows!

3, The final operation which must be performed in the
expression is a MOVE operation. This must place the results

into the desired results field.

Code Operation

50 ADD
51 SUBTRACT

52 MULTIPLY
53 DIVIDE
54 AND

55 OR
56 EOR
57 MOD

58 ABS
59 NEG
5 A INC

5B DEC
CEO
CNE

COT
CGE

5D MOV

5E LEADZ
5F LEAD1

The operation of this instruction is illustrated in the
example below,

Example!

The express i on t

*********CONFIDENTIAL, MOS TECHNOLOGY;INC,********* P a g e - 17?

Final Design Specification for the M C S 6 5 E 4 Microprocessor

Y = ((((A + (B + l) * C) / (D - E) AND (NEG F + (G OF: H>>>

can be converted to Reverse Polish notation as follows:

A B INC + C * D E - / F NEG G H OR + AND MOV

This expression can be converted to a single EVAL instruction as follow

Field * Contents Comments

1 EVAL O p Code .
2 OF'A Variable A Operand
3 OPB V a r i a b l e B O p e r a n d
4 5A INC O p Code
5 OPC Variable C Operand
6 52 MUL O p Code
7 OPD Variable D Operand
S OPE Variable E Operand
9 51 SUB O p Code
10 53 DIV O p Code

11 OPF Variable F Operand
12 59 NEG O p Code
13 OF'G Variable G Operand

14 OF'H Variable H Operand

15 55 Logic OR O p Code
16 50 ADD O p Code

17 54 Logic AND O p Code

18 5D MOV O p Code
19 OPY Results Data Field (Y)

*********CONFIDENTIAL> MOS TECHNOLOGY j INC.********* Page- ISO

