el s

Commodore

P /"/ //

S =
oy |
Micto®omputer

User Manual

C: commocdore

COMPUTER

Published by
Commodore Business Machines, (UK) Ltd.

Copyright © 1984 by Commodore Business Machines, (UK) Ltd.
All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica-
tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior
written permission of COMMODORE BUSINESS MACHINES, (UK) Ltd.

TABLE OF CONTENTS

SETTING UP

Unpackingand Connectingthe 64 i 2
Installation 3
Optional Connections 5
OPEIALIONttt e T B B e e e e oo e ee e e e BEEEEEE e BEES 7
Troubleshooting Chart 8
Color AQJUStMENt 10
Expanding Your System With Optional Peripherals 12
CHAPTER 2

GETTING STARTED

Commuriicating with your 64: TheKeyboard 16
Loading Programs cscsssammesssasssssssns i snomimatis g5 ame5ebin e oonenanes 21
HowtoFormataNew Disk 23
Saving Programs 24
Listing a Directory of ProgramsonaDisk 24
BEGINNING BASIC

PrintingandCalculating 26
Mathematical Functions 27
Multiple CalculationsonOneLine oo i 29
Execution OrderinCalculations i 30
Combining PRINT's Capabilities i i il 31
CHAPTER 4

WRITING SIMPLE PROGRAMS IN BASIC

Line NUMDbErs e 35
The GOTO Statement 36
Usingthe LISTCommand e 3
Editing TIPS o 37
HowtoUse Variables 38
Using FOR...INEXT LOOPSt e e 41
Using IF/THEN Statementsto Control Programs 42

CHAPTERS
ADVANCED BASIC

INtrOdUCHION . .. 46
Simple ANIMation 47
INPUT 49
Using the GET StatementforData Input i .. 51
Using GET to Program Function Keysottt 52
Random Numbers and Other Functions oo, 53
GUESSING GAMEt 55
Your ROl .. 56
Random GraphiCsttt 57
CHAPTER 6

COLOR AND GRAPHICS

How to Use Color and Graphics on Your Computer 60
PrintingColors 61
COIOrCHRECOAES . ..o\ttt e e 63
HowtoUse PEEKSand POKES it 65
Screen GraphiCs 66
Screen Memory Map 67
Color MemOry Mapo 68
MoreBouncingBalls 69
CHAPTER 7

INTRODUCTION TO SPRITES

Bitsand Bytes 73
Creating @ Sprite 76
Designing a Sprite 77
Tuming SPrites ON 81
Sprite Colors 81
POSItiONING SPrites 82
Expanded Sprites 83
CreatingMore ThanOne Sprite it 84
Sprite Prionities 85
Turning Sprites Off 85
CHAPTER 8

MAKING SOUND AND MUSIC

The SID G .. 88
Sample Sound Program i 96
PlayingaSongonYour 64 98
CreatingSound Effects i 99
Fiering ... 100
MUSIC COMPOSET ...ttt e e e 101

CHAPTER9
ADVANCED DATA HANDLING

READ and DATAStatementsttt 104
Calculating AVEragesooui it 106
Subscripted Variables 108
DImensioniNg Arfayst e 109
Simulated Dice Rollwith Arrays i 110
Two-dimensional Afrayst 12
APPENDICES

A Expanding Your Commodore 64 Computer System 17
B Description of DOS Error Messagesoouuiiiiiiiiineananeann. 124
C Commodore 64 BASIC 128
D Abbreviations for BASIC Keywordsoiiiiieiiiii 141
E ScreenDisplay Codesoouiiiii i 143
F ASCH&CHRSCOdESot 146
G Screenand Color MemoryMapsc.ooiuiiiii 149
H DerivingMathematical Functions 151
I Pinouts for INPUT/OUTPUTDEeVICESciiriiiiiiiiiiiann, 152
J O Programs to Try 154
K Converting Standard BASIC Programs to Commodore 64 BASIC 158
L EOrMeSSagesttt e 159
M MUSICNOE VAIUBSottt e e e 161
N Bibliography 164
O SpriteRegisterMap 166
P 6566/6567 (VIC 11)ChipRegisterMap 169
Q Commodore 64 Sound Control Settings 170
R 6581 Sound Interface Device (SID) Chip Specifications 173
S Diskand Printer Commands and Statements 175

THE INFORMATION IN THIS MANUAL HAS BEEN REVIEWED AND IS BELIEVED
TO BE ENTIRELY RELIABLE. NO RESPONSIBILITY, HOWEVER, IS ASSUMED
FOR INACCURACIES. THE MATERIAL IN THIS MANUAL IS FOR INFORMATION
PURPOSES ONLY, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

THIS MANUAL IS COPYRIGHTED AND CONTAINS PROPRIETARY INFORMA-
TION. NO PART OF THIS PUBLICATION MAY BE REPRODUCED, STORED IN A
RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHER-
WISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF COMMODORE
BUSINESS MACHINES. INC.

Copyright © 1984 by Commodore Business Machines (UK) Ltd.
All rights reserved.

vi

INTRODUCTION

Your new COMMODORE 64 is the best home computer available today. You
can use your COMMODORE 64 for everything from business applications to
household paperwork to exciting games. The 64 offers you lots of memory (64K),
lots of color (16 different colors), lots of sound (music and sound effects), and
lots of fun and practical uses. You can use prepackaged software, or you can
write your own programs in easy-to-learn BASIC.

This easy-to-read user’s guide contains all the information you need to set up
your equipment properly, understand how to operate yournew COMMODORE 64,
and learn how to create your own simple BASIC programs.

This user’s guide is intended to introduce you to computers, but it is beyond
the scope of this manual to tell you everything you need to know aboutcomputers
or about BASIC. However, this guide does refer you to a variety of publications
that explain the topics we present here in more detail.

For those of you who don’t want to learn how to program, you won'’t have to
search through the whole book to learn how to use Commodore prepackaged
programs and games, or other prepackaged, third party software. We've put all
the information you need to know rightup frontin Chapters 1 and 2.

Many exciting features are waiting for you inside your COMMODORE 64. Your
new computer gives you the microcomputerindustry’s most advanced graphics,
which we call SPRITE GRAPHICS. Sprite graphics let you:

® Design your own pictures in different colors, just like the ones you see on
arcade-type video games.

Animate as many as 8 different picture levels at a time.

Move your creations anywhere on the screen.

Double their size.

Pass images in front or behind each other.

Use automatic collision detection that tells the computer to do whatever you
want when sprites hit each other.

These features let you design your own games.
The COMMODORE 64 also has built-in music and sound effects that rival
many well known music synthesizers. This part of your computer gives you:

3 independent voices, each with a full 9 octave piano-type range.

4 different waveforms (sawtooth, triangle, variable pulse, and noise).
Aprogrammable ADSR (attack, decay, sustain, andrelease) envelope generator.
A programmable high, low, and bandpass filter that you can use for each voice.
Variable resonance and volume controls.

If you want your music to play back with professional sound reproduction, the
COMMODORE 64 lets you connect your audio output to almost any high-quality
amplification system.

vii

As your computing needs grow, so can your system. You can expand your
system by connecting your COMMODORE 64 to other pieces of equipment,
known as peripherals. These accessories include items like these:

® The DATASSETTE" recorder, for tapes.

® The VIC 1541 disk drive (as many as five at a time).

® The COMMODORE dot matrix printers, for hard copies of your programs,
letters, etc. ’

® The MODEM cartridge, for access through your telephone to the massive
data bases of larger computers, as well as the services of hundreds of
specialists and a variety of information networks.

® The Commodore 1701 color monitor.

If you already have a VIC 1540 disk drive, your dealer can upgrade it for use with
the COMMODORE 64.

Commodore wants you to really enjoy your new COMMODORE 64. And to
have fun, bear in mind that programming takes time to learn. Be patient with
yourself as you go through the USER'S GUIDE. But. before you start, please
take a few minutes to fill out and mail in the owner/registration card that came
with your computer. This will ensure that your COMMODORE 64 is properly
registered with Commodore tHeadquarters and that you receive the most up-to-
date information regarding future enhancements for your machine.

NOTE: Many programs are under development while this manual is being
produced Please check with your local Commodore dealer and with
Commodore Uset’'s Magazines and Clubs. which will keep you up to date on the
wealth of applications programs being written for the COMMODORE 64, worldwide.

‘DATASSETTE 1s a registered trade mark of Commodore Business Machines, Inc.

viii

=N xrO00sSE=LrO00sS
- SEOLERILSSEoOnE 52 =200 000<s=<00,000
SoLE522S SOLERSESSSEOLERED= ORrRR0sSE=2OPr 000202000 I(
vCERowWMMommMODOMMMOCERWOWMMW%&RODOMMMOCEWDOWMMO@ERODOWWMOCMODICNMOOEI«((N ‘Eltlc‘l
WLEON023 SS200WEQ = AOSS200ux SOOSS200W rOO0S==200 <= AN \n
OOLEO0Z350wx 0022 OOLEQ S880xo022 S50mER8225500x 0822 SE0LERILESSODERFS 200r000<=2200r000<2200,00
QO S588x0a02353% S2350wx08 SS200E520S SSowxRR8= SR0S2300W = rOQ0=S2200r000S2200,r000<
oowWrOO923 = oowaeO S HOSS200LE SROSE200W = v o (elS)tela) <=

OOWEOQQ2= SoOWwEO s aosSsS3o0ux S00SZ200 = QOO
SONEONQZSS B83S2000x0 s ROSE350wx >3 LSO0SZ200ESA =S
[SIl-elal MOCERODOMMomRMmmOMMWOC%mOWWMMO%R%ODOMMWOR%WWOWMMO
OWE OO MOCERODOMMOCKRODOMMWWW

So0nERAI2S50OW
200z 08055280022 2550w
VCERODOMMwwm%%DOMWMOCEme CEWODOMMMOCEODO Q o=
SoWES QUSROS 2500ER0% mmmmMMwmm%ODOMWMOCMODOMMMOCE Q2052209 Q <
SR e e s R R R B e B e B g P
B0 TE 6092530000552 Tr SO0 2"

OOESSOLEOD0 et
IO MMOmROODOMMOCﬁMMORWWODOMMOCE
(Tijea

OSS50 Qo
0SS S elatet =S00, [ate)= et
SS50LER825550E5352 =0 S50 QoS
SEowsl OMM OQrOB0 SS5095 Prodo2220Pxo OEEOQO! el
2ODxO00SEZOH 000 >S50ws OOEGA0IZ=00% SO ER802550E6R80255025389 o«
VCERODWMMwmmmmDOMWMOCEmeom CLERCS=550mERS mﬂooomMMocwomwOMMwwERODomMMommomwommocmmooomm Shitestats)
w%mmwmmwmccﬁmomwMO@&%%MOM BEGROSS 3000003 %mmmMMwmamowOMwMOC%mmmmMMwwmRM%OMWme%oDmemowEmmwOMwwmeODwnMVMMocmmmmo
ODOMMOCE%WD OS=00wWarOLO0SS00 RDOMM SOLEOO0=S DOMMMOCEROD MMOOK%ODOMMMOCERWOMMMOCERODOM MOCEWDOMMMOCERODOM So0ESAS S
VDOMMOCERODOOMMORERODOMMO IS QOLEOOO==20 o= Sle delalerStotetnl-delalo SouxQss MOCERODOMMMOCERDOM MOCERODOMMMOCMODOMMM
S preaelare) SS502E0A03S50 SS00UEO005500 OCERODOMMOCERODOMMOOCERODO MOCERODOMMOOCEHOOM S2O0E00235208c600S SC
S peiaelat SSEOLEQ00S oo SSO0UTCA0SSEOIMEA e[S delalopttela M dolale} QREER0 2L 2oomE OO oS 200uTOn S80026R02585%x SE20C
SS50UERE2SS Drone22203a OSSEOLEON0S S08x OSS50LEOAOSSSOLT SSS0OLEcA0SSO0LT Sla-dolale)dleleil Jo]al COLEOO2Z=00u
2200E00022200:00082200 Do 5569 &) DEOA SOQEEQ00SSOQEEQ00 CEIOQOSSOQWEZO00 iy OZ200WEO00Z20
LSA0SS200USAG >S50 SOLSRR2=S nxo OOFORE2SS50 (Slate) hfete) SSOQUIOR0ISEOEHIO SS0O0WEOA0SSO0LEO0 O
S288a0822528 0029 SonrQ2055283x20 O oS Pronee2204 BOFSZOLEOAGESZoLE OOSSOOLIOA0 e OSSOQHTC
HSBO0S2200ESA0 Q0052200000 SS830ER290 SOEERROSSFOEEI00S QroR802500x5R29= SOLE oA
25 HODOMMMOCEODOMWMOC%mmmmwwmmmmmwmwwmmm%mmmmwMwwmmmwomwwwmmWWWWWMWR%mmwm
Sowx [e]ale) OOLERSLES trfo oS OOFOH
TOR0SS20PH000S SE0DERFL=S
Soma® Q3
ToQQSS=C

SOOESRER==50%, o

S e et e 835

O O B eSS 2 D00 S 20 000 2200 00 S 2200 0005220000
OEEROSES00EER0SZZ00LERE=2S00ITRO=23500%R

CHAPTER 1
SETTING UP

Unpacking and Connecting the 64

Installation

Optional Connections

Operation

Troubleshooting Chart

Color Adjustment

Expanding Your System With Optional Peripherals

UNPACKING AND CONNECTING THE 64

The following step-by-step instructions show you how to connect the 64 to
your television set, sound system, or monitor and make sure everything is
working properly.

Before attaching anything to the computer, check the contents of the 64
container. Besides this manual, you should find the following items:

1. Commodore 64

2. Power supply (grey box with an AC lead and supply cord)
3. Video cable.

If any items are missing check back with your dealer immediately for a
replacement.

First, take a look at the arrangement of the various connections on the
computer and what each one does.

SIDE PANEL CONNECTIONS

1. Power Socket. The free end of the cable from the power supply is attached
here to supply power to the 64.

2. Power Switch. Turns on power to the 64.

Game Ports. Each game connector can accept a joystick or game controller
paddle, while the lightpen can only be plugged into the game port closest to
the front of your computer.

REAR CONNECTIONS

4. Cartridge Slot. The rectangular slot to the left accepts program or game
cartridges.

5. Channel Selector. Use this switch to select which TV channel the
computer’s picture will be displayed on.

6. TV Connector. This connector supplies both the picture and sound to your
television set.

7. Audio & Video Output. This connector supplied direct audio, which can be
connected to a high quality sound system, and a composite video signal,
which can be fed into a television, or a monitor, such as the Commodore
1701 color monitor.

8. Serial Port. You can attach a COMMODORE printer or a VIC 1541 single
disk drive directly to the Commodore 64 through this connector.

9. Cassette Interface. A DATASETTE™ recorder can be attached to the
computer so you can save information on tape for use at alatertime.

10. User Port. Various interface cartridges can be attached to the user port,
such as the MODEM, or RS-232 communication cartridge.

GAME POWER POWER
PORTS SWITCH SOCKET

CARTRIDGE CHANNEL ™ AUDIO/VIDEO SERIAL CASSETTE USER
SLoT SELECTOR CONNECTOR CONNECTOR ~ PORT INTERFACE PORT

INSTALLATION
CONNECTIONS TO YOUR TV
Connect the computer to your TV as shown on page 4.

1. Attach one endof the TV cable to the phono type TV signal jack on the rear of
the 64. Just pushiitin. Either end of the cable can be used.

2. Connect the other end of the cable to the antenna switchbox. Just push it in.

3

3. Plug the power supply cable into the power socket on the side of the
Commodore 64. Just push it in. Itis ‘“‘keyed’ to allow insertion in only one
direction, so you can’t connect the power cord the wrong way. The power
supply converts household current into the form the computer uses.

The 64 is now correctly connected. No additional connections are required to
use the computer with your TV.

m
L—>“===—

POWER
SUPPLY

1701 MONITOR CONNECTIONS

|[REAR PANEL]

Audio Input (White)

(r v)
Commodore 64 Aubio
hroma
= (0 Input
l (Red)
COMMODORE VIDEO
i rmo <+
Video Out e ? ¥ gBRESEY C(HROMA
i : |
SIGNAL SELECT
FRONT [mm REAR A
(Yellow) (Red)
Luminance Input (Yellow) U
Signal Selector
Monitor Cable
FRONT (MM REAR
*
OPTIONAL CONNECTIONS

Since the 64 furnishes a channel of high fidelity sound, you may wish to play it
through a quality amplifier to realize the best sound possible. in addition, the 64
also provides a standard composite video signal, that can be fed into a television
monitor.

These options are made possible by the audio/video output jack on the rear
panel of the 64. The easiest way to gain access to these signals is by using a
standard 5-Pin DIN audio cable (not supplied). This cable connects directly to
the audio/video connector on the computer. Two of the four pins on the opposite
end of the cable contain the audio and video signals. You can also construct your
own cable, using the pinouts shown in Appendix | as a guide.

5

Normally, the BLACK connector of the DIN cable supplies the AUDIO signal.
This plug may be connected to the AUXILIARY input of an amplifier, or the
AUDIO IN connector of a monitor or other video system, such as a video cassette
recorder (VCR).

The WHITE or RED connector usually supplies the direct VIDEO signal. This
plugis connectedto the VIDEO INconnector of the monitor or video input section
of some other video system, such as a VCR.

Depending on the manufacturer of your DIN cable. the color coding of the
plugs may be different. Use the pinouts shown in Appendix | to match up the
proper plugs if you don’t get an audio or video signal using the suggested
connections.

AUDIONIDEO
OuTPUT

TO AUXILIARY
INPUT OR
TUNER INPUT /\\10 VIDEO IN

olale’

TV MONITOR

AUDIO SYSTEM

if you purchased peripheral equipment, such as a VIC 1541 disk drive, an MPS
801,802 or 803 printer, a 1520 plotter ora 1701 monitor, you may wish to connect it
at this time. Refer to the user’s manuals supplied with any additional equipment
for the proper procedure for connecting it to the computer.

6

A completed system might look like this.

i G "
PE00000000000 0 CIg
CBooDoo0eenmBD

OPERATION

USING THE 64

1. Turn on the computer using the rocker switch on the right-side panel when
you're looking at the computer from the front.

2. After a few moments the following will be displayed on the TV screen:

IMMODCRE
TEM

CURSOR SIGNALS

COMMODORE 64 1S
WAITING FOR YOUR
INPUT.

3.

4.

If your TV has a manual fine tuning knob, adjust the TV until you get a clear

picture.

You may also want to adjust the color and tint controls on the TV forthe best
display. You can use the color adjustment procedure described later to get
everything set up properly. When you first get a picture, the screen should

appear mostly dark blue, with a light blue border and letters.

If you don’t get the expected results, recheck the cables and connections. The

accompanying chart will help you isolate any problem.

TROUBLESHOOTING CHART
Symptom Cause Remedy
Indicator Light Computer not Make sure power
not “*‘On”’ “On”’ switchisin **On”’
position
Power cable Check power socket
not plugged for loose or dis-
in connected power
cable
Power supply Check connection
not plugged with wall outlet
in
Bad fusein Take systemto
computer authorizeddealer
for replacement of
fuse
No picture TV on wrong Check other
channel channel for
picture (3 or 4)
Incorrect Computer hooks up to
hookup VHF antennaterminals
Video cable Check TV output
not plugged cable connection
in
Computer set Set computer for
for wrong same channel as TV
channel (3or4)

Symptom Cause Remedy
Random pattern Cartridge not Reinsert

on TV with properly cartridge after
cartridge in inserted turning off power
place

Picture without
color

Poorly tuned
TV

Retune TV

Picture with Bad color Adjust color/

poor color adjustment hue/brightness
onTV controlson TV

Sound with TV volume up Adjust volume of

excess high TV

background

noise

Picture OK, TV volume too Adjust volume of

but no sound

low

TV

Aux. output
not properly
connected

Connect sound

jack to aux. input
on amplifier and
select aux. input

TIP: The 64 was designed to be used by everyone.

But we at Commodore recognize that computer users may, occasionally.
run into difficulties. To help answer your questions and give you some fun
programming ideas, Commodore has created several publications to help
you. You might also find that it's a good idea to join a Commodore Users
Club to help you meet some other 64 owners who can help you gain

knowledge and experience.

CURSOR

The flashing square under READY is called the cursor. It's a marker that
shows where what you type on the keyboard will be displayed on the screen. As
you type, the cursor moves ahead one space as the original cursor position is
replaced with the character you typed. Try typing on the keyboard and watch
the cursor move while characters you type are displayed on the screen.

COLOR ADJUSTMENT

There is a simple way to get a pattern of colors on the monitor so you can
easily adjust the set. Even though you may not be familiar with the operation of
the computer right now, just follow along, and you’ll see how easy it is to use
your computer.

First, look on the left side of the keyboard and locate the key marked

Ml . This stands for ConTROL and is used, in conjunction with other
keys, to instruct the computer to do a specific task.

To use a control function, you hold down the key while pressing a
second key. .

Try this: hold the key while also pressing the [J key. Then
release both keys. Nothing obvious should have happened, but if you touch any
key now, the screen will show the character displayed in reverse type, rather
than normal type — like the opening message of anything you typed earlier.

Hold down the . What happens? If you did the above procedure cor-
rectly, you should see a light blue bar move across the screen and then move
down to the next line as long as the is pressed.

10

Now, hold while pressing any of the other number keys. Each of
them has a color marked on the front. Anything displayed from this point will be
in that color. For example, hold andthe ([J key and release both.
Now hold the .

Watch the display. The bar is now in yellow! In a like manner you can change
the bar to any of the other colors indicated on the number keys by holding

and the appropriate key.

Change the bar to a few more different colors and then adjust the color and
tint controls on your monitor so the display matches the color you selected.

The display should appear something like this:

RED BAR
=
/1.7:-‘ @ GREEN BAR
—am, 9 BLUE BAR
O YELLOW BAR

At this point everything is properly adjusted and working correctly. The
following chapters will introduce you to the BASIC language. However, you can
immediately start using some of the many prewritten applications and games
available without knowing anything about computer programming.

Each of these packages contains detailed information about how to use the
program. It is suggested, though, that you read through the first few chapters of
this manual to become more familiar with the operation of your new system.

11

EXPANDING YOUR SYSTEM WITH OPTIONAL PERIPHERALS

Commodore offers a variety of peripheral devices that expand the
capabilities of your computer. These peripherals include:

storage devices

printers and plotters

monitors

modems for telecommunications
game attachments

speech and graphics modules
desktop controllers

STORAGE DEVICES
Disk Drives

Commodore’s disk drives let you store large amounts of information on 5%
floppy diskettes. Diskettes offer fast storage and retrieval, and they
automatically keep track of all your files in a directory, or table of contents, that
you can display on your screen or print on a printer.

In addition, you can add extra disk drives by daisy-chaining them to your
computer. Daisy-chaining means connecting one drive to the computer, and
then connecting additional drives to each other.

By acquiring the Commodore 64 IEEE Interface Expansion Card, you can also
attach any IEEE disk drive, such as Commodore’s CBM 8050 or 4040 Dual Flop-
py Disk Drives, to the 64.

Chapter 2 contains detailed information on using disk drives.

PRINTING AND PLOTTING DEVICES
Printers

You can attach Commodore printers to the 64. These are inexpensive dot
matrix printers. By acquiring the Commodore 64 IEEE Interface Expansion
Card, you can also attach any IEEE printer, such as Commodore’s 6400 letter
quality printer, or the high speed 8023 dot matrix printer, to the 64.

Printer/Plotter

Commodore’s 1520 Printer/Plotter prints and draws graphics in four colors
(black, blue, red and green). With the 1520, you can draw bar charts, pies, and a
variety of complex graphics.

THE 1701/1702 MONITOR

Commodore’s 14" color monitor offers a superior color picture with high
resolution that enhances your computing experience. This monitor can be con-
nected to the 64. The monitor is connected to the computer by an 8-pin DIN
cable. The 1701/1702 Color Monitor User’s Guide that comes with the monitor
clearly explains connections. You can also consult Appendix | for information
about the pinouts in the 8-pin connector.

12

ATTACHMENTS FOR GAMES AND OTHER USES

Commodore offers joysticks and paddles that enhance game-playing on your
computer. These attachments also have other applications. Also available is the
Commodore lightpen which, with appropriate software allows communication
with the computer on the screen.

COMMODORE GRAPHIC AIDS

Commodore provides a variety of graphics programming aids, including
SIMONS’ BASIC which adds 114 powerful new commands to BASIC, including
programming help and graphics commands; and LOGO, an easy-to-learn
programming language with TURTLE graphics.

13

MUSIC ATTACHMENTS

Commodore will also soon offer a Musical Keyboard and a 3-pad percussion
attachment called the Digi-drum™. Both products will include special software
packages. These attachments will increase the music making capabilities of
the 64 computers.

CONNECTING TO A STEREO SYSTEM

The sound and music-making capabilities of the COMMODORE 64 can be
enhanced by connecting your computer to a high quality amplifier and stereo
speakers. The 8-pin DIN cable discussed in the 1701/1702 Color Monitor
section can also be used to connect your computer to an amplifier.

DESIGNING A COMPUTER SYSTEM FOR YOUR NEEDS

Commodore offers a variety of peripherals that let you create your own
customized computer system. We offer different types of storage, printing, and
telecommunications devices so you can choose what's best for you. For more
information about Commodore peripherals, read The Commodore Peripherals
Guide and the Commodore magazines discussed in Appendix R and consult
your Commodore dealer.

14

CHAPTER 2

GETTING STARTED
* Communicating with your 64: The Keyboard
e Loading Programs

e How to Format a New Disk
® Saving Programs
e Listing a Directory of programs on a Disk

COMMUNICATING WITH YOUR 64: THE KEYBOARD

The computer keyboard lets you communicate with your 64. You use the
keys to tell the computer what you want it to do and to answer the questions
the computer displays on the screen.

The keyboard looks like a regular typewriter, but the computer has special

keys that let the 64 do more than a typewriter. While you read the next few
pages, take a look at these special keys.

RETURN The RETURN key tells the computer to look at
what you typed and put this information in
memory. The RETURN key also moves the cursor
to the next line.

NOTE: Memory is all the information the com-
puter currently knows without needing you to tell
it where to look.

SHIFT The SHIFT key works like the shift key on a
regular typewriter: it lets you print capital letters
or the top characters on double character keys.

” #*
2 | | 3]
N N

16

When you are using the graphics on the front of
the keys, the SHIFT key displays the graphic
character on the RIGHT side of the key.

QJ wn E ‘
m@\ (DY [B6)

When you are using the four special function
keys at the right side of the keyboard, the SHIFT
key gives you the functions on the FRONT of the
key (f2, f4, f6, and f8).

17

KEYS THAT LET YOU MAKE CHANGES

CRSR

INST/DEL

The cursor is the little colored rectangle that
marks your place on the screen. There are two
CuRSOR keys:

+CRSR+ moves the cursor up and down
+CRSR—+ moves the cursor left and right

You must use the SHIFT key with the
¢+ CRSR ¢+ key to move the cursor up, and with
the « CRSR-» key to move the cursor to the left.

You don’t have to keep tapping a CRSR key to
get it to move more than one space. Just hold it
down until the cursor is where you want it.

DEL stands for DELete. When you press the
DEL key, the cursor moves back a space and
erases the character that's there.

PRINT “ERROR"# B
PRINT “ERROR”E

When you DELete in the middle of a line, move
the cursor just to the left of the character you
want to DELete.

FIX IT AGAINS, SAM
FIX IT AGAINSE SAM

Then press the DEL key. The characters to the
right automatically move over to close up the
space.

FIX IT AGAIN, SAM

INST stands for INSerT. You have to use the
SHIFT key with the INST/DEL key when you want
to insert characters in a line.

If you've left some characters out of a line, use
the CRSR keys to move the cursor back to the er-
ror.

WHILE U WERE OUT
WHILE B WERE OUT

Then, while you hold down the SHIFT key,
press the INST/DEL key until you have enough
space to add the missing characters. INST
doesn’t move the cursor; it adds space between
the cursor and the character to its right.

WHILE B U WERE OUT
WHILE YOU WERE OUT

18

CLR/HOME

RESTORE

Use the DEL and INST keys together to fix
wrong characters.

WE'RE NUMBER TWO!
WE'RE NUMBER !

WE'RE NUMBER B !
WE'RE NUMBER ONE!

HOME moves the cursor back to the upper left
corner of the screen. This is called the “HOME”
position.

CLR stands for CLeaR. When you use the
SHIFT key with the CLR/HOME key, the screen
CLeaRs and the cursor returns to the home
positon.

The RETORE key returns the computer to its
normal state by RESTOREing the default condi-
tions (e.g., the default screen color is blue, the
default for I/O chips is OFF, etc.) RESTORE does
such things as clear the screen, returning it to the
original color, and turn off the picture- and sound-
making chips.

NOTE: For RESTORE to work, you must hold
down the STOP key while you press the
RESTORE key.

For example, suppose you've just played a
music program that also turned your screen red
and yellow while it LISTed the program. When you
press STOP and RESTORE at the end of the pro-
gram, the last note from the program will cease,
your screen will turn blue and the only thing
displayed will be the READY prompt.

19

FUNCTION KEYS

The keys on the right side of the keyboard, f1-f8, are function keys that you
can program to perform a variety of tasks. The explanation of the GET state-
ment in Chapter 5 tells you how to program function keys in BASIC.

CTRL

RUN/STOP

[Cx) COMMODORE KEY

The ConTRoL key lets you set colors and do
other special tasks called control functions.

To set colors, hold down the CTRL key while
you press the key with the color you want. You
can get eight more colors with the @ key.
Chapter 6 also has more about colors.

To get a control function, hold the CTRL key
down while you press the other key. Control func-
tions are commonly used in prepackaged soft-
ware such as a word processing system.

You can halt a BASIC program while it is still
RUNNing by pressing the STOP key. You can also
use the STOP key to halt a printout while it is still
printing.

RUN lets you load a program automatically
from cassette.

When you want to use the RUN key, you must
also use the SHIFT key.

The Commodore key @ can do two things:

1. @ lets you switch back and forth between
the upper and lower case display mode (the let-
ters and characters on the tops of the keys)
and the upper case/graphic display mode (capi-
tal letters and the graphics on the fronts of the
keys).

To switch modes, press the [Cx] and SHIFT
keys at the same time.

When you first turn on your 64, it is in the up-
per case/graphic mode, which means that
everything you type in is in capital letters.
When you are in this mode, you can also print
all the graphics on the fronts of the keys.

e To print the graphic on the right side of a
key, hold down the SHIFT key while you
press the key with the graphic you want to
print. You can only print the right side
graphics when you are in the upper
case/graphic mode.

e To print the graphic on the left side of a key,
hold down the [C¢] key while you press the
graphic key. You can print the left side
graphic in either mode.

20

wn E |
'meY [me)

2. The lt_;] key also lets you use the second set of
eight alternate colors not shown on the color
keys. To get these other colors, hold down the

@ key while you press the number for the
color you want.

[1 oranGE €5 GREY 2
, =
€=l 2 BROWN IC= 6 LT. GREEN

)3T RED 1G9 7 LT BLUE
€l 4 GREY 1 &< 8 GREY 3

LOADING PROGRAMS

The COMMODORE 64 accepts programs from disk, cartridge, or cassette
tapes. This means you can use prewritten software simply by loading it. But more
important, the 64 lets you save your own programs for reuse. To reuse a program
you wrote and saved on disk or tape, all you dois load and run it.

When you use tapes or disks with your COMMODORE 64 be sure that your
disk drive or cassette unit is correctly connected.

Loading Cartridges

You can use a special line of programs and games on cartridge with your 64.
The programs include a wide variety of business and personal applications. The
games are just like real arcade games, not imitations.

Follow these steps to load games and other cartridges:

1. Turn OFF your COMMODORE 64.

YOU MUST TURN OFF YOUR COMMODORE 64 BEFORE YOU INSERT
OR REMOVE CARTRIDGES. IF YOU DON'T, YOU MAY DAMAGE THE
CARTRIDGE AND THE COMPUTER.

. Insert the cartridge label uppermost in the slot on the back of your computer.

. Turn on your 64.

. Begin the game by typing the START key that's listed in the game’s instruc-
tion sheet.

HWN

21

Loading Prepackaged Cassette Tapes

You can also buy prepackaged software on cassette tape. These cassettes
are just like the ones with recorded music that you can play on a stereo.

1. Insertthe cassette into your 1530 DATASSETTE recorder.

2. Make sure the tape is completely rewound to the beginning of the first side.

3. Type LOAD on your keyboard. The computer answers by displaying PRESS
PLAY ON TAPE.

4. Press PLAY on your DATASSETTE. The screen goes blank until the
computer finds the program. Then the screen displays the message FOUND
(PROGRAM NAME).

5. Press the |C=| key. This actually loads the program into the computer. If you
want to stop the loading, press the RUN/STOP key.

Loading Your Own Programs From Cassette Tape

The COMMODORE 64 lets you write and save programs on any brand of
cassette tape. All you need is a 1530 DATASSETTE recorder and the same kind
of blank tape you’d use to record music for a stereo tape player.

Follow these simple steps to load a program you wrote and saved on tape:

1. Rewind the tape to the beginning.

2. Type LOAD “PROGRAM NAME . If you don’t remember the program name,
just type LOAD. This loads the first program on the tape into memory.

3. Press RETURN. The computer responds with

PRESS PLAY ON TAPE

4. Press the PLAY KEY. The screen goes blank while the computer searches for
the program. When the program is found, the screen displays this message:

FOUND PROGRAM NAME

5. Press the ,C=l key to actually load the program. The screen again goes blank
during LOADIng. When the program is LOADed, the screen returns to normal
and the READY prompt appears. If you want to abort the loading, press the
RUN/STOP KEY.

NOTE: When you load a new program into the computer’s memory, any
instructions and unsaved programs in the computer are erased and lost
permanently. Before you LOAD a new program, be sure everything you want to
keep is saved.

After your program is LOADed, you can RUN it, LIST it, or make changes.
Remember that you have to reSAVE a changed program if you want to keep the
new version.

Loading Disks

Disks, which are often called ‘‘floppy disks’’, are really easy to use. The
advantage of disks over tapes is that you can find data stored on disks much
faster. You can also save much more data on a disk than on tape.

The steps are the same for loading preprogrammed disks and disks that you
program yourself.

22

1. Insert a disk into your disk drive. Make sure the label on the disk is facing up.
Put the disk in so that the labelled end goes in last. Look for a little notch on
the disk (it might be covered with a little piece of tape). This notch must be
on the left side as you put in the disk, assuming that you're facing your com-
puter. Be sure the disk is all the way in.

2. Close the protective gate on the disk drive after you insert the disk. Just
push down the lever.

3. Type LOAD “PROGRAM NAME”, 8. The 8 is the code for disks. You need to
type it here to let the computer know you’re loading a disk.

NOTE: You can LOAD the first program by using the * sign in place of the
program name: LOAD “*”, 8.

4. Press the RETURN key. The disk will spin and your screen will say:

SEARCHING FOR PROGRAM NAME
LOADING

READY
]

5. Type RUN when the screen says READY and the cursor appears. Your soft-
ware is ready to use.

HOW TO FORMAT A NEW DISK

When you’re using a new, unprogrammed disk for the firsttime, you need to
format it. Formatting, which is also called headering, prepares your disk by doing
things like dividing the disk into blocks. Formatting aiso creates a directory that
you use as a table of contents for the files you save on the disk. DO NOT header a
preprogrammed disk.

You only have to format new disks, not disks that already have programs on
them unless you want to erase the entire disk and reuse it.

To format a new disk, use this special version of the OPEN and NEW com-
mands:

OPEN 1,8,15" 'NO:<name>, <id>"

NO tells the computer to header (NEW) the disk in drive 0. If you have a dual
disk drive connected (via a suitable interface) header disks in drive 0.

The name you use in this command goes in the directory as the name of the
entire disk. Give the disk any name up to 16 characters.

Theidis any two characters. Give the disk any id you want, butyou shouid give
every disk a different id code.

When the disk drive light goes off, type CLOSE 1 and press RETURN.
BE CAREFUL! Headering a disk erases all information on the disk, if there is

any. Header only a new disk or a disk you are willing to erase. Here are some
examples of formatting commands that header a disk:

OPEN 1,8,15,"NO:MYFILE ,A3"
OPEN 1,8,15,"“N0:$RECORDS,02"

Now that you know how to header a disk, you are ready to use disks to write
and save programs on your COMMODORE 64. Appendix S contains more
information on the OPEN command.

23

SAVING PROGRAMS

When you want to reuse a program you've written, be sure to SAVE it before
you LOAD another program. If you don't, you'll lose the program.

When you change a SAVEd program, you have to SAVE it again if you want to
keep the new version.

When you reSAVE a program, you are replacing the old version with the new
one. If you want to keep both the old and the changed versions, you have to give
the new one a different name when you SAVE it.

Saving on Disk

When you want to SAVE a program you’ve written on disk, follow these sim-
ple steps:

1. Key in SAVE “PROGRAM NAME",8. The 8 is the code for disks. It tells the
computer that you’re using a disk.

2. Press RETURN. The disk makes a noise, and the computer displays this
message when the program is saved:

SAVING “PROGRAM NAME”
OK

READY

[

Saving on Cassette Tape

When you want to SAVE a program you’ve written on cassette tape. follow
these steps:

1. Key in SAVE “PROGRAM NAME’'. The program name you use can be up to
16 characters long.

2. Press the RETURN key. The computer displays the message PRESS
RECORD AND PLAY ON TAPE.

3. Pressthe record and play keys onyour DATASSETTE recorder. The screen
goes blank and turns the color of the border. The READY prompt reappears
when the program is SAVEd.

LISTING A DIRECTORY OF PROGRAMS ON A DISK

When you SAVE programs on a disk, the computer automatically makes a
table of contents, or a DIRECTORY, of the names of the programs on the disk.
You can display this directory to see what programs are on your disk. Follow
these steps:

1. Key in: LOAD “$”,8 and press RETURN. The computer displays this
message:

SEARCHING FOR $
LOADING
READY

2. Key in: LIST and press RETURN
Your programs names are displayed on your screen.

24

ARs e urOAaAsS < LrOAAs=ES
SR892550E5850255066339255
008220060092 200F00022200
WWMMmCEODOM Z00H500S2200W
559

[¢]

(([(ANC(([(ANC(([(ANC(([(ANC(1[(A

BB a e e Re s tgbe it

QLxrOB0o fqelale} elale}

s BomERE825500E QES8052 200 E0032 20000052 200200052 2008 50052250
[oed

ratalePptotetutes

(elalepPIols" 1ra

AL
ORE!
DOR
ODO
MOD
MMO
OMM
COM
ECO
REC
OR
DO
OD!
MO
MMO
OMM!
COM
ECO
REC
ORE
DOR
ODO
MOD
MMO
RECOMM
0
0
MOD
MMO!
OMM
COM
ECO
RE
0
DOREC!
OD!
MO
MM
OM
CQ
EC
%lﬁggg;
R
MMO!
OMM
ECOM
RECO!
ORECH
ORE
DOR
0DO
MOD
MMO
OMM
DORECOMMODORE(

3
= SO0WE RASESO0WE 25 o LE 2532 S00WT Z65, TROSSSo0WT SO0OWTRASZSO0OWE =25 OS==200 o o o

> co022 o022 dela) caQ=2 o]alep] o022 092 o]alebs] o022 00225 cO0R25 o023 cOQ235
uwm%ODOMMW%K%ODOMMW%K%ODOM EMDOMMWmm%WDOMMMOC DOMMW%R%WMOMMwwmmWDOMMwwR%ODOMMwwEWODOMMowKMODOMMowK%ODOMMOWK%ODOMMOm
B e A e e A e S B e 2 I S = 2 S s A R O B S S 2 e S S 0 S A S S RS S B RSS2 0us
nODOMMWCERODOMMWCERODOMMWCE DOMMWCERODOMMWCE MMCERODOMMMCERODOMMWCEHODOMMWCERODOM WCERODOM OOLEZOAOSSOOUEION0SSOOWEC
> =9nao pIShvee) = =00ao =00 pIginl el 000 pShnlide) 200axo pISinT-To) >0nao P inlidetal pISintdel
uwmwMOKRODWWWMOE%OD%WWMOK% O MOE%ODWWWMORMODOMMMOR%OD%WWMOR%OD%WWMORRODWWWMOERODWWWMORROD%WWMOKRODWWWMOKRODOWWMOKROD%
S e S e o e S el el L e elop e el aslo b eSS e sls s e lsloiot s e rsatelope e clstoioh
= 5300022583060 225830xz002 D225 880ac022 5B0E520 0000252000 60025200 G005 200G 0055 2006005530 0EE00SS 30060052

© = (els] s QO s S QO s > (ele] = QO S OO S O = O >3 >3 o=

SOLEOOL2Z00LEO02200mLron T ON02S00LrON23 0025000002305 nc0022300mE0022300mrO022S00mEO022200mE00L2200LEO0L220C
e S SR R0 S A R 0O B0 e 209233 S e S el s e e el e
nODOMWWCERODOMWWCERODOMWWC MWWCERODOMWWCER MWCERODOMMWCERODOMWWCERODOMWWCERODOMWWCERODOMWWCERODOMMWCERODOMMOCERO
DAOSEZ0LEONOSEECUE0n05s 200 OROSSZOLTOn0ES 2 Oua MCERODOMMMCERODOMM CLEOAGEEZOLECA0SEZOLTO00SSSOLTON0SSZOLEOCO0SSESLECE
DOSE2JLT 000 OnER0oss 20T QUTORosSZQnEO OLxrO0oSS2onE0003S20nx000s OLEO00SEZ0nT 006 OERODOM OEHODOMM hvl:2elats
DS 2200x 00052 209r0005Z2200xr0 O0rO00S2200r00 QrOR0S2200r0R052200r00052200xr00052200r00052200xr00052200x00052200x 000
S 20 G0 oSS 2008 S005 2 200 00O S ROREOO0SE 2025500 EOBOE S 28 000S S 200 0005 S 280 O00SE 20 r O00S S 200 0005220 3r 000552000005 S
MOCERO@WMMOCERO%WMMOCERO%W SPrOSL255300992 RO%WMMOCERowWMMOCERmeMMOCERmeMMOCERowWMMOCERomeMOCERO%MMMOCERO%MMMO
SOWE OO Z00mxo0 00wz o0 o0 plelsN dela) = Q 200wmx o0 Z00WmroNl2200wWro0 200wl 200wx o0 S00wEon Z0omeEon S0C
DLEOO0=2200waO00=2200WEO00=220 0002200 WEO002Z0! O=S00wrON0=Z00WrO00=2S00WaE000=2S00WaOA02200WE0002200Wr 0002 200WrO002300U

CHAPTER 3

BEGINNING BASIC

¢ Printing and Calculating

e Mathematical Functions

e Multiple Calculations On One Line
e Execution Order in Calculations

e Combining PRINT’s Capabilities

PRINTING AND CALCULATING

If you don’t know BASIC, this section teaches you how to do some simple
things like print words and calculate problems.

The PRINT statement tells the 64 computer to print something on the screen.
PRINT is one of the most useful and powerful commands in the BASIC
language. You can use it to display just about anything, including graphics and
the results of computations. To use the PRINT command, follow these steps:

1. Key in the word PRINT. This tells the computer what kind of job you want it
to do.

. Key in a quotation mark. This tells the computer where the message you
want to print begins.

. Key in whatever you want to print on the screen.

. Key in a closing quotation mark. This tells the computer where the message
you want to print ends.

. Press the RETURN key. This tells the computer to follow your instructions,
which in this case is to print your message exactly as you typed it.

When you follow these steps, the computer prints your message and
displays the READY prompt. It looks like this:

O AW N

PRINT “I| LOVE MY COMMODORE” You key in this and press RETURN
| LOVE MY COMMODORE The computer prints this

READY

|

The 64 prints whatever you enclose in quotes. Remember to key in both
quotation marks.

If you make a mistake in your PRINT statement, use the INST/DEL key to cor-
rect your error. You can change as many characters as you like before you press
the RETURN key.

If you made a mistake that you didn’t catch before you pressed the RETURN
key, the computer can’t follow your instructions. Instead, it displays an error
message to help you figure out what you did wrong. For example:

?SYNTAX ERROR

If you get this message, check over what you typed in to see where you made
a mistake. The computer is very precise, and it can’t follow instructions that
contain spelling errors or other mistakes. To avoid mistakes, be sure you type
things in the correct form.

Remember that the best way to get to know BASIC and your 64 is to try dif-
ferent things and see what happens.

26

USING PRINT TO CALCULATE

You can use PRINT to do more than just display what you put in quotation
marks. You can also use it to perform calculations and automatically display
the results. Follow these steps:

1. Key in PRINT

2. Key in the calculation you want to solve. DON'T enclose it in quotation
marks.

3. Press the RETURN key. The computer displays the answer followed by the
READY prompt.

Here’'s an example:

PRINT 12 + 12 Type this line and press RETURN
24

READY The computer displays

| the answer

Be sure you leave off the quotation marks when you want the computer to
solve a problem. If you type the problem inside quotation marks, the computer
assumes you just want to display the problem, not solve it. For example:

PRINT *“12 + 12” Key inthisline and press RETURN
12 + 12

READY The computer displays

] ‘what’s in quotes

So all you have to do to use PRINT as a calculator is omit the quotation
marks. You can use PRINT to add, subtract, multiply and divide. You can also
use exponents and perform advanced mathematical functions such as figuring
square roots.

MATHEMATICAL FUNCTIONS

ADDITION

Use the plus sign (+) to tell the computer to add numbers. Remember to
press RETURN after you type PRINT and the calculation. This tells the com-
puter to follow your instructions.

SUBTRACTION

Use the minus sign (—) to subtract. Press the RETURN key at the end of the
calculation. For example:

PRINT 12 — 9 Key in this and RETURN
3 The computer displays this
MULTIPLICATION

Use the asterisk (%) to multiply. You can’t use the conventional x because
the computer would think it’s the letter x, not the multiplication sign. Press
RETURN at the end of the calculation. For example:

PRINT 12 « 12 Key in this and RETURN
144 The computer displays this

27

DIVISION

Use the slash mark (/) for division. Press the RETURN key after you type the
calculation. For example:

PRINT 144/12 Key in this and RETURN
12 The computer displays this
EXPONENTIATION

Use the up arrow (¢) to raise a number to a power. Press the RETURN key
after you type the calculation. For example, to find 12 to the fifth power, type
this:

PRINT 12¢5 Key in this and RETURN
248832 The computer displays this

This is the same as:

PRINT 12 % 12 % 12 * 12 % 12
248832

TIP:

BASIC has shortcuts that make programming even faster. One shortcut is
abbreviating BASIC keywords. For example, you can use a ? in place of
PRINT. Throughout this book, we'll show you other abbreviations for
BASIC keywords. Appendix D lists these abbreviations and shows what is
displayed on the screen when you type the abbreviated form.

28

MULTIPLE CALCULATIONS ON ONE LINE

The last example shows that you can perform more than one calculation on a
line. You can also perform different kinds of calculations on the same line. For
example:

?23%x5-7+2 Key in this and RETURN
10 The computer displays this

So far our examples have used small numbers and simple problems. But the
64 can do much more complex calculations. The next example adds large
numbers.

Notice that 78956.87 doesn’t have a comma between the 8 and the 9. You
can’t use commas this way in BASIC. BASIC thinks commas indicate new
numbers, so it would think 78,956.87 is two numbers: 78 and 956.87. Remember
to press RETURN after you type the problem.

? 12345 + 34578 + 78956.87
83649.17

The next example uses a ten digit number. The 64 can work with numbers
that have up to ten digits, but can only display nine digits in the answer. So the
64 rounds numbers that are more than nine digits. Numbers five and over are
rounded up, and numbers four and under are rounded down. This means that
12123123.45 is rounded to 12123123.5. Because of rounding, the computer
doesn’t give the same answer you'd get if you added these numbers by hand. In
this case, the answer is 12131364.817. You can see the difference rounding
makes.

?12123123.45 + 345.78 + 7895.687
12131364.9

The 64 prints numbers between 0.01 and 999,999,999 using standard nota-
tion, except for leaving out commas in large numbers. Numbers outside this
range are printed using scientific notation. Scientific notation lets you express
a very large or very small number as a power of 10. For example:

? 123000000000000000
1.23E+ 17

Another way of expressing this number is 1.23 * 10 T 17. The 64 uses scien-
tific notation for numbers with lots of digits to make them easier to read.

There is a limit to the numbers the computer can handle, even using scien-
tific notation. These limits are:

Largest numbers: +/— 1.70141183E + 38
Smallest numbers: + /- 2.93873588E — 39

29

EXECUTION ORDER IN CALCULATIONS

If you tried to perform some mixed calculations of your own, you might not
have gotten the results you expected. This is because the computer performs
calculations in a certain order.

In this calculation:

20 + 8/2

the answer is 14 if you add 20 to 8 first, and then divide 28 by 4. But the answer
is 24 if you first divide 8 by 2, and then add 20 and 4.

On the 64, you always get 24 because the computer always performs calcula-
tions in the same order. Problems are solved from left to right, but within that
general movement, some types of calculations take precedence over others.
Here is the order of precedence:

First: - minus sign for negative numbers, not for subtraction.
Second: ¢ exponentiation, left to right

Third: * multiplication and division, left to right

Fourth: + - addition and subtraction, left to right

This means that the computer checks the whole calculation for negative
numbers before doing anything else. Then it looks for exponents; then it per-
forms all multiplication and division; then it adds and subtracts.

This exptlains why 20 + 8 / 2 is 24: 8 is divided by 2 before 20 is added
because division has precedence over addition.

There is an easy way to override the order of precedence: enclose any
calculation you want solved first in parentheses. If you add parentheses to the
equation shown above, here’s what happens:

?7(2 + 8)/2
14

You get 14 because the parentheses allow 20 and 8 to be added before the
division occurs.

Here’s another example that shows how you can change the order, and the
answer, with parentheses:

730 +15%«2 -3

57
230 +15) %2 -3
87

230 +15% (2 - 3)
15

2(30 + 15) * (2 — 3)
- 45

The last example has two calculations in parentheses. As usual, they’re
evaluated from left to right, and then the rest of the problem is solved. When
you have more than one calculation in parentheses, you can further control the
order by using parentheses within parentheses. The problem in the innermost
parentheses is solved first. For example:

?30 + (15 % (2 - 3))
15
In this case, 3 is subtracted from 2, then 15 is multipliedby —1,and — 15 is

added to 30. As you experiment with solving calculations, you'll get familiar
with the order in which mixed calculations are solved.

30

COMBINING PRINT’S CAPABILITIES

The 64 computers let you combine the two types of print statements that
you’ve read about in this book. Remember that anything you enclose in quota-
tion marks is displayed exactly as you type it.

The next example shows how you can combine the types of PRINT
statements. The equation enclosed in quotes is displayed without being solved.
The equation not in quotes is solved. The semicolon separates the two parts of
the PRINT statement (semicolon means no space).

?76%9 =", 5%9 You key in this and RETURN
5*9 =45 The computer displays this

Remember, only the second part of the statement actually solves the calcula-
tion. The two parts are separated by a semicolon. You always have to separate
the parts of a mixed PRINT statement with some punctuation for it to work the
way you want it to. If you use a comma instead of a semicolon, there is more
space between the two parts when they're displayed. A semicolon leaves out
space.

The 64’s screen is organized into 4 zones of 10 columns each. When you use a
comma to separate parts of a PRINT statement, the comma works as a tab,
sending each resultinto the next zone. For example:

?“total;”;95,"“shortage:”’;15
total:95 shortage:15

If you have more than four results, they are automatically displayed on the
next line. For example:

?72%34-627136/4,100 + (—48)
6 - 8 1.5
52

Here's the difference when you use semicolons:

72 % 34— 62 +3:6/4,100 + (- 48)
6-2 8 15 52

You can use the difference between the comma and the semicolon in format-
ting PRINT statements to create complex displays.

31

os<== - wE <h
>SS eOEERE2SSEOEEAR2ZSo0Ow ‘
SS00YSAREZSO0OESAaE2S

o LSOO RRE2S00

rqelale] 2300Y0ARE2=00

rOD0E2209r000=220Qx0005E2

OO QUFOOO=:

raelale} =200+ (,t

raelale] NNOCRODOWM

MMOCERODO
@] = xOCO
wmm&mmmmwwwmmmmmewwwc TREQES300ER522S
[Slale> et delalorItatat =0 SOLERASS
e E 00 2 00dEeaes a0sEceoSS Beosa0nrasossnns cnossatuenaoss
! O
289230 WMMmmMRODOMMom OMMOOCKRODOMMWOCERO%WMMW@E%%%OMMMwwm%ODOMWMOCEODO MME
952338 923300559 230a ocmwmmwmwwoemmmmwmmwwcmmmomMmwwRMWWWWWMomeWDOMwmommnmmeMm
S332=R8 So0ESa092S oF OLTOROS CE%RODOMMOCE%OD O0=Z00WE 00022 OCERODOMMOOCERO =5
MOCERODOMNMOCERDOOMM QO LEOAOS MOEHOODOMMOCEROD OSS50ILTo00S OCERODOMMOCCERODOMMOCW
OCERODOMMMOCEROO 522908 [elaters S80EE90055850EER0 OSS50DT000S MOE%RODOMMOCE%RODOMMOCEp
ODxOR023, otandelalobs QO QOOS SE0EEARL2S OPxod OSSEOLEQOO SEOUEO00SSO0EE OOOSSO0WEC
HODOMMOCEROWDOMMOCEROD b on02S oOuWEQ 00S SEonx893 Sl Eotatet ot Ndelale) SSE0UI000S SEOLEOn0S 300
OMMOCERODOO = DOMMOOCEROD 203 S20nx0892 MOCEODOOMM SOESAe2230 Qron322=09 2592502 oc
OO > P elaloltr QLrodo22208 late
Sle N Selate] =9 OMMOCK%RODOMMO OMMMOCERODOMMMOCERDOMMMOCERODOM S80nE 525 SoEERS95S OGRS
CERODOMMMom = OCEROODOMMOC MMOOCERODOMMOOCMROOM S250e6002 Sgowa) 022300600 S225080008:
SE e o | 23racasS2200a SoEER02 5000630 MOCERODOMMMOCERODOMM SonES6225 St atelt=>
FO0022200s S50r60092 SE0LESA0SSO0W [elalep-pleranl:delale] folefdelaloro 2006002530 0x0092 =z
S50DE8 SoPE6a0222 OLToa0s OCERMODOMMOCERODOO MOCERODOMMowCERODOMMomKWOWOM S&¢
ODOMMMOCEROD OWEASSESD SOEER00S = ERODDOMMOCERODO MMOCERODOMMOCEERODOMMOCEROD Soten
33002 [SIES SS23% LEO0O0S SE0EER203S SmEoa SSEOLIOR0! EOR0SS00W 5=S383%,
ODO0Z300 FeelaloPpIstgintdela(epr rdolaiSrrtgtnl FOR0S2200r 0S=20Qx0a OSSZOLEON SSEOLECA0S Cor50033500E
HODOMMOCE%RODOMMOCEROD SR03589%% SO0s 228038935 SE0TEIS05S SQroa SIreslate) 220mE 58092200 e
O0O0SSO0WE OO [op=3=3 atedd SOLEOR02S [0S MOCERODOM SE50DERS2= OCRODOOMM Qrons S2Z0WLE0063 S50LTOC
2220 Q=200mr o0 = Jatop S30D=R593 S0o0w 22350000022 Orond2=59 ac
OWE RO CON0SSOo0W 0220 552200mEl S Qos 225020202 etah 225504500 92200E0aC:
LrOd, SSOCLERAOS QEEOO0ZZ0Q S=S SODEOR02S oOWEO S29265002 MOCERODOM S8R R89= BomER30:
268892500 oS SOQEEQ00SS00Y OCERODOMMOOCERODOMMOCKRODOM MOCERODOMMMOCEROOOMMMOCEODO S3
DERS9555025 MOCRODDOMMM MMOCERODOMMOCKERODOMMOCEROD = S888xoa025 30z o022= OC%RDOMMMM
DOMMMOCEHO S026a0923 O [Shefetatebs CERRODOMMOCERODOO MOCERODOMMOOCERODOMMOOCMOWOM S&¢
DOMMMOCERODOM CE%DOOMMOOC OCROMDOMMM&EROWDOMMOCERODO MMOCERODOMMOCKERODOMMOCKMOD e S38S5
oSS Fotepdelales DERE22S i TR803 Oz oA OSSZOLTAA0 SS50LE0R0E CERRODOMMOCEROD SSS83%:
SopE2592 HS8925531 5209250058303 5508530 S250858592200e0R502 Slehrslalopielayd
OO 2 OOmE Q002 20RImES EER055300858 TREQES500ER622 SBOLER502S500ER3 S220LaonossZ 00 (Slate}troteits
ODOMMOCERODDOMMOC a SOLTO00Z= falep S30Lxo89= SE0DER52= SOLGR022= N delatel SS30LI0003 250850
O350 O==00warod s [0 S208:0893 S80w 9355005859255 CESR005550 =t
OWEOROSSHO OSSo0wa O=30 MOOCERO S2000 6003 S200x0292 S200e88932 owEE33 222582000
MOCM%ODOM SO > CEROODOMMOC sS85 Sinrdelalerptet OLI5S MOCERODOMMMOCERO 2 SOERS 923008560023
edelatel-t=plohd 0=2230E0 QOSSE0LL OREOR0E500nE S530xoa0= 30z 0022> Soncl392S QuEacSE:
LERROSSE50EE SE0EERR20= MOCERODOMMOCEERODOMMOCERODOM SE880x0a02s 200FER0SSE00e6002 =7
ODOMMMOCERO SOEERF0SS50L QU OROS OCERWODOMMOCERODO MOCERODOMMOOCERODOMMOCRRODOM S
DOMMMOCERODO SR80 22392 CROMDOMMMCERODDOMMOCERODO MMOCERODOMMOCK%RODOMMOCERODOMMMOCr
o=S 33nxoa LR85 et OLER80= [Si<elal OSSZOBEQDO SS50LEoR0SS50ET folalepptola ol 5384
SODEO00Z OO >S20%¢ cQOO0S SE0LERR22S N2ola) MMOCERODO SEQEZ000= St O=S50WaC
CONOSSOOWE Q0220500 O0 205529028 TH0S2=00LE 022200¢00 052258000 $2Z00E0a0s 2208a8353230050
lolale)-plols i Aolal O=20 (Slaler= [Stsmdela) 803 S8500z08e= SE0nER89= SOUERE2255 CEGaa92509 E2522500x 6 .
22200 O=20ouaeg = S8953200: 0895533508 O35300E330355085352 SE3BEQA
OLTOAO TOO0SS00W O==00wx O O5S200WE8 s 989253319 595233053593 SLEQSoSSS QTS
2525925002050 o 5R522200ES [Shitedelalors BO0EER055300x 6802 S530xoaes S£200502053333:099 S2E00xQ205:
delatel SSE0US0003 SOREER82250 00Q retale) OOWEORO=20 Sinrtotaler ottt olale) MOCERODOMMMOCER 5052 230x3395:
[olale) SS830ER90s MOCRODDOMMMC MMOCERODOMMOCRERODOMMOCEROD 2 S800z0a0ZS 3900092 OE%HDOMMMm
809250053082 S30U5R505555 mMmoDOMMOCER%ODOMMOCERODOO MOCERODOMM0mCERODOMMomeOWOM =3¢
RODOMMMOCEROOOMMMOCEODO bten SEOEER20ES CERODDOMMOCERODOMMMOEMRODOMMOCE%RODOMMOCERODOMMMOQ
ER6s22000sR052 SoPEReSS500w BoTEeS05S33ER0 892238e0R05223 595022008 53522200 538 SO
ISls-dolalers 3OLxoRL2S OO rO0052290x9 oS S olatar OLEOAS =0 caos=goux OSSO0Wma
23507 5588560023500 850532332 35055250a9 O3S23mE’2 =2200E0005233 OB0SS500E
EHODOMMOCE%RODOMMOCE SoowEos f=ts} SS200x0203 £388x89295 SE0LERIES Setal $2250s080 S50nE0
SAOSSOOL CcOQO2200wxO0 SS2092E00S MOCERODOM S850xR895 OCRODOOMM ORER0S559 rotet
OLESAD [Helaloppiolamt O=S00wWrOD 555200258 s Koz S830x039= S50T 922004600822 Sfolatet
2262592250262852 De536222 DrQO0Z3 2o0E520532505205533 CEESE925508a0092 S208x3858925508=352
RODOOMMOCERODOM SOQESR282250 [{e]ale) OCERODOMMOCCERODOMMOCRRODOM MOCERODOMMMOCERCO S OCEODOMM
LSS50 5505535903 SZ0OUTOO0SS50 MMOCERODOMMOCE%RODOMMOCERODOM pIoletnidolalop 200K 005530 D 6002 =
092550885082 S80EER005550 SRES3822333253392200r535 2200882092 200na0002 28 ORES95223
MOCERODOM SEon=I823 QO LCONOS SORRERA= gowzo OSSO0LEoA0 CSRE5R0SS600 D025
MOCERODOMMMOCERODOM Soou 330ER96 SEOEER20= = ERODDOMMOCERODO MMOCERODOMMOCEERODOMMOCE
OCERODOMMMOCER Loae22200 QOS SEOEERR0=S Sxog T elatobt ODEER0S350Te
ODOMMOWRMWODOMMO otater] 390x00225 [State} S22382x920 S80w 8925506585925 OE&3 220828352 i
20355005580 S50mx0002 5925 fotats} S2200x3902 S30uER303 SOEEI0055 (St astarel 2205,
O=200wa QO 20 QOSS20Q02EA0 2s SooS25000E BOSZ20Qr0n 0S=20Fx 00 Erpepelat
O=S00WEO0 oSS 330xo0Q2s Sonx9ages OLEs0s 2200x000s S200s0005E QPSS
Slehdelaiors Sonxol >S299 === QESO0S S8ons 022350550 o
CESROSSEODT S588xz0a02 Sonxzol SE=200 = rlate} =280 o
OCERODOMMOCRMODWMMWWCERODOMMwmm%mmmeMowK%WDOMwMOCEmeOMW
ERODOMMOCERODOMMOOCERODOMMOOCEROOMMMQ
CERODOMMOCREROD MOC,
COOOZ 200w

LI OA0
TOAS 5280000055508
5200255065359 S0R6382250
SOe8230 QroBe22203) late)
= OrO00 =S Lrono22208 onEd
9353325 350553305552 2509 SOREOBOSSO0TER00
SRt e e
_RSOMMoceaommmmwmmmmmwomwm%mmwmwwowmmmm%ww mwmwmwmm%mmwwwwmmmm%mwwwmmmmwmmwwwmmma%WM%%%DOMMO%RB
CERODOMMMOCERODOMMOCKERODOMMOCEROD oSS 33nx L3S SOWEROS MOCERODOM 22508205 Z3nase00552 02529
2£63552200a83552 2x53892200z5 delalops 2OoEER05330075805530 OEERESES500ER 5955308 5339255005252
RODOOMMOCERODOM SOQEEQ0O556 oQQ TG00 OCERODOMMOCCERODO MOCKRODOMMMOCERODOMMMOCERDO b OKRODOMM
ERODOMMMOCE%ODOM 550260592359 memmRODOMMOCE%R%DOMMOCERODOMM OCERODOMMOOCEROOMMMomeODOM =
TOR0S SE00ER829s SO0ESA0L2S =t EROODOMMOCEROO OSSo0WxoN0 OCERODOMMOCREROD MOCEHODOMMMO
DOMMMOCERODOMMMOCEODO MMOOC LEQOOES CERODDOMMOCERODOMMMOE%RODOMMOCERRODOMMOCERODOMM 59
OSS| SO0 00225 SoLERS SS280 TI805S OQz oA SEttadslatop SOQEE00S OCEROODOMMOCERODO 509
OCERODOMMOOCERO >S208 (o4 oS OORCA oss :<olale} S50 SHos SORES R08280mad S=5oTa
CERODOMMOOCER ORO0SZ2200% 5D 03229x020 =S5 Lrone2=203 o= QS Bo3230nEg
OLEQO Q0SS SSowxQ OSZ2300ESA = [STzelale) MMOCERODO S50 fataps oL
os<s2 HSO0S 2200y > [Slaleit npqelal =00 o}
RODOMMwmmmwmmemowEMODOMWMocERmmeMwwmmmDOWmemeooomMMocmmmwo
NOCERODOMMO@K%WWOMMWOCEROWWMMWOK%WW%WWMW@E%ODOMW
OLE OO =3 O Qe A0S
CERODOMMOOC Q 538
58892 20008092280
O3200wWw

CHAPTER 4

WRITING SIMPLE PROGRAMS IN BASIC
® Line Numbers

® The GOTO Statement

® Using the LIST Command

® Editing Tips

® How to Use Variables

® Using FOR...NEXT Loops

® Using IF/THEN Statements to Control Variables

So far this book has shown you how to do simple things with your 64. You've
experimented with typing single lines of instructions into your computer and
getting instant results by pressing the RETURN key. This easy way of doing
things on your computer is called the IMMEDIATE or CALCULATOR mode.

But you'll probably want to use your computer to do more complex jobs that
use more than one statement. When you combine a number of statements into
a PROGRAM, you can use the full power of your 64.

To see how easy it is to write your first program on the 64, follow these steps:

1. Clear the screen by holding down the SHIFT key while you press the
CLR/HOME key.

2. Key in NEW and press RETURN. This clears out information that might still
be in the computer’s memory after your experimenting.

3. Key in the following two lines exactly as they appear here:

10 ? “COMMODORE 64"
20 GOTO 10

4. Remember to press the RETURN key after each line. After you key in the first
line and press RETURN, you’ll notice that the computer doesn’t respond to
the PRINT command right away like it did before when you typed in the same
kind of commands. This is because you are now beginning the command
with a line number (10). When you use line numbers, the computer knows
that you're writing a program, so it waits for you to finish keying in the whole
program before following any of your instructions.

5. Key in RUN and press RETURN. The RUN command tells the computer that
you've finished keying in program statements, and you're ready to have your
instructions followed. Here’'s what happens when you RUN this program:

COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64

34

6. Stopthe program’s execution by pressing the RUN/STOP key. The computer
continues to follow your orders by printing COMMODORE 64 over and over
until you interrupt with the RUN/STOP key. Here’s how your screen looks
when you press STOP.

COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
BREAKIN 10
READY

This simple program introduces several important concepts that are the
basis for all programming.

LINE NUMBERS

We mentioned before in step 4 that line numbers tell the computer that
you’re writing a program. They also tell the computer in what order you want the
statements in your program to execute. Withoutline numbers to tell the computer
when to follow which instruction, the computer doesn’t know what to do first.

The longer and more complex your program is, the more important it is to
remember that the computer relies on you to tell it WHEN to do things, as well
as WHAT to do. One good thing about this is that you can key in line 20 before
line 10 because the computer just checks the line numbers to find out the order
for executing the program. The computer doesn’t check for the order your lines
appear on the screen.

Another advantage of line numbers is that you can use the number to refer to
the statement on the line. When you want to go back and repeat the execution
of a statement, all you do is refer to it by line number in a GOTO statement, as
you did in the example above.

35

THE GOTO STATEMENT

When you told the computer to RUN the sample program above, COMMODORE
64 was PRINTed repeatedly instead of just once because of the GOTO state-
mentin line 20.

The GOTO statement tells the computer to go directly to a specified line.
Then the computer follows the instructions in the specified line and goes on to
the next line.

You can use a GOTO statement to tell the computer to go back to a line
that’s already been executed. Or GOTO can tell the computer to skip forward,
even if this means that some lines in the program don’t get executed.

In our example, the program PRINTS the message in line 10 and moves to
line 20. There, the GOTO statement tells the computer to go back to line 10and
dowhat line 10 says to do. So, the program prints the message in line 10 again,
and then moves to line 20, which sends the computer back to line 10 and so on.

This repetition is called a LOOP. Because the example doesn’t give the com-
puter a way out of the loop, the circle repeats endlessly. You have to halt the cy-
cle by interrupting the program with the RUN/STOP key.

It's best to include a statement in your program that ends the loop so you
don’t have to use the RUN/STOP key. We’ll explain more above ending loops
later in this chapter.

USING THE LIST COMMAND

Now that you've interrupted execution of the sample program, type in LIST
and press RETURN. Your program is now displayedintact because it’s stillinthe
computer’s memory, even though youinterrupted the program’s execution. The
only difference is that the computer changed your ? into the word PRINT. This
doesn’t affect your program, it’s just the way the computer does things. When
you use the LIST command, the computer also displays the lines of the program
in correct numerical order, even if you entered the lines out of order.

One of the important differences between writing programs and entering
single lines in the immediate/calculator mode is that you permanently lose an
immediate statement once you execute it and clear the screen. But, until you
start a new program, you can always get a program back just by keying in LIST.

From here, you can change the program, SAVE it, or RUN it again.

36

EDITING TIPS

When you make a mistake in a line you've keyed in, or when you just want to
change a line, the 64 offers you a number of editing options.

1. You can retype a line any time, and the computer automatically substitutes
the new line for the old one. All you have to do to replace a line is use the
same line number. For example:

10 ? “My name is Sarah”

20 ? “I was born in California”
20 ? “I live in Pennsylvania”
RUN

My name is Sarah

| live in Pennsylvania

As you can see, the first line 20 never executes because it is replaced by
the second line 20. If you now key in a LIST command, you’'ll see that only
the second line 20 is still part of the program.

2. You can easily erase a line you don’t want just by keying in the line number
and pressing the RETURN key. If you now key in LIST, you'll see that the line
is gone, and so is the line number.

3. You can easily edit an existing line. Use the CuRSOR keys to move the cur-
sor back to the line you want to change, and then just edit the line any way
you want to. As soon as you press the RETURN key, the edited line will
replace the old line. Remember to use the INST/DEL key to insert or delete.

When you finish editing, you can check your program again to verify changes
by keying in the LIST command. Remember that LIST also puts lines in
numerical order if you've keyed them in out of order.

Try editing our sample program by adding a semicolon to the end of the line,
and omitting the 64. After you finish the changes, be sure to move the cursor past
line 20 before you RUN the program. Here’s how the program works now:

LIST

10 PRINT “COMMODORE ',

20 GOTO 10

COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
BREAK IN 10

READY

37

HOW TO USE VARIABLES

A variable is a symbol that stands for a value. Sometimes the value of a
variable is unknown before you RUN a program. One of the purposes of a pro-
gram may be to find one or more values for a variable. Look at this line from a
program:

20LETX =28+ Y

The = sign means ‘‘become’’ or ‘‘take the value of”’. The LET instruction is
optional and may be omitted.

In this equation, X and Y are variables. Suppose X stands for the number of
days in a month. One of the best things about a variable is that you can reuse it
in a program, so X can stand for the days in all the months, not just one month.
This is where Y comes in. All months have 28 days, so Y stands for the days
over 28. Later in this chapter there’s a program that gives values to these two
variables.

The most important thing now is understanding how variables work, because
variables allow you to do complex tasks with you computer. Variables also let
you write programs that are very reusable.

Imagine that your computer contains a bunch of little slots, like a bank of
mail boxes. When you write a program, you can use some of these slots to hold
values. All you do is give a name to the slots you need, and during the program
you can put values into each slot by using the slot’s name. For example, in the
equation above, we used two slots by naming one X and one Y. At the beginning
of a program, these slots have names, but they’re empty. Here’s what happens
when you put a value in Y’s slot:

X Y

3

Now the variable Y has the value 3. You can give Y this value just by writing this
simple statement:

10Y =3

Since X equals 28 plus Y,when you RUN the program X’s slot gets avalue, too.
X Y

31 3

Here’s how the program looks:

10 Y=3

20X =28 +Y

30 ? “THE NUMBER OF DAYS IN MAY IS ;X

RUN

THE NUMBER OF DAYS IN MAY IS 31
Here's another program that uses variables:

10 X% = 15

20 X = 235

30 X$ = “TOTAL:”
40 Y = X% + X
50 ? X$;Y

38

When you RUN the program, the imaginary slots look like this after line 30 is ex-
ecuted:

X% X X$ Y

15 235 TOTAL:

On completion of the program, Y has the value: 38.5

The above example uses the three types of variables:

EXAMPLE
TYPE SYMBOL DESCRIPTION EXAMPLES VALUES
Integer % whole numbers X%, A1% 15,102,3
Text string $ characters in X$, AB$ “TOTAL:",
quotes “DAY 1”
Floating real (decimal) X, AB 235, 12,
point or whole numbers 13E+2

Be sure you use the right variable types in your programs. If you try to do
something like assign a text string to an integer variable, your program won't
work.

There are a few other things to keep in mind when you assign names to
variables:

¢ A variable name can have one or two characters, not counting the special
symbol used with integer and text string variables.

¢ You can use more than two alphabetic characters in a variable name, but the
computer only recognizes the first two. So the computer would think PA,
PARTNO and PAGENO are the same variable referring to the same “slot”.

e A program is easier for people to read when you use longer variable names,
but when you use more than two characters in a name, be sure the first two
are unique.

e You can use X, X%, and X$ in one program because the special symbols %
and $ make each variable name unique. The same is true of A2, A2%, and
A28.

e The first character must be alphabetic (A to Z). The second and any later
characters can be either alphabetic or numeric (0 to 9). Remember that the
computer ignores every character after the second unless it's a % or $ in the
third position.

* Variable names can’t contain BASIC keywords, which are also called reserv-
ed words. These are the words like PRINT and RUN that are part of the
BASIC language. Appendix D lists all the BASIC reserved words.

39

Here’s one more sample program that shows you how to use variables. This
example also uses some of the other things you've learned so far.

NEW

10 X = 1.05
20 Y = 300
30Z=X*xY

40 PRINT “SEATS AVAILABLE:")Y
50 PRINT “TICKETS AVAILABLE:";Z

60Y =Y +1
70 PRINT “OVERBOOKING POINT:";Y
RUN

SEATS AVAILABLE: 300
TICKETS AVAILABLE: 315
OVERBOOKING POINT: 301

Lines (10 - 3Q) assign variable names.

Lines 40 and 50 PRINT a message and the current value of variables Y and Z.
Notice that at line 40, the value for Y is 300.

Line 60 gives Y a new value, and this new value is PRINTed in line 70. Line 60
shows that a variable can have more than one value in a program.

Line 60 also shows another of the powerful features of variables: you can
make a variable equal to itself and another value. This isn’t allowed in regular
algebra, but this kind of statement is commonly used in programming. It
means: take the current value of a variable, combine it with another value, and
replace the first value of the variable with this new value. You can also use
statements like these:

Y -1
Y+ X
YI2

Y & (X +2)

<=<=<=
mnnn

40

USING FOR/NEXT LOOPS

We mentioned loops earlier in this chapter during the explanation of the
GOTO statement. As you'll recall, loops are repeated executions of one or more
lines in a program.

The FOR/NEXT statement lets you create very useful loops that control the
number of times a segment of a program is executed. The FOR statement sets
a limit on the number of times the loop will execute by assigning a range of
values to a variable. For example:

FOR COUNT = 1 TO 4

The NEXT statement marks the end of a FOR/NEXT loop. When the program
reaches a NEXT statement, the computer checks the FOR statement to see if
the limit of the loop has been reached. If the limit hasn’t been reached, the loop
continues and the variable in the FOR statement is incremented by one. For ex-
ample, if you add a FOR/NEXT loop to the program at the beginning of this
chapter, here’s what happens:

10 FORCT=1TO4

20 ? “COMMODORE 64
30 NEXTCT

RUN

COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64

Now that you've added the FOR/NEXT loop, you don’t have to break in with
the STOP key to halt the program’s execution.
This FOR/NEXT loop works like this:

Line 10 gives the variable CT a range of values from 1 to 4, and tells the com-
puter to execute the next lines until CT equals 4.

Line 20 tells the computer to print COMMODORE 64.

Line 30 tells the computer to add 1 to the current value of CT. As long as the
value of CT remains within the range of 1 to 4, the program repeats, and
COMMODORE 64 is PRINTed again. When CT equals 4, line 20 executes one
more time. When line 30 again adds 1to CT, the computer knows that CT is now
out of range. So the computer stops executing the loop, and the program ends by
itself.

To make sure you understand how the FOR/NEXT loop works, we'll add more
PRINT statements to line 20 that let you keep track of the value of CT.

41

20 PRINT “COMMODORE 64 ';“COUNT ="; CT
30 NEXTCT

RUN

COMMODORE 64 COUNT=1

COMMODORE 64 COUNT=2

COMMODORE 64 COUNT=3

COMMODORE 64 COUNT=4

As you can see, the program ends automatically when CT is out of the range
set up in the FOR statement.

You can increment the value of the variable in a FOR/NEXT statement by
values other than 1. All you do is add both the word STEP and the value you want
to use to the end of the FOR statement. For example:

NEW

10 FORNB =1TO 10 STEP .5 This comma tells the computer to print each
20 PRINT NB, value beginning at the first position of the
30 NEXT NB next 10 space zone.

RUN

1 1.5 2 25

3 3.5 4 45

5 5.5 6 6.5

7 7.5 8 8.5

9 9.5 10

NEW

10FORA =2TO8 STEP2

20 PRINT A,

30NEXTA

RUN

2 4 6 8

You can also use a FOR/NEXT loop to count backwards. When you do this,
make sure your STEP is negative. For example, if you change line 10 to this:

10 FORA =8TO 2 STEP -2
Here’s how the output looks:

RUN
8 6 4 2

42

USING IF/THEN STATEMENTS TO CONTROL PROGRAMS

An IF/THEN statement is another way to control program execution. This
statement tells the computer to check IF a condition is true. IF that condition is
true, the instructions after the word THEN execute. IF that condition is false, the
program goes on to the next line without following the instructions in the THEN
statement. For example:

10 X = 60

20X =X+ 1

30 IF X = 64 THEN PRINT “GOT IT"’: END
40 GOTO 20

Youcan use an IF statement to startaloop or to decide whether certain parts of
program will execute. For example:

10A=0
20 IFA <=8THEN 40

30 END

40 ? “FRODOLIVES " A
50A=A+2
60 GOTO 20
RUN
FRODOLIVES
FRODO LIVES
FRODO LIVES
FRODO LIVES
FRODO LIVES

In this example, the IF/THEN statement in line 20 tells the computer to check
the current value of A. IF Aiis equal to or less than 8, THEN the program skipsline
30 and continues RUNning at line 40. IF A is more than 8, in other words, IF the
condition in line 20 is false, the computer ignores the instructions after the THEN
statement.

IF line 20 is false, THEN line 30 is executed.

Line 40 PRINTs the message and the current value of A.

Line 50 adds 2 to the value of A each time the loop RUNs. As soon as A
becomes 10, line 20 becomes false, line 30 becomes true, and the program ends
immediately.

You can use any of these relational operators in IF/THEN statements:

SYMBOL MEANING

oW NO

< Less than

> Greater than

= Equal to
<> Not equal to
S Greater than or equal to
4= Less than or equal to

43

CHAPTER 5

ADVANCED BASIC

e Introduction

e Simple Animation

e INPUT

e Using the GET Statement for Data Input
e Using GET to Program Function Keys
e Random Numbers and Other Functions
¢ Guessing Game

e Your Roll

e Random Graphics

INTRODUCTION

The next few chapters are for people who are familiar with BASIC program-
ming language and the concepts necessary to write advanced programs.

Those of you who are just starting to learn how to program may find some of
the information too technical to understand completely. But you'll find some
simple examples that are written for new users in two chapters, SPRITE
GRAPHICS and CREATING SOUND. These examples will give you a good idea
of how to use the sophisticated graphics and sound capabilities available on
your 64.

If you want to learn more about writing programs in BASIC, check the
bibliography in the back of this manual (Appendix N).

If you are already familiar with BASIC programming, the following chapters
will help you get started with advanced BASIC programming techniques. You'll
find extensive information about advanced programming in the COMMODORE
64 PROGRAMMER’'S REFERENCE GUIDE, which is available through your
local Commodore dealer.

46

SIMPLE ANIMATION

You can use some of the 64’s graphic capabilities by putting together what
you’ve learned so far in this manual, along with a few new concepts.

Try entering the following program to see what you can do with graphics.
Notice that you can include cursor controls and screen commands WITHIN a
PRINT statement. When you see something like (CRSR left) in a program
listing, hold down the SHIFT key and press the < CRSR > key. The screen
shows the graphic representation of a cursor left, which is two vertical reversed
bars. The graphic representation of the SHIFTed CLR/HOME key is a reversed

heart. /“V\
. INDICATES NEW

COMMAND

NEW

10 REM BOUNCING BALL

20 PRINT **(CLR/HOME)" \\/

25 FOR X =1TO 10:'PRINT “(CRSR/DOWN)"’;:NEXT p I NS

30 FORBL =1TO40

40 PRINT" @(CRSRLEFT)";:REM" @is a SHIFT-Q"
|

THESE SPACES
ARE INTENTIONAL

50 FORTM=1TO5
60 NEXTTM
70 NEXTBL
75 REMMOVE BALL RIGHT TO LEFT
80 FORBL =40TO 1STEP -1

P
90 PRINT* (CRSRLEFT)(CRSRLEFT)@CRSRLEFT)";
100 FORTM =1TO5

110 NEXTTM

120 NEXT BL

130 GOTO 20

TIP:

All words in this text will be completed on one line. However, as long as you
don’t hit your 64 will automatically move to the next line even ir
middle of a word.

When this program RUNSs, it displays a bouncing ball moving across the
screen from left to right and back again. Take a close look at the program to see
how this is done.

47

NEW
10 REM BOUNCING BALL
 — 20 PRINT “(CLR/HOME)”
25 FORX = 1TO10: PRINT “(CRSR/DOWN)";:NEXT
»30 FORBL =1TO40
40 PRINT" @(CRSRLEFT)";:REM " @isaSHIFT-Q"
50 FORTM=1TO5
60 NEXTTM
70 NEXTBL
75 REMMOVE BALL RIGHT TO LEFT
>80 FORBL =40TO 1STEP -1
90 PRINT " (CRSRLEFT)(CRSRLEFT)@CRSRLEFT)";
100 FORTM =1TO 5
110 NEXT T™M
120 NEXT BL
130 GOTO 20

Line 10 is a REMark that tells you what the program does. A REMark state-
ment has no effect on the program itself.

Line 20 clears the screen.

Line 25 PRINTSs ten cursor-down commands. This just positions the ball in
the middle of the screen. Without this line, the ball would move across the top line
of the screen.

Line 30 sets up a loop to move the ball 40 columns from left to right.

Line 40 does three things:

1. PRINTSs a space to erase the previous ball positions.
2. PRINTs the ball.
3. Performs a cursor-left to get ready to erase the current ball position again.

Line 50 and 60 set up a loop that slows down the ball's movement. Without
this loop, the ball would move too fast for you to see clearly.

< Line 70 completes the loop set up in line 30 to PRINT balls on the screen.
Each time the loop executes, the ball moves another space to the right. As you
can see from the illustration, the program contains a loop within a loop. You
can include up to ten loops within a loop. The only time you get in trouble is
when the loops cross over each other. The loops have to be NESTED inside
each other. In other words, if you start loop A and then start loop B inside loop A,
you must finish loop B (the inside loop) first. A maximum of nine loops may be
nested in this way.

When you're writing a program with loops, it's a good idea to draw arrows
from the beginning to the end of the loops. If your loops cross, the computer
can't figure out what you want, so it can't execute your program.

Lines 80 through 120 just reverse the steps in the first part of the program,
and move the ball from right to left. Line 90 is slightly different from line 40
because the ball is moving in the opposite direction, and you have to erase the
ball to the right and move to the left.

Line 130 sends the program back to line 20 to start the whole process over
again.

For avariationon the program,changeline 40 to read:

40 PRINT “(SHIFT) (Q)"

Run the program and see what happens now. Because you left out the cursor
control, each ball remains on the screen until it is erased by the ball moving right
to left in the second part of the program.

48

INPUT

Up to now, everything in a program has been set up before the program
RUNs. Once you executed the program, you couldn’t change or add anything.
The INPUT statement lets you send information to a program WHILE it is RUN-
ning. Not only does the program act on this information you supply, but the pro-
gram won't continue until you supply it.

To get an idea of how INPUT works, type NEW, press RETURN, and enter this
short program.

10 INPUT AS

20 PRINT “YOU TYPED "";A$

30 PRINT

40 IF A$ = “STOP” THEN END

50 GOTO 10

RUN YOU TYPED
? GO
YOU TYPED GO

? CONTINUE
YOU TYPED CONTINUE

? STOP
YOU TYPED STOP

Here's what happens in this program:

Line 10 tells the computer to display a question mark to prompt you to INPUT
a value for A$, and to wait until you supply the value before continuing the pro-
gram execution.

Line 20 PRINTs a message and the INPUT value, and line 30 PRINTs a blank
line.

Line 40 tells the computer to end the program immediately IF the value you
INPUT for A$ is STOP.

Line 50 returns the program to line 10 so you can INPUT another value. IF line
40 is true because the last value you INPUT for A$ was STOP, then line 50 isn’t
executed.

You can INPUT numeric or string variables, and you can have the INPUT
statement print a message along with a question mark to describe the kind of
INPUT the computer is waiting for. For example, here’s what happens when you
add a prompt message to line 10 of the previous example:

10 INPUT “KEEP GOING;:A$ Prompt message can't
RUN be more than 38
KEEP GOING? GO characters

YOU TYPED GO

KEEP GOING? STOP
YOU TYPED STOP

49

Here’'s a more complex example that demonstrates a lot of what's been
presented so far, including the INPUT statement.

NEW

1 REM TEMPERATURE CONVERSION PROGRAM

5 PRINT *(SHIFT/CLR/HOME)"

10 PRINT “CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)”:INPUT A$
20 IF A$ = “* THEN 10

30 IFA$ = “F” THEN 100

40 IF A$ <> “C” THEN END

50 INPUT “ENTER DEGREES CELSUIS: ”:C

60 F = (C*9)5+ 32

70 PRINT C;“ DEG. CELSIUS = ”; F;* DEG. FAHRENHEIT”
80 PRINT

9 GOTO 10

100 INPUT “ENTER DEGREES FAHRENHEIT: ”;F

110 C = (F-32)*5/9

120 PRINT F;* DEG.FAHRENHEIT = ";C;* DEG. CELSIUS”
130 PRINT

140 GOTO 10

Line 10 uses the INPUT statement to print a prompt message and to wait for
you to type in a value for A$.

Lines 20, 30 and 40 check what you typed in and tell the computer where to
go next. Line 20 tells the computer to go back to line 10 and ask for INPUT again
IF nothing was typed in (IF just RETURN was pressed). Line 30 tells the com-
puter to go straight to line 100 and perform the Fahrenheit-to-Celsius conver-
sion IF the value you typed for A$ is F.

Line 40 checks to be sure that you haven't typed in anything beside F or C. IF
you have, line 40 ends the program. IF you typed in a C, the computer
automatically moves to line 50 to perform the Celsius-to-Fahrenheit conversion.

It may seem like too much detail to include all these IF statements to check
what you INPUT. But this is a good programming practice that can spare you a
lot of frustration. You should always try to be sure that your program takes care
of all possibilities.

Back to the example: once the program knows what type of conversion to
make, the calculations are made. Then the program PRINTs the temperature
you entered and the converted temperature.

The calculation this program performs is just straight math, using the stan-
dard formula for temperature conversion. After the calculation finishes and the
answer is PRINTed, the program loops back and starts over.

Here’s a sample execution of this program:

CONVERT FROM FAHRENHEIT OR CELEIUS (F/C): ?F
ENTER DEGREES FAHRENHEIT: 32
32 DEG. FAHRENHEIT = 0 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?

After you RUN this program, you might want to save it on disk. This program,
as well as others in this manual, can form part of your program library.

50

USING THE GET STATEMENT FOR DATA INPUT

GET lets you input one character at a time from the keyboard without press-
ing the RETURN key. This really speeds up entering data in many cases.

When you RUN a program that has a GET statement, whatever key you press
is assigned to the variable you include in the GET statement. Here's an exam-
ple:

1 PRINT “(SHIFT/CLR/HOME)”

10 GET AS: IF A$ = “” THEN 10 No space between
20 PRINT AS; quotes
30 GOTO 10

Line 1 clears the screen.

Line 10 lets you type in any key on the keyboard. In effect, the loop in line 10
tells the computer to wait until you type in a key before moving to line 20.

Line 20 displays the keys you type on the screen.

Line 30 sends the program back to GET another character. It's important to
remember that the character you type in won't be displayed unless you PRINT it
to the screen, as we’'ve done in line 20.

The IF statement in line 10 is very important. GET continually works, even if
you don’t press a key (unlike INPUT, which waits for your response), so the se-
cond part of line 10 continually checks the keyboard until you hit a key.

Try leaving out the second part of line 10 and see what happens.

To stop this program, press the RUN/STOP and RESTORE keys.

You can easily rewrite the beginning of the temperature conversion program
to use GET instead of INPUT. If you've SAVEd this program, LOAD it and
change lines 10 and 20 like this:

10 PRINT “CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)”
20 GET AS: IF A$ = “” THEN 20

This change makes the program operate more smoothly because nothing
happens unless you type in one of the two responses (F or C) that selects the
type of conversion. If you want to keep the program, be sure to SAVE it again.

51

USING GET TO PROGRAM FUNCTION KEYS

As you'll recall from an earlier chapter, we told you that the keys on the right
side of the keyboard (f1 through f8) are function keys that you can program to
perform a variety of tasks.

Here’s how to program a function key:

1. Use a GET Statement to read the keyboard.

2. Use IF statements to compare the key you press to the CHR$ code for the
function key you want to use. Every character on the keyboard has a unique
CHRS$ number. For example, the CHR$ code of f1is 133. Appendix F lists the
CHRS code for all keys.

3. Use THEN statements to tell the computer what you want the function key
to do.

When you RUN the program, all you do is press a function key you program-
med, and the key will follow the instructions you gave it in the THEN statement.
For example:

10 GET A$: IF A$ = “”THEN 10
20 IF A$ = CHR$(137) THEN PRINT CHR$(14)
30 IF A$ = CHR$(134) THEN PRINT “YOURS TRULY”

Line 10 tells the program to assign the key you press to the variable A$. As
you'll recall from the previous example, the loop in line 10 continually checks
the keyboard for input.

Line 20 programs function key 2, CHR$(137). Line 20 tells the computer to
make A$ equal to CHR$(14) if you press function key 2. CHR$(14) is the switch
from upper to lower case letters on the keyboard. When you RUN this program,
you'll see that the characters on the screen immediately make this switch if you
press f2.

Line 30 programs function key 3, CHR$(134). Line 30 tells the computer to
make A$ equal to the character string YOURS TRULY and CHR$(13) if you press
f3 during program execution. CHR$(13) is the code for the RETURN key.

THE CHRS$ codes for the function keys are:

f1 = CHR$(133) f2 = CHR$(137)
f3 = CHR$(134) f4 = CHR$(138)
f5 = CHR$(135) f6 = CHR$(139)
f7 = CHR$(136) f8 = CHR$(140)

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE has more in-
formation about programming function keys. You can purchase this extensive
guide from your local Commodore dealer.

52

RANDOM NUMBERS AND OTHER FUNCTIONS

The 64 also has built-in functions that you can use to perform special tasks.
Functions are like built-in programs included in BASIC. The great advantage of
these built-in functions is that you don’t have to type in a number of statements
every time you want to perform a specialized calculation. Instead, all you do is
type the command for the function you want and the computer does all the rest.

These built-in functions include figuring square roots (SQR), finding out the
contents of a memory location (PEEK), generating random numbers (RND), etc.
Appendix C lists all the functions available on your computer.

One function you can have a lot of fun with is the random number function,
RND. If you want to design a game or an educational program, you'll often need
to be able to program your computer to make up random numbers. For exam-
ple, you'd need to do this to simulate the tossing of dice. Of course you could
write a program that would generate these random numbers, but it's much
easier to be able to do this just by calling upon the prewritten RaNDom number
function.

To see how RND works, try this short program:

NEW
10 FORX = 1TO 10 IF YOU LEAVE OUT THE COMMA, YOUR
20 PRINT RND (1), LIST OF NUMBERS APPEARS AS 1 COLUMN
30 NEXT
When you RUN this program, the screen displays:
.789280697 664673958
256373663 .0123442287
682952381 3.90587279E - 04
402342724 .879300926
158209063 .245596701

Your numbers don’t match? It would be incredible if they did because the
program generates a completely random list of ten numbers.

If you RUN the program a few more times, you'll see that the results are
always different. Though the numbers don’t have a pattern, you'll notice a few
consistencies about the list the program displays.

For one thing, the results are always between 1 and 0, but never equal to 1 or
0. For another, the numbers are real numbers (with decimal points).

Now, we started out to simulate dice tosses, and the results from this pro-
gram aren’t exactly what we're looking for. Now we’ll add a few more features
to this program to get what we want.

First, add this line to the program to replace line 20, and RUN the program
again:

20 PRINT 6*RND(1),

RUN

360563664 452687513
5.48602315 1.09650123
3.10045018 439052168
391302584 5.06321506
2.32056144 4.10781302

53

Now we’ve got results larger than 1, but still have real numbers. To solve this,
we’ll use another function.

The INT function converts real numbers to integer (whole) numbers. So try
replacing line 20 again:

20 PRINT INT(6*RND(1)),

RUN

2 3 1 0
2 4 5 5
0 1

Now we’re even closer to our goal, but you'll notice that the numbers range
from 0 to 5, not 1 to 6. So as a final step, we’ll replace line 20 again:

20 PRINT INT(6*RND(1)) +1

Now when you RUN the program, you’ll get the results you want.
When you want to generate a range of real numbers instead of whole
numbers, the formula is slightly different because you must subtract the lower

limit of the range from the upper limit. For example, you can generate random
numbers between 1 and 25 by typing:

20 PRINT RND(1)%*(25—1) + 1
The general formula for generating random numbers in a certain range is:
NUMBER = RND(1) * (UPPER LIMIT — LOWER LIMIT)+LOWER LIMIT

54

GUESSING GAME

Here's a game that uses random numbers. This game not only uses the RND
function, but it also introduces some additional programming theory.

When you RUN this program, the computer generates a random number, NM,
whose value you'll try to guess in as few turns as possible.

NEW

1
2
5
10
15
20

REM NUMBER GUESSING GAME

PRINT “(CLRIHOME)” —_—
INPUT “ENTER UPPER LIMIT FOR GUESS ;LI INDICATES NO
NM = INT(LRND(1))+ 1 SPACE AFTER

CN=0 QUOTATION MARK
PRINT “I'VE GOT THE NUMBER.”:PRINT
INPUT “WHAT'S YOUR GUESS”; GU

CN = CN + 1

IF GU>NM THEN PRINT “MY NUMBER IS LOWER": PRINT:GOTO 30
IF GUK NM THEN PRINT “MY NUMBER IS HIGHER": PRINT:GOTO 30
IF GU = NMTHEN PRINT “GREAT! YOU GOT MY NUMBER"’

PRINT “IN ONLY "; CN ;* GUESSES.":PRINT

PRINT “DO YOU WANT TO TRY ANOTHER (Y/N)”

GET ANS: IF AN$="" THEN 80

IF AN$ = “Y" THEN 2

100 IF AN$< >“N"” THEN 70
110 END

You can specify how large the number will be at the start of the program.
Then, it's up to you to guess what the number is.
A sample run follows along with an explanation.

ENTER UPPER LIMIT FOR GUESS? 25
I'VE GOT THE NUMBER.

WHAT'S YOUR GUESS ? 15
MY NUMBER IS HIGHER.

WHAT'S YOUR GUESS ? 20
MY NUMBER IS LOWER.

WHAT'S YOUR GUESS ? 19
GREAT! YOU GOT MY NUMBER
IN ONLY 3 GUESSES.

DO YOU WANT TO TRY ANOTHER (Y/N)?

55

The IFITHEN statement (lines 40-60) compare your guess to the random
number (NM) generated by line 10. If your guess is wrong, the program tells you
whether your guess is higher or lower than NM.

Each time you make a guess, line 35 adds 1 to CN. CN is a counter that keeps
track of how many guesses you take to get the right number. The purpose of
this game, of course, is to guess the number in as few tries as possible.

When you get the right answer, the program displays the message, GREAT!
YOU GOT MY NUMBER, and tells you how many guesses you took.

Remember that the program creates a new random number each time you
play the game.

You might want to add a few lines to the program that also specify the lower
range of numbers generated by this game.

PROGRAMMING TIPS:
In lines 40 and 50, a colon separates multiple statements on a single
line. This not only saves typing time, but it also conserves memory space.
Also notice that the IF/THEN statements in these two lines PRINT
something before branching to another line.

YOUR ROLL

The following program simulates the throw of two dice. You can play this lit-
tle game by itself, or use it as part of a larger game.

5 PRINT “CARE TO TRY YOUR LUCK?"

10 PRINT ""RED DICE = ";INT(RND(1) *6) + 1

20 PRINT “WHITE DICE = ";INT(RND(1)*6) + 1

30 PRINT “PRESS SPACE BAR FOR ANOTHER ROLL":PRINT
40 GET AS$: IF A$ = “” THEN 40

50 IF A$ = CHR$(32) THEN 10

From what you’ve learned about BASIC and random numbers, see if you can
follow what’s going on in this program. As you may recall from the section on
programming the function keys, CHR$(32) is the character string code for the
space bar.

56

RANDOM GRAPHICS

As a final note on random numbers, and as an introduction to designing
graphics, try entering and RUNning this program:

10 PRINT “ < CLR/HOME >"
20 PRINT CHR$(205.5 + RND (1)),
30 GOTO 20

The function CHR$ (CHaracter String) gives you a character, based on a stan-
dard code number from 0 to 255. Every character the 64 can print is encoded
this way. Appendix F lists the CHR$ codes for all keys.

A quick way of finding out the code for any character is to use the function
ASC (for the standard ASCII code). Type:

PRINT ASC(*X”)

X is the character you're checking. X can be any printable character, including
graphics characters. You must enclose the character in quotation marks.
Here’s an example:

PRINT ASC(*G")
71

The CHRS$ function is the opposite of ASC.

PRINT CHR$(71)
G

If you type:
PRINT CHR$(205);CHR$(206)

the computer displays the two right side graphics on the M and N keys, which
are the characters used in the little maze program you just tried.

The formula 2055 + RND(1) tells the computer to pick a random number bet-
ween 205.5 and 206.5 There is fifty-fifty chance that the random number will be
above or below 206. CHRS$ ignores fractional values, so half the time the
character with code 205 is printed, and the rest of the time code 206 is
displayed.

You can experiment with this program by adding or subtracting a couple or
tenths from 205.5. This gives either character a greater chance of being
displayed.

57

COMMOD

CHAPTER 6
COLOR AND GRAPHICS

HOW TO USE COLOR AND GRAPHICS ON YOUR COMPUTER

So far this book has presented some of the sophisticated computing
capabilities of your 64. But one of the most exciting features of your new com-
puter is its outsianding ability to produce 16 different colors and a lot of dif-

How to Use Color and Graphics on Your Computer
Printing Colors

Color CHR$ Codes

How to Use PEEKs and POKEs

Screen Graphics

Screen Memory Map

Color Memory Map

More Bouncing Balls

ferent graphics.

You've already seen a very simple demonstration of the graphics in the boun-
cing ball program and in the maze program at the end of the last chapter. This
chapter introduces you to new concepts that explain graphic and color
programming, and that suggest ideas for creating your own games and advanc-

ed animation.

60

PRINTING COLORS

When you tried the color aligment test in Chapter 1, you discovered that you
can change text colors by simply holding down the CTRL key and pressing one
of the color keys.

The 64 offers a full range of 16 colors. Though only eight colors are printed on
the color keys, you can get eight more by holding down the ,Cz‘ key and press-
ing a color key. Here’s a list of the colors:

KEYBOARD ~COLOR DISPLAY KEYBOARD COLOR DISPLAY
GO0 -« "y @ (1] ORANGE P
WHITE C:] BROWN [
RED (C:| 7. RED [
GCog o Al BB cra O
Gma rures a BB crae &
[crrL ['6 JELYE3N n B8 . cren]
BLUE = (=} T. BLUE @]
3 cow m BB ocrars s

When we showed you the boucing ball program in the last chapter, you saw
that keyboard commands, such as cursor movement, can be written into PRINT
statements. {n the same way you can also add text color changes to your pro-
grams.

61

Type NEW and try experimenting with changing colors. Hold down the CTRL
key and at the same time press the 1 key. Now release both keys and press the
R key. Now hold down the CTRL key again and press the 2 key. Release the
CTRL key and type the A key. Move through the numbers, alternating with the
letters, and type out the word RAINBOW like this:

10 PRINT"TRTAT | TNTBTOTw"

(cre 1]2]20als]6]2]

You'll recall that cursor controls appear as graphic characters in the PRINT
statement. Color controls are also represented as graphic characters. The color
chart printed above shows the graphic characters that appear with each color.
Because of the graphic characters that are displayed when you select color
keys, your PRINT statement will look strange, but when you RUN the program,
you’ll see that only the text of the message is displayed. The letters in the
message automatically change colors according to the color controls you plac-
ed in the PRINT statement.

Now try making up some examples of your own, mixing any number of colors
within a single PRINT statement. Don’t forget the second set of colors that you
can get by holding down the @ key while you press a color key.

TiP:

After you RUN a program with color or mode (reverse) changes, you'll notice
that the READY prompt and any additional text you key in is the same as the
last color or mode change you made. To get back to the normal display, press
these keys together:

RUN/STOP and RESTORE

62

COLOR CHR$ CODES

Before you start reading this section, take a look at Appendix F, which lists
the CHR$ codes for all keys on the keyboard.

As you looked over the list of CHR$ codes, you probably noticed that each
color has a unique code, just like all the other keys and the keyboard controls. If
you print the codes themselves by using the CHR$ function mentioned in the
last chapter, you can get the same results you got by typing CTRL or Kxj and
the color key in a PRINT statement.

For example, try this:

NEW

10 PRINT CHR$(147) : REM < CLR/HOME >

20 PRINT CHR$(28);“CHR$(28) CHANGES ME TO?”
RUN

CHR$(28) CHANGES ME TO?

When you RUN this program, the screen clears before the message in line 20
is PRINTed. The text should be red now.

In many cases, you'll find that it's much easier to use the CHR$ function to
change colors, especially if you want to experiment. The next page shows
another way to get a rainbow of colors. There are a number of similar lines in
the program (40 through 110), so use the editing keys to spare yourself a lot of
typing. See the notes at the end of the program listing to refresh your memory
on editing procedures.

NEW

1 REM AUTOMATIC COLOR BARS

5 PRINT CHR$(147) : REM CHR$(147) = CLRIHOME
10 PRINT CHR$(18);" "";:REM REVERSE BARS
20 CL = INT(8*RND(1))+1

30 ON CL GOTO 40,50,60,70,80,90,100,110

40 PRINT CHR$(5);: GOTO 10

50 PRINT CHR$(28);: GOTO 10

60 PRINT CHR$(30);: GOTO 10

70 PRINT CHR$(31);: GOTO 10

80 PRINT CHR$(144);: GOTO 10

90 PRINT CHR$(156);: GOTO 10

100 PRINT CHR$(158);: GOTO 10

110 PRINT CHR$(159);: GOTO 10

Type lines 5 through 40 normally. Your display should look like this:

1 REM AUTOMATIC COLOR BARS

5 PRINT CHR$(147) : REM CHR$(147)= CLR/HOME
10 PRINT CHR$(18); * "-REM REVERSE BARS
20CL = INT(8*RND(1))+1

30 ON CL GOTO 40,50,60,70,80,90,100,110

40 PRINT CHR$(5);; GOTO 10

[]

63

EDITING NOTES:

Use the < CRSR-up > key to position the cursor on line 40. Then type 5 over
the 4 of 40. Now use the < CRSR-right > key to move over to the 5 in the CHR$
parentheses. Press SHIFT and INST/DEL to open up a space, and key in 28.
Now just press RETURN with the cursor anywhere on the line.

The display should look like this now:

NEW

1 REM AUTOMATIC COLOR BARS

5 PRINT CHR$(147) : REM CHR$(147)= CLR/HOME
10 PRINT CHR$(18), ” ;:REM REVERSE BAR
20CL = INT(8*RND(1))+1

30 ON CL GOTO 40,50,60,70,80,90,100,110

50 PRINT CHR$(28);: GOTO 10

Don’t worry about line 40; it's still there, as you can see by LISTing the pro-
gram. Follow the same steps to modify line 40 with a new line number and
CHR$ code until you've entered all the remaining lines. As a final check, LIST
the entire program to make sure all the lines are right before you RUN it.

You probably understand the color bar program except for line 30. Here's a
brief explanation of how this program works.

Line 5 prints the CHR$ code for CLRIHOME.

Line 10 turns on reverse type and prints 5 spaces, which turn out to be a bar
since they’re reversed. The first time through the program, the bar is light blue,
the normal screen display color.

Line 20 uses the random function to select at random a color between 1 and
8.

Line 30 uses a variation of the IF/THEN statement, called ON/GOTO, which
lets the program choose from as list of line numbers where the program will go
next. If the ON variable (in this case CL) has a value of 1, the program goes to
the first line number listed (here it's line 40). If the variable has a value of 2, the
program goes to the second line listed, and so on.

Lines 40 through 110 just convert the random key colors to the appropriate
CHRS code for that color and return the program to line 10 to PRINT a section
of the bar in that color. Then the whole process starts again.

See if you can figure out how to produce 16 random colors. Expand
ON/GOTO to handle the additional colors and add the remaining CHR$ codes.

64

HOW TO USE PEEKS AND POKES

PEEKS and POKES let you search around inside your computer's memory
and stick things in exactly where you want them.

You’'ll recall that in Chapter 4 we explained variables as being like little slots
in the computer’s memory, with the variable name as the slot’s address. Well,
imagine some more specially defined slots in the computer that stand for
specific memory locations and that have numbers for addresses.

Your 64 looks at these memory locations to see what the screen’s
background and border colors should be, what characters to display on the
screen and where to display them, etc.

You can change the screen colors, define and move objects, and even create
music by POKEing a different value into the specific memory slots.

Imagine some memory slots looking something like this:

53280 53281 53282 53283
2 1
BORDER BACKGROUND
COLOR COLOR

The first two slots are the memory locations for the border and background
colors on your screen. We've put 2, the value for RED in the border color box,
and 1, the value for WHITE in the background color box. Now try typing this:

POKE 53281,7 <RETURN>

The background color of your screen will change to yellow because we put
the value 7, for yellow, in the location that controls backgound color.

Try POKEing different values intr, the background color location and see
what result you get. Here’s a list of the values to POKE for each color available
on your 64:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 light GREEN
6 BLUE 14 light BLUE
7 YELLOW 15 GRAY 3

Here's a little program that you can use to display various border and
background color combinations:

NEW

10 FORBO = 0 TO 15

20 FORBA = 0TO 15

30 POKE 53280,BA

40 POKE 53281,BO

50 FOR X = 1 TO 500: NEXT X
60 NEXT BA: NEXT BO

RUN

65

This program uses two simple loops to POKE various values to change the
background and border colors. Line 50 contains a DELAY loop, which just
slows the program down a little bit.

If you're curious about what value is currently in the memory location for
background color, try this:

?PEEK (53280) AND 15

PEEK looks at a whole byte, but colors only use half a byte, called a nybble.
To PEEK just this nybble, you have to add the AND 15 to your PEEK statement.
If you used this PEEK after RUNning the previous program, you'd get 15 as the
answer because the last border color POKEd was GRAY 3, which is 15.

In general, PEEK lets you see what value is currently in a specific memory
slot. Try adding this line to your program to display the values of BORDER and
BACKGROUND as the program RUNSs.

25 PRINT CHR$(147); “BORDER = "; PEEK(53280) AND 15,
“BACKGROUND = "; PEEK (63281) AND 15

SCREEN GRAPHICS

So far when you've PRINTed information, the computer has handled the in-
formation sequentially: one character PRINTed after the next, starting from the
current cursor position, except when you asked for a new line, or used acomma
in PRINT formatting.

You can PRINT data in a particular place by starting from a known place on
the screen and PRINTing the correct number of cursor controls to format the
display. But this takes time and program steps.

But just as there are certain locations in the 64’s memory to control color,
there are also memory locations that you can use to control screen locations.

66

SCREEN MEMORY MAP

The 64’s screen can hold 1000 characters (40 columns by 25 lines), so there
are 1000 memory locations set aside to represent what is on the screen. Imag-
ine the screen as a grid, 40 by 25, with each square standing for one memory
location. ‘

Each memory location can contain one of the 256 different characters the 64
can display (see Appendix E). Each of these 256 characters is represented by a
number from 0 to 255. If you POKE the value for a character into a specific
screen memory location, that character will be displayed in that specific screen
location.

Here’s a grid that represents your screen, complete with the numbers of each
screen memory location.

COLUMN
0 10 20 30 39

1063

1024 — 0
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424 10
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824 20
1864
1904
1944
1984 24

Moy

}
2023

67

The 64’s screen memory normally begins at memory location 1024 and ends
at location 2023. Location 1024 is the upper left corner of the screen. Location
1025 is the position of the next character to the right, and so on. Location 1063
is the right-most position of the first row. Following the last character in a row,
the next location is the left-most character on the next row down.

Suppose you want to control a ball bouncing on the screen. The ball is in the
middle of the screen, column 29, row 12. The formula for calculating the
memory location on the screen is:

POINT = 1024 + X + 40 * Y€&—row
column

where X is the column and Y is the row.
Therefore, the memory location of the ball is:

POINT = 1024 + 20 + 480<— row (40x12)
POINT = 1524 & column

Clear the screen with SHIFT and CLR/H\. ME and type:

POKE 1524,814 character code
location

This POKE statement makes a ball anpear in the middle of the screen. You
have placed a character directly into screen memory without using the PRINT
statement. However, you can’t see the ball yet because it's the same color as
the screen background.

COLOR MEMORY MAP

You can change the color of the ball that appeared by altering another range
of memory. Type:

POKE 55796,24 color
location

This changes the ball's color to red.

Every spot on the 64’'s screen has TWO memory locations: one for the
character code, and one for the color code. The color memory map begins at
location 55296 (upper left corner), and continues on for 1000 locations. You use
the same color codes, 0 through 15, that you used to change border and
background colors, to directly change character color.

We can modify the formula for calculating screen memory locations to give
us the locations to POKE colors. Here’s the new formula:

COLOR PRINT = 55296 + X + 40 * Ye— row
column

68

MORE BOUNCING BALLS

Here's a revised bouncing ball program that directly prints on the screen us-
ing POKEs rather than cursor controls within PRINT statements. When you
RUN this version, you'll see that it's much more flexible than the earlier pro-
gram and it leads up to programming more sophisticated animation.

NEW

10 POKE 53281,1: PRINT “<CTRUWHITE><SHIFT CLRIHOME > "
20 POKE 53280,7 : POKE 53281,6

30 X=1:¥Y=1

40 DX =1:DY =1

50 POKE 1024 + X + 40%Y.81

60 FORT = 1TO 10 : NEXT

70 POKE 1024 + X + 40%Y,32

80 X =X+ DX

90 IFX<=0O0ORX>= 39THEN DX = —-DX
100 Y = Y + DY

110 IFY< =00RY> = 24 THEN DY = - DY
120 GOTO 50

Line 10 sets the cursor color to white and then clears the screen.

NOTE: Clearing the screen on (NTSC) 64s sets the color RAM to white but on
(PAL) 64s the color RAM is set to the current background color (here white).

Line 20 sets the background color to blue and the border color to yellow.

The X and Y variables in line 30 keep track of the ball’s current row and col-
umn position. The DX and DY variables in line 40 are the horizontal and vertical
direction of the ball's movement. When a + 1 is added to the value of X, the ball
moves to the right; when — 1is added, the ball moves to the left. A + 1 added to
Y moves the ball down a row, and a — 1 added to Y moves the ball up a row.

Line 50 puts the ball on the screen at the current X,Y position. Line 60 is a
delay loop, which is included to keep the ball on the screen long enough for you
to be able tc see it.

Line 70 erases the ball by putting a space (code 32) where the ball was on the
screen.

Line 80 adds the direction factor to X.

Line 90 tests to see if the ball has reached one of the side walls, and reverses
the ball's direction if there's a bounce. Lines 100 and 110 do the same thing for
the top and bottom walls.

Line 120 sends the ball back to display and moves the ball again.

You can change the ball to any other character by changing the code in line
50 from 81 to another character code.

if you change DX or DY to 0 the ball bounces straight instead of diagonally.

We can also add a little intelligence to the bouncing ball program. So far the
only thing you checked for is whether the ball is going out of bounds on the
screen. Try adding the following lines to the program:

21 FORL=1TO 10

25 POKE 1024 + INT(RND(1)*1000),160 «—(REVERSE SPACE)
27 NEXTL

115 IF PEEK(1024 + X + 40*Y) = 166 THEN DX = —DX : GOTO 80

Lines 21 to 27 put ten blocks on the screen in random positions. Line 115
PEEKSs to see if the ball is about to bounce into a block, and, if so. it changes
the ball's direction.

69

LEROS2200LER0S2200EEA0S2S00LEA0SZS300LEA0SZ200LGO0S2200EEA0S2200UEA0SE
EROSS200LEROSS200EER05E200EEROSS200EEAOSE200EEROSS200CER0SS200EEA0SE2
Q8522008055200 3055200 305585058055 300 580252008 5R055 20085205550
e e e
ODOMWnMVCERODOMWWKERODOMWWCERODOMWWCERODOMMOCERODOMWOCEHODOMWWCERO

OSSO a5 0S50 0E 5a302 50 0r60a02 5008 0na02 500258592550

CHAPTER 7
INTRODUCTION TO SPRITES

Bits and Bytes

Creating a Sprite

Designing a Sprite

Turning Sprites On

Sprite Colors

Positioning Sprites

Expanded Sprites

Creating More than One Sprite
Sprite Priorities

Turning Sprites Off.

In previous chapters, we’ve shown you how to use graphic symbols in PRINT
statements to create animation and other visual effects.

In chapter 6, we also showed you how to POKE character codes in specific
screen memory locations, which put characters directly on the screen in the
place you selected.

In both of these cases, you have to create objects from existing graphic sym-
bols, so these methods take a lot of work. When you want to move the object,
you must use a number of program statements to keep track of the object and
move it to a new place. And sometimes the shape and resolution of the object
isn’t as good as you'd like it to be because of the limitations of using graphic
symbols.

You can eliminate a lot of these problems by using sprites in animated se-
quences. A sprite is a high-resolution porgrammable object that you can make
into just about any shape by using BASIC commands. All you have to do to
move the object is simply tell the computer the position where you'd like the
sprite to go. The computer takes care of the rest.

But this isn’t all you can do with sprites. For example, you can change their
color, you can tell if one object collides with another, you can make them go in
front and behind each other, and you can easily expand their size.

You have to learn a few more details about your 64 and the way it handles
numbers before you can use sprites. It's not difficult, though, so just follow the
examples and you’ll be making your own sprites do amazing things in no time.

72

BITS AND BYTES

Before you can use sprites it's important that you understand a few general
things about how computers work.

In the decimal system, we count in ‘‘tens” usmg values of 0-9. When a
particular position overflows its maximum value of 9, it re-cycles to zero and
carries one to the next (left-hand) position. For example, the number 64 means
6 x (10) + 4 x (1). The position of each digit is important. The value of 64 is
calculated as follows:

6x10T1 + 4x1070
NOTE: Any number raised to the power of zero equals 1.

Computers store information as a series of electrical charges, representing 1s
and 0s. Each cell within memory holds a pattern of eight ones and zeros called
binary digits or BITS. These cells are called BYTES. A bit, which is the smallest
amount of information a computer can store, can be turned ON, giving it a value
of 1, or OFF, which has a value of 0.

When you enter information into the computer via the keyboard, key
depressions are converted into 8 bit patterns of ones and zeros, and transferred
to memory.

The rules for binary arithmetic are much simpler than other systems since
digits can only have two values, 0 or 1. As illustrated in the previous example, the
decimal system uses the base of 10, whereas the binary system uses the base of 2.

One bit can contain one of two combinations, 0 or 1. There are four possible
combinations of 1s and Os in two bits (272) and with three bits, eight possible
combinations (213). The following illustration shows the range of values.

NO. OF NO. OF
BITS VALUES POSSIBLE COMBINATIONS
1 2%1 ON 1
=2 OFF 0
2 2¢2 ON and ON 11
=4 ON and OFF 10
OFF and ON 01
OFF and OFF 00
3 243 ON and ON and ON 111
=8 ON and ON and OFF 110
ON and OFF and ON 101
ON and OFF and OFF 100
OFF and ON and ON 011
OFF and OFF and ON 001
OFF and ON and OFF 010
OFF and OFF and OFF 000

73

As you can see, the number of combinations is 2 raised to the power of the
number of bits. For one BYTE, or eight bits, you can store 256 different valuesi.e.
218.

When all eight bits are OFF, i.e. setto 0, the byte contains a value of zero.
When all eight bits are ON, i.e. set to 1, the byte has a value of 255. Note that the
combinations range from 0 to 255 inclusive.

You may convert any binary number to a decimal value simply by adding those
powers of two where a bit has been set. The example below illustrates how a
decimal value of 181 is held in binary form:

BINARY POSITIONS 217 216 215 214 213 212 211 210
DECIMAL EQUIVALENT 126 64 32 16 8 4 2 1
BIT VALUES 1 0o 1 1 0 1 0 1

Adding up the values of the ON bits gives:
2177 + 275 + 214 + 212 + 270
or 128 + 32 + 16 + 4 + 1 = 181

The following is a table showing binary to decimal conversion. Azero indicates
that the bit is OFF, and a 1 shows that a bit is ON. To calculate the value of the
entire byte, add the decimal value of each ON bit.

74

BINARY TO DECIMAL CONVERSION

Decimal Value
8

-]
o
S
w
N
o

210

210

212

213

214

215

216

—|O|O|O|O|O|O|O(N

o|—~|Oo|Oo|O|O|O|O
o|o|—=|O|O|O|O|O
o|0o|lo|—=|O|O|O|O
o|Oo|0o|O|—=|O|O|O

o|lOo|Oo|Oo|O|—=|O|O|&n

OOOOO‘O—'ON

o|o|o|0o|o|O|(O|=|—

217

TIP:

Converting binary numbers to their decimal values is the basis for creating
data to represent and manipulate sprites. Here's a program that does these
conversions for you. Since you'll be using this program often, you should enter

and save it.

5 REM BINARY TO DECIMAL CONVERTER

10 INPUT “ENTER 8-BIT BINARY NUMBER :”;A$

12 IF LEN (A$)< > 8 THEN PRINT “8 BITS PLEASE...”: GOTO 10

15TL=0:C =0

20 FORX = 8TO1STEP —-1:C =C + 1

30 TL = TL + VALMID$(AS,C,1))*2 ¢ (X—1)

40 NEXT X

50 PRINT AS$;" BINARY ;" = ";TL;" DECIMAL"

60 GOTO 10

At line 10 you enter a binary number as the string A$. Line 12 uses the LEN
(length) function to check to be sure you entered 8 binary digits. If you didn't,
the program asks for more and repeats line 10.

In line 15, TL keeps track of the binary number’s decimal value, and C in-
dicates which bit is being worked on as the program goes through the loop.

Line 30 updates the value of TL. Appendix C explains the VAL and MID$ func-

tions.

Line 50 PRINTSs the binary and decimal values of the byte. Line 60 returns the

. program to the beginning.

75

CREATING A SPRITE
Sprite Registers

Before going any further you need to know a little about how sprites are
manipulated by the COMMODORE 64.

Sprites are handled by a special chip inside your COMMODORE 64. This is
called the VIC Il chip. This chip contains a series of special bytes called
REGISTERS which are provided specifically for sprite handling. Each register
performs a separate function. For example, the ENABLE REGISTER controls
whether a sprite is active or inactive, while the EXPAND REGISTERS control the
size of a sprite. When you work with sprites, think of a register as a byte with a
specific function. The registers we will be talking about in this chapter are listed
below:

REGISTER No. DESCRIPTION

0-15 SPRITE POSITIONING

16 EXTRA MOVEMENT
21 ENABLE (ON/OFF)
23 EXPAND (VERTICAL)
27 PRIORITIES
28 MULTI-COLOR SELECT
29 EXPAND (HORIZONTAL)

37-38 MULTI-COLORS

39-46 COLOR

Each of these registers, or bytes, have been assigned a specific location in the
memory of the computer. They start at location 53248. This is the ‘base address’
of the VIC Il chip. To access individual registers, it is easier to assign a variable
with the value of the start address and then add the register number to it, e.g.
V=53248: POKE V +21,255. This will putthe value of 255 into register 21.

The VIC Il chip in your COMMODORE 64 does all the work of creating and
keeping track of characters and graphics, creating colors and moving sprites
around. All you have to do is to tell the computer the following three details about
the sprite:

What it should look like
What color it should be
Where it should appear

The VIC Il chip contains 46 registers and controls up to 8 sprites at a time. You
can design, create and move your sprite by POKEing the appropriate decimal
value in the particular memory location.

76

DESIGNING A SPRITE

A sprite is made up of 504 dots. These are arranged in a 24 dot wide by 21 dot
deep grid. As we mentioned earlier, you can use up to 8 sprites at a time,
numbered from 0 to 7. Each dot on the sprite corresponds to a bit. In order to
design a sprite, you simply set the relevant bit on the grid. Each line on the grid
contains 24 bits (three bytes). Each sprite takes up 64 bytes in memory, i.e. 21
multiplied by 3 plus one spare byte. (For the more technically minded, the
number 64 is much easierfor the VIC Il chip to work with because itis a power of 2
and therefore easier to multiply.)

Because you can visualise a sprite inside a grid, the design process is greatly
simplified. Suppose you want to create a balloon and make it float around the
screen. The grid on page 78 shows its shape. You can set up your own grid
preferably using lined, or better still, graph paper. Draw a grid that is 21 squares
high and 24 squares across. Divide the 24 squares across into 3 sections of 8
spaces.

The next step is to convertthe graphic design into datathe computer can use.
Number the 8 squares in each of thethree sections 128, 64, 32, 16,8,4,2and 1.
These values are equivalentto 217, 216, 215,214, 213,272,211 and 210.

Number the squares down the left hand side of the page from 1-21 for each
row. Now fill in the grid with any design, or use the balloon that we've drawn. It's
easier to outline the shape first, then go back and fill in the grid.

Think of the squares you have filled in as ON bits, and substitute a 1 for each
filled square. Think of the squares that aren't filled as OFF bits, and give them a
value of zero.

Now look along row 1 and think of each 8 square section as a byte. Convert
each section of 8 bits into a decimal value. You can even use your Binary to
Decimal converter program if you wish. Now convert each of the 21 rows into 3
decimal values, giving 63 values in all.

77

SERIES ' SERIES SERIES
|
1 | 2 | 3
128 32 8 2 128 3 8 2128 32 8 2
64 16 4 111| l64 % 4 “1641 16 4 1

00 N DL W N —

ROW

T l
1 5 10 15 20 24

COLUMN

Now look at the design of the balloon. The first series of 8 squares on the first
row are all blank, therefore the bits are all OFF giving a value of zerd. The middie
series on row 1 looks like this:

00000000 01111111 00000000

The third series of 8 squares on the first row also contains only blanks so it also
equals zero. So the data for the first line is:
DATA0,127,0

The three series of dots that make up row two are calculated like this:

Series 1./ 0 [o [o [o | o] o 0 1]
1
series2: [1 [1 [v [1 [1]

1
1 1 1 1 1 1 1
128 + 64 + 32 + 16 +8 + 4 + 2 + 1 = 255

=1

Series 3: | 17[1 [o] oo [o [o] o |
1 1
128 + 64

78

The data for the second row is:
DATA 1,255,192

Use this method to convert the three series of 8 squares in each of the
remaining rows. Once you have completed these calculations, you are ready to
write a BASIC program to use the balloon (or any other shape) since the sprite
has now been converted into values your computer can understand.

To demonstrate the use of sprites, type in the following program:

1 REM UP, UP, AND AWAY
5 PRINT “(CLR/IHOME)”

10 V=53248 : REM START OF DISPLAY CHIP

11 POKE V+21,4 : REM ENABLE SPRITE 2

12 POKE 2042,13: REM SPRITE 2 DATA FROM BLOCK 13

20 FORN = 070 62 READ Q : POKE 832 + N,Q: NEXT

30 FORX = 0TO 200

40 POKE V+4X: REM UPDATE X COORDINATES S L
50 POKE V+5X: REM UPDATE Y COORDINATES

60 NEXT X

70 GOTO 30

200 DATA 0,127,0,1,255,192,3,255,224 3,231,224
210 DATA 7,217,240,7,223,240,7,217,240,3, 231,224
220 DATA 3.255224.3,255.224.2,255,160,1,127,64
230 DATA 1,6264,0,156,128,0,156,128,0,73,0,0,73,0
240 DATA 0,62,0,062,0,062,0,0,28,0

INFO. READ IN

If you have entered everything correctly, when you type "RUN'" and press
RETURN, your balloon should sail across the screen. At this stage, you will not
understand the meaning of much of the program but, as we explain each stage of
sprite handling, we will use the program to illustrate each feature.

Line numbers 200-240 relate to the definition of your balloon and contain 21
sets of three values. i.e. one set for each row on your design chart.

79

SPRITE POINTERS

The sprite pointer indicates where you have stored your sprite in memory. The
sprite pointers are stored in 8 bytes from location 2040 to 2047 inclusive. The
normal location of the pointer for sprite O (the first sprite) is 204 0; the location for
the pointer for sprite 1 is 2041; and so on with location 2047 used as the location
of the pointer for sprite 7.

Each sprite pointer can contain a value between 0 and 255. This number,
multiplied by 64, corresponds to the start address of your sprite data. Since each
sprite uses 64 bytes, the sprite pointer can contain a block number anywhere
within the first 16K block of memory accessible by the VIC Il chip, i.e. 256 * 64. It
is also possible to use other 16K blocks. Further details can be found in the
COMMODORE 64 Programmer's Reference Guide.

NOTE: Itis always advisable to store the data for your first sprite at block 255 and
then store data for subsequent sprites in the next available blocks working
downwards. This will prevent your sprite data from interfering with the BASIC
program. If you find that the sprite data is writing over the end of your BASIC
program, you must store your sprite data in the next available 16K block of
memory or move the BASIC program above the sprite data. Again, details on
how to do this can be found in the COMMODORE 64 Programmer’s Reference
Guide.

In the balloonprogram, line 10:
V = 53248

assigns the value of the start address of the VIC il chip to the variable V. Laterin
the program you can add the register number to the address stored in V. For
example line 11:

POKE V+21,4

references register number 21.
Line 12 of the balloon program:

POKE 2042,255
places the data from sprite 2 into block 255.

80

TURNING SPRITES ON

Before you see and use your sprites, you must first activate them. You do this
by using the SPRITE ENABLE register, register number 21. As mentioned
above, line 11 in the balloon program turns on sprite 2. This is done by placing
the value 4 in the register. This is 2 to the power of the sprite number 2, i.e. the
sprite you are initializing.

Refer to the structure of a byte earlier in the chapter if you do not understand
how we get this value. If you had wanted to turn on two sprites, you would simply
add the decimal values together. For example, to turn on sprites 2 and 3 add 8
and 4 (242 + 243). The instruction would then be:

POKE V+21,12

TIP:

An easier way to turn on a selected sprite is to use a simple calculation
that sets the required bit in the SPRITE ENABLE register. In the program
statement below, SN equals the sprite number (0-7) that you want to turn on.

POKE V + 21, PEEK(V + 21) OR (2TSN)

SPRITE COLORS

A sprite can be any of the 16 colors available on your COMMODORE 64. The
colors are numbered 0-15. Chapter 6 and Appendix G contain the colors and
their codes. As you can see from the VIC |l chip Register Map, each sprite has its
own color register. Register numbers 39-46 are used for this purpose. Register
39 holds the color for sprite 0, register 40 for sprite 1, and so on with register 46
holding the color for sprite 7.

When you see your sprite on the screen, the dots are displayed in the color
contained in the color register. The rest of the sprite is transparent and shows
whatever color is behind the sprite.

If you wanted to change the color of sprite 2 to light green (code number 13),
simply POKE the color code in the sprite’s color register as follows:

POKEV +41,13

81

POSITIONING SPRITES

Now you've made a sprite, you want it to appear and move around the screen.
To do this your COMMODORE 64 uses three positioning registers:

a) Sprite X Positioning Register
b) Sprite Y Positioning Register
c) Most Significant X Position Register.

The X and Y Position Registers work together to pinpoint where your sprite
appears on the screen. The X Position Register positions the sprite in the
horizontal direction and the Y Position Register positions the sprite in the vertical
direction. On the VIC Il chip register map notice that registers 0-15 are used for
the X and Y co-ordinates. The registers are arranged in pairs as fol'nws:

Register 0 holds the X co-ordinate for sprite 0
Register 1 holds the Y co-ordinate for sprite 0
Register 2 holds the X co-ordinate for sprite 1

Register 3 holds the Y co-ordinate for sprite 1.

This pattern is repeated with Registers 14 and 15 holding the X and Y co-
ordinates for sprite 7. There is a further register (16) which we shall discuss later.

You can position your sprite by simply POKEing values into the appropriate
registers. You need both X and Y co-ordinates to position your sprite. Calculate
all positions from the TOP LEFT of your sprite area. It does not matter how many
dots you fill up in the 24 x 21 dots area allocated to your sprite design. The
position is still calculated from the top left corner.

If you look at the balloon program once again, statement numbers 30-70 use a
FOR....NEXT loop to move the balloon diagonally across the screen from leftto
right. These statements increment the values of the X and Y co-ordinates by
POKEing the positions into registers 4 and 5, the registers for sprite 2, until both
values reach 200. Line 70 then runs the program again.

You may have noticed that when the program was running, the balloon did not
move to the far right hand side of the screen. Positioning in the horizontal
direction is difficult since you need 320 locations and you therefore need an
additional bit, which will then give you up to 512 positions. If you do not
understand how we arrived at this figure, think of an extra bit being added to the
left hand side of abyte. This would be the equivalent of 2 raised to the power of 8.

The extra bits for all sprites are stored in the Most Significant Bit Register
(MSB), register 16. Bits 0-7 of this register correspond to sprites 0-7 respectively.
If you are not using positions greater than 255, the corresponding extra bit
position must be turned off, i.e. it must contain a value of zero.

82

Here’s how the MSB works: after you've moved the sprite to X location 255,
POKE the sprite's decimal value into register 16. For example, to move sprite 6
to horizontal locations 256 through 320, use this statement:

POKE V + 16,64
Then use a loop to move sprite 6 the 64 spaces from location 256 to 320:
FOR X = 010 63: POKE V + 12,X: NEXT

The following program revises the original balloon program so that sprite 2
moves all the way across the screen:

10 V=53248: POKE V + 21,4 : POKE 2042,13
20 FORN = 0 TO 62 : READ Q : POKE 832 + N,Q : NEXT
25 POKE V+5, 100

30 FOR X = 0TO 255

40 POKE V+4X

50 NEXT

60 POKE V+ 164

70 FORX = 0TO 63

80 POKE V+4, X

90 NEXT

100 POKE V + 16,0

110 GOTO 30

Line 60 sets the most significant bit for sprite 2.

Lines 70 through 90 contain the loop that moves sprite 2 across screen loca-
tions 256 through 320.

Line 100 turns OFF the MSB so that sprite 2 can go back to the left edge of
the screen. In other words, when the MSB is ON, the sprite can only move from
locations 256 through 320. You have to turn the MSB back OFF before you can
move the sprite from locations 0 through 255.

Note that the program we used for turning on individual sprites can also be
used to set a specific MSB. The complementary statement which will turn OFF a
specific bit is:

POKE V+21, PEEK(V+21) AND (255—(27SN))
where SN is the number of the sprite you wish to move.

EXPANDED SPRITES

You can increase the size of each dot of the sprite so that the sprite is twice as
wide, twice as deep or expanded in both directions at once.
There are two EXPAND registers:

Register 23 doubles the width of the sprite
Register 29 doubles the height of the sprite.

The method for expanding sprites is the same as that used when enabling
them, e.g. to expand a specific sprite in the X direction only, use the following
statement:

POKE V+23, PEEK (V+23) OR 2t SN
where SN is the number of the sprite you wish to expand.

83

The same applies when doubling the height of a sprite except that this time you
use V+29.
Try adding the following line to the original balloon program:

POKE V + 23,4: POKE V + 29,4: REM EXPAND SPRITE

When you type “RUN”, the balloon has now doubled in size. This is
because you POKEd the decimal value for sprite 2 (272) into register 23 which
doubles the height of the balloon, and into register 28 which doubles the
width of the balloon.

CREATING MORE THAN ONE SPRITE

Itis a simple operation to create and store more sprites. Instructions on how to
do this are given earlier in this chapter. To add sprite 3 to your screen, include the
following lines in the original balloon program:

11 POKEV + 21,12

12 POKE 2042,13: POKE 2043,13
30 FORX =1TO 190

45 POKEV + 6,X

55 POKEV + 7,190 — X

Line 11 turns ON sprites 2 and 3 by POKEing their combined decimal values
(4 and 8) into the sprite enable register (21).

Line 12 tells the computer to find the data for the sprites in block 255 of the VIC
I chip memory. Recall that 2042 is sprite 2's pointer and 2043 is the pointer for
sprite 3.

Lines 45 and 55 move sprite 3 around the screen by changing the values of the
X and Y co-ordinate registers of that sprite (V + 6 and V + 7).

When you RUN the program, you will see two balloons moving around the
screen. This is because we POKEd the same address into both sprite pointers.

The following lines put sprite 4 on the screen too:

11 POKEV + 21,28

12 POKE 2042,13:POKE 2043,13:POKE 2044,13
25 POKEV + 23,12: POKE V + 29,12

48 POKEV + 8,X

58 POKEV + 9,100

Line 11 turns ON sprites 2,3 and 4 by POKEing their combined decimal values
(4, 8 and 16) into the sprite enable register (21).

Line 12 tells the computer to find the data for all three sprites in block 255 of
memory.

Line 25 doubles the size of sprites 2 and 3 by POKEing their combined value
into the registers that control height and width expansion (23 and 29).

Line 48 moves sprite 4 halfway along the X axis (horizontally).

Line 58 positions sprite 4 halfway down the screen at location 100. Previously,
the Y co-ordinate has been changed in the program by the use of a FOR . . . NEXT
loop. (See line 50 in the original progra.) But now the value for the Y co-ordinate
for sprite 4 (V + 9) stays the same during the program. This means that sprite 4
only moves horizontally.

84

SPRITE PRIORITIES

If you are using more than one sprite you may wish to make sprites cross over
each other on the screen. Sprite to sprite priority is preset. Sprites having the
lowest numbers have the highest priority, i.e. sprite 0 has the highest priority,
then sprite 1, sprite 2, etc. Sprite 7 has the lowest priority. Sprites with higher
priorities appear in front of sprites with lower priorities.

Sprite to background priority is controlled by the SPRITE BACKGROUND
PRIORITY register, register 27. Bits 0-7 in this register correspond to sprites 0-7.
These bits are normally set OFF (equal to zero) which means that the sprites
have a higher priority than the background, i.e. they pass OVER any data on the
screen. If you wish to switch this priority for any sprite(s) you must turn ON the
relevant bit(s). For example, the statement:

POKE V + 27,8
makes sprite 3 appearbehindthe characters that are on the screen.

TURNING SPRITES OFF

You can make a sprite disappear by setting the relevant bit in the SPRITE
ENABLE register (21) OFF. Do this using the following statement:

POKEV + 21, PEEK (V + 21) AND (255 — 24SN)
where SN is the number of the sprite you wish to turn off.

Boolean Operators

This instruction in the previous example uses what is known as a LOGICAL
OPERATOR, sometimes known as a BOOLEAN OPERATOR. In that example,
the AND was the logical operator. It is used to modify the first of two elements in
the statement, i.e. register 21.1t logically compares each corresponding bit of the
result of the PEEK statement according to the following rules:

1AND 1 =1
0OAND1=0
1ANDO=0
0OANDO =0

This is known as a TRUTH TABLE. As you can see, the bit being compared is
set OFF unless both bits contain 1. You can apply the above statement to set
OFF bits in any register for any sprite number. For example, you could have used
the same instruction to reduce the size of a sprite by simply substituting either
register 23 or 29. Let us see what happens when we turn off sprite 3.

Before the instruction is executed, register 21 contains 00001000. The result
ofthe expression after the PEEK statementis: 255 — 243 (8) =2470r 11110111,
i.e. after the instruction has been executed, register 21 contains zero. If other
sprites had been ON, they would remain in the same state since both bits would
have contained 1.

85

Thie other Boolean operator we have used is OR. The truth table for this

operator is as follows:

Il

1 OR1
OOR1
10RO
OORO=0

If either bit is set, the corresponding resulit bit will also be set.
This chapter has only been an introduction to sprites. Try experimenting

yourself with the design and animation of your own sprites. Further details about
sprite handling can be found in the COMMODORE 64 Programmers' Reference

Guide.

1
1
1

86

T

o
T
Ummomﬂ
,DOJMNMMM
WJM1MNOY
wmmmﬂuﬁt
Mh)((&h%
N)((tEHW
00%&%9)(S
%.p,mmmuw 280352
fHOM)bwm .;mﬁhﬂr
mwu%mmmm mﬂhmMWOUkF
momwmmmm State ,mmmmmwmmwmwmi
wmmwmwuu‘ rnoumummwmnmmmmmmmo&;
anO(umm <mmmmwmmumwmmouwsaomn
MUC{WH)N }(DDMMMMKOOUCEPMODLOMM4!
DECS k Sa32 =0 O EH)(D)(WN e
Mmmmw, j=is) mwmwmmmocm&mmoxuowmmmmmm<§
Hoxnum 4 ummnhm(tFRwonDnmmammooagwmo(mA
mmmmwmmm) mmmmonummwmmmmwmmmoucf.momwma
£O= ﬂmmmmmmmufrmwi mmu<mww00%mmmmmmoumwwmwmeAmm
MMMMO ¢ MﬂMWOUCHMWUMMmer U&k%ﬁommOMMMMhUUKMWOONDWMMMhO
s 3 Ow 4N>(;LFR)(D)(4MP XL R)OD)(M 4A\OC =y DN01R4,O
S=09 FEPYES A)((LER)(H)M1K1K Pm)(D)(M MkOLCEEP(JD)(ﬁN4mOCL
OO Owic \KLEER)(O\MKM4K1)((D)(A4M OiCERWODMOMMMMW{CEE
CKEROODO4 Y(ERW)LD»Mh«NWO\, XD®\KMMNOOC(FRJ@D)(4N4thLERR
CERR0wDOMAMM) ,mmmmxmnomnmmmt(mr norum4hocuemQonMWMMMNOwc&R>0
momommMmmmoamon?ommmm,u&;np «mwmmm_ocﬁmomﬁmm«mmomcuwwumm
DDOOM MOOCCERRODXO(Mmmmncs%Rwum mmnmmnummoxomo«nmmowc,Enoymow
[} = MOCCEEROOWOKMM%N)((LR%UXU)LR K)OwLkR)(DHOﬂMWM»OCHE%WUJK(MK
OMMMMOCEERHO DOﬂN MW(((%R)[1M4N)<(LFR)KDO(N4N(CEHR)D)(N1M
= = SO) D)4hﬂM)‘(E}O)yM 4N4K(;(ER)({(= N)((ER))(D O 238
s OCERHOODDO(kMNLL&RJNkRHO))MAMM)PPO)JO(
MMOOCEROODD)OMMM)OC(ERH())(MMMJAL»MR)ODO4 MNOOCCERODDHOMAMKO O
O OLE® DOOrM4MO(CEFR)U)xM&k1AM(ER»OMD OWNMOO‘CEEROU 0(4&4NOCHF
iAo 5= MM«N _L&Rﬂ»(@numumm>(niwsxm‘>OMNMO cc&amoo>mﬂmmmmmnfRn
CEEROODOAM NOOLPR OLD)(N1N1((Eq)(L)OMMﬂM)\CE&R)L) MMhAN)tLER s
RMODDONNMMWOC%%MOMD)mnmmcahJWNNNW)LtMRR(DL(ommnuLND
[} DOOM&MOOCCERO D)OMMN)(L&&Rx>4MN4MOLCFHWOMD»<th>0((fﬂ:0D)>7
DDO MMNOCCEERO DO(MN4K\\LERPO))MN%MMOKLER)(DOMMﬂwﬂ(er)O))(nh
OOMMM OLEERRODDOMMANWOHRR3meh>LHEP()moor4b<CLk%r))»(M
== MOOCERROODOCM MNO(LHRQ)U»1NNM)\CCERROD>(4MMMm)(ER?Y)DJOﬂm1h«
WMWOCKNMOWDWOMMMWQMQHMWMD(MNANA(LRMROJ[MNWMMLHRmemmmnnm
o3> OOCR%WODDOONMMMOCRE%HO)DmnmmcfﬁmmDOMMA)(KFRwDDOJN(LC&M
MMOCCRERODDOOMMMNOLwtRnLXDwhnmRLMAOLLE&RR)OOMNOH
OCEERROD o= = OCERRO(DMQMMMAOLkuFR()WQOMM4NOCEEPR0(D04N MmothRocx
ERROOD OMAMMOOCEROODDO(MNM)OLCERW>)(4M MNOCERR)ODDO4MMM)OCH&RQJDN
ODDOOMMOOCCERODDOOMmc(ERFJ(NA4M)0(ER((X)(ONNNOCuPHR))on
DOOMMMOOCKE%HODOOMMNNMOCEMW)))ANNMO(u&RDDOMMnmLMRL))NN
oSz 2200s SE252 92323 CER)(MDOMM4AOXTC&RROD)O M1mm(c&&n)xDM<M4MN»
MMMOCEERRO 1s) =2 OCCFRO(D>O1N4AO~L(FH)ODOMﬁ 4N)CCERWO(L S22 =
b= OCERROODDO b3 OOCEERODD0(4N1N((HEMRQ(D04AMMNO<CERQ(QDOMM4naOC(
fobt mommERomDWOOMWMowcmMRWODOWMNMNMmaWOJ>DOanmowc%MWMDDOJNNNNLLtsr
MMMOOCCERRODOOMMWMOOCEMROODDWM4 MOOCNMOUMDMOMMMO((CEMWOWOOMMMMMOUEWRWU
ocmE%ROODO4M = ocmMROODDO(mMNO(CKERo>>0MM4N0CLMR((J(MNNMNOOLERQ)D
ERROODDOMAMMOOCEROODDOOMMMOOCL&RROQ)OMM MmuLFWROODWO«4MN)O@C&ROJDM0
ot DOOMMMOO fSf3S] 252 = MOCCF&RJUDV«M 4MO(«ER O)DonmmmoowCPMROU[omm
5882 b= OCCKERODDO MM4M)L&ERWOD)(NﬂMAOC(&ROO))OAMﬂNOCHER»O)Oth
OOMMM OCEERROD OMM MNOOERWO(DDOWMMMO(CEHRODDO(MNMNOC&FRH)))UﬂknMm
MM MOOCERROODOOMAMMOOCFRO(DDO(M M)TC(ERFODOO4M M)OCERR)O)XOMNMK)(
MMwwcmﬁmomomomwmoomcmﬁmoomoommeocanmomm(mwmmwccmnomD>nmnm)mgc
o O = oS = ¢ et
OmCEﬁmmDwOOMMMO&CKMRWOD%OMMMMMOCuRWOMDWOMWMoowCKMRODDOONNMNOL&MPR
LaoS] MMMMOCEER x352 MMN)OCCERODD =Q= AOCCEPROODOMMNdM)(LPROOM
s = OCERROOD)OMMM OXCEEHOD OOMMMMO(EERRODDOMNMMNOUCERO)):
MMOOCEROODDO(M MOOCLERRODOOMM s OCFRROO) OMﬂM OOLEEROD[NO
OLKERODDOOMMMOCKEWRONDOMMMMMO@CERODDOOMﬂNOOCCERWUDOK4A
RODOOMM MMOCERROODOOM4M)OOCFMRODDOOMMMWOCKENWOMWOMNNM
MMMMOCCEROODWO MMAOMCHFR)WDOOMMMMOMKERROXDO(M4MMO
owCEWMODWO(MMMomCEFRmOX)OMM1MOOLFRWOOD>OAWMMOO(
SZESSS MMMMOCEERRomDm<MMMNOCCERO DmO(Mmmoncmk
o2 = OCfRRQOD < MMOOCEERODDO(MM4N0C&E?R
MMOOCEROODD)OMMMOOCCERROD)OMM MmULERRQO
onael a O(M S0 JoaE [o]a) o= = LCFR)O o
& (DJOﬂM = oLw e e)a) oS £= o0 [idela) =
ODO(MN4MOOCERROOD[OMﬂMPOOCEEm<D 2
= 220« ong 532 ote O‘,CERR(D)OKM
= o0 o la} o = 500 =
= OC(ERO 282 = =0 CEER)ODO(NKﬂ
OCFWRODWOWMWMWOCK%RMOMW@MWMMW
, ODOMM MNOCHMROODDOMNNNOUU
MMOOCEROODDOOM MOOCLE
2628 280 22 502&E
\ERRODOO = M)OCFExﬂ
ODOﬁMMMM)YCERWOX
1NMM>OU OFE=SC
O(CPERO)D>0
CER%%D&MWM
82252
28
Q

D
O
M
M
0]
©
E
R
9]
D
0O
M
M
(0]
@
E
R
9}

CHAPTER 8

MAKING SOUND AND MUSIC
The SID Chip
Sample Sound Program

Creating Sound Effects

°
°
® Playing a Song on Your 64
°
® Filtering

°

Music Composer

Your COMMODORE 64 computer is equipped with one of the most sophisticated
electronic music synthesizers available on any computer. This chapter is an
introduction to using your computer’s sound chip, the SID chip. The main
features that the SID chip provides are:

a) Volume control

b) Multiple voices

c) Waveform

d) Frequency

e) Envelope generator (attack, decay, sustain, release)

THE SID CHIP

The SID (Sound Interface Device) chip contains 29 8-bit registers, numbered
0-28, each of which is responsible for a certain component of sound generation.
In this chapter, you will only be concerned with the first 25 registers. These are
stored between locations 54272 to 54296 inclusive.

Here is a summary of the SID register map:

REGISTER Nos. DESCRIPTION

0-6 VOICE 1

7-13 VOICE 2

14-20 VOICE 3

21 LOW FREQUENCY

22 HIGH FREQUENCY

24 VOLUME CONTROL AND FILTERS

Before we go on to discuss how sounds are created, type in the following
program and then RUN it. This will demonstrate just a little of what may be
achieved by the SID chip.

88

EXAMPLE PROGRAM 1

5 S=54272

10 FORL=S TO S+24:POKE L,0:NEXT:REM CLEAR SOUND CHIP
20 POKE S+5,9:POKE S+6,0

30 POKE S+24,15:REM SET MAXIMUM VOLUME LEVEL
40 READ HF,LF,.DR

50 IFHF<OTHENEND

60 POKE S+1,HF:POKE S,LF

70 POKES+4,33

80 FORT=1TODRINEXT

90 POKE S+4,32:FORT=1 TO 50:NEXT

100 GOTO40

110 DATA 25,177,250,28,214,250

120 DATA 25,177,250,25,177,250

130 DATA25,177,125,28,214,125

140 DATA 32,94,750,25,177,250

150 DATA 28,214,250,19,63,250

160 DATA 19,63,250,19,63,250

170 DATA 21,154,63,24,63,63

180 DATA 25,177,250,24,63,125

190 DATA 19,63,250,—1,—1,—1

Line 5 stores the start location of the SID chip in S. All other registers are
accessed by simply adding their number to S.
Volume Control

Your COMMODORE 64 has 16 volume levels, numbered from 0 (off) to 15
(maximum volume). Register 24 in the SID chip controls the volume level. To set
the volume, you simply POKE the value you want into this register. Line 30 in the
example program sets the maximum volume level (15).

Youwould normally only setthe volume atthe beginning of your program. Note
that the volume level determines the output from all three of your 64’s voices.

Voices
Your COMMODORE 64 has three voices, which may be played separately or
simuitaneously. The register map for each voice is shown below:
REGISTER NUMBERS
VOICE1 VOICE2 VOICE3 DESCRIPTION

0 7 14 LOW FREQUENCY VALUES

1 8 15 HIGH FREQUENCY VALUES

2 9 16 LOW PULSE WIDTH

3 10 17 HIGH PULSE WIDTH

4 11 18 CONTROL REGISTER

5 12 19 ATTACK/DECAY SETTINGS

6 13 20 SUSTAIN/RELEASE SETTINGS

89

Frequency

Sound is created by the movement of air. Think of throwing a stone into a pool
and seeing the waves radiate outward. When similar waves are created in air, we
hear a sound. Every sound produced on your 64 is made up from a high and low
frequency value. Each of the three voices has two registers in which the
frequency values are stored. The two values in each voice are combined to form
the frequency value in 16 bit form.

A chart showing the memory locations for each voice’s high and low frequency
registers is shown below:

VOICE FREQUENCY POKE NUMBER
1 HIGH 54273
1 LOW 54272
2 HIGH 54280
2 Low 54279
3 HIGH 54287
3 LOW 54286

To play a musical note or sound, you must POKE the sound’s high frequency
value into the high frequency location of the voice you want, and POKE the
note’s low frequency value into the voice’s low frequency location. Line 60 in the
example program POKESs the high and low frequencies from the data statements
into registers 1 and O respectively. This sets the frequency for voice 1.

Creating Other Frequencies

To create a frequency other than those listed in the note table, use the
following formula:

F = FYOUT /.06097

where FYOUT is the frequency you require.

Tocreate the high and low frequency values for the note, you must firstmake F
into an integer, i.e. delete any numbers to the right of the decimal point.

Now use this formula to calculate the high frequency location:

HI = INT(F/256),
and the following formula to give you the low frequency location:
LO =F — (256 * Hl)

Then to obtain the note, simply POKE the value for LO into the low frequency
register and the value for Hl into the high frequency register of the voice from
which you wish to output the sound.

90

Waveforms

The type of waveform you select determines the timbre or quality of the sound
produced.
There are four types of waveforms:

Triangle. This waveform contains few harmonics and a mellow flute-like sound.
The shape of the triangle waveform looks like this:

Triangular:

Sawtooth. This waveform contains all the harmonics. It has a bright, brassy
quality. Here is what the sawtooth waveform looks like:

Sawtooth:

91

Variable pulse wave. This waveform contains variable rectangular waves.
Changing the pulse width makes sounds ranging from abright, hollow noise to a
nasal, reedy pulse. Here’s what it looks like:

Pulse (variable rectangular waves):

f=— PULSE WIDTH —=

White noise. This waveform is used mainly for sound effects (e.g. explosions,
gunshots, surf) and ranges from a low rumbling to hissing. it looks like this:

White noise (used mainly for sound effects):

The waveform for each voice is held in three control registers. These are
numbered 4, 11 and 18. The component parts of the control register for each
voice are as follows:

92

BIT Nos. DESCRIPTION

GATE
-3 UNUSED
TRIANGLE WAVEFORM
SAWTOOTH WAVEFORM
PULSE WAVEFORM
NOISE WAVEFORM \

NO O~ 20O

The GATE bit controls the Envelope Generator. When this bit is set to 1, it
triggers the Envelope Generator and the ATTACK/DECAY/SUSTAIN cycle
begins. When the bitis reset to zero, the RELEASE cycle begins. Setting bits 4, 5
or 6 to 1 selects that particular waveform.

Line 70 in the program sets the output of the sound for voice 1 using a
Sawtooth waveform. This line also sets the GATE bit.

You can set combinations of these bits, i.e. Pulse and Sawtooth, but this will
produce pretty weird sounds!

The Envelope Generator

The volume of a musical note changes from the moment you first hear it until it
dies out and you can’t hear it any more. When a note is first struck, it rises from
zero volume to its peak volume. The rate at which this happens is called the
ATTACK. It then falls from the peak to a mid-range volume level. The rate at
which this occurs is called the DECAY. The mid-range volume is called the
SUSTAIN level. When the note stops playing, it falls from the SUSTAIN level to
zerovolume. The rate at which it falls is called the RELEASE. The following is an
illustration of the four phases of a note:

NOTE: ATTACK, DECAY and RELEASE are RATES. SUSTAIN is a LEVEL.

Each of the cycles above give certain qualities and restrictions to the shape, or
ENVELOPE of a sound. These bounds are collectively called parameters. The
ATTACK/DECAY/SUSTAIN/RELEASE parameters are collectively called ADSR.

There are two registers used for the ADSR parameters for each of the three
voices. These are 5 and 6 for voice 1, 12 and 13 for voice 2 and 19 and 20 for
voice 3. The ATTACK and DECAY parameters share the first of each pair of
registers (5, 12, 19) while the SUSTAIN and RELEASE parameters use registers
6, 13 and 20.

93

-

These pairings are used because the settings only require 4 bits or half a byte.
This amount of storage is called a NYBBLE. The first four bits of a byte are called
the HIGH NYBBLE and the last four bits are called the LOW NYBBLE. The
ATTACK settings for the three voices are stored in the high nybbles of registers
5, 12 and 19, while the DECAY settings are stored in the low nybbles of these
registers. The SUSTAIN settings for the three voices use the high nybbles in
registers 6, 13 and 20, while the RELEASE settings use the low nybbles in the
same registers.

Before POKEing any value into the ADSR registers you must firstcombine the
high and low nybbles by adding them together. For example, the ATTACK rates
occupy the 217, 216, 2{5, and 214 bits, so the values are 128, 64, 32 and 16.
DECAY rates use the 213, 212, 271 and 270 bits, or 8, 4, 2 and 1. Suppose you
want to set a high ATTACK value (12) and a low DECAY value (2). An easy way to
combine the two rates is to multiply the ATTACK value by 16 and add it to the
DECAY value. In this example, the resulting value is 194, i.e. 1216 +2. You can
use this formula whenever you wish to combine two values (range 0-15) into a
high/low nybble format.

Line 20 in the example program sets the ATTACK/DECAY rate to 0 ATTACK
and 9 DECAY.

The maximum ATTACK rate is achieved by using a value of 15 and multiplying
it by 16. You can increase the DECAY rate by adding together all the DECAY
values i.e. 8 + 4 + 2 + 1 = 15, which is the MAXIMUM DECAY RATE.

Here are some sample ATTACK/DECAY POKEs:

VOICE ATTACK DECAY
POKE 54277,66 1 MED (64) LOW (2)
POKE 54284,100 2 MED (64) +
LOW (32) MED (4)
POKE 54291,15 3 ZERO MAX
B8+4+2+1)
POKE 54284,255 2 MAX MAX
(128+64+32+16 | +8+4+2+1)

94

Here’s a sample program that illustrates what you can do with attack/decay
settings:

10 FORL = 54272T054296:POKEL,0:NEXT... Clears the SID chip

20 POKES54296,15... e .. Set maximum volume

30 POKESA4277,64........c..ovveeeeieeeeceeeeieceeeeeenes Set attack/decay

40 POKES54273,162:POKE54272,37 POKE one note in voice 1
50 PRINT“PRESS ANY KEY”coovviiiiiieins Screen message

60 GETKS$:IFK$ = “"THENGEO Check the keyboard

70 POKE54276,17:FORT = 1TO200:NEXT..... Start triangle waveform
80 POKES54276,16:FORT = 1TO50:NEXT Stop note
90 GOTOS50.....ceevtirerierieeeree et Repeat execution

After you RUN the program a few times, try changing the ATTACK/IDECAY
setting by changing line 30:

30 POKE 54277,190

Now RUN the program again and notice the difference in the note. Try other
combinations of attack and decay settings to get an idea of how you can use
different attack/decay rates to create a variety of sound effects.

SUSTAIN/RELEASE SETTING. Like ATTACK/DECAY, SUSTAIN/RELEASE
share a byte. But remember that this sharing doesn’t mean that SUSTAIN and
RELEASE are alike. SUSTAIN is a LEVEL, while release, attack and decay are
RATES.

SUSTAIN is a proportion of maximum volume. You can sustain, or hold,
notes and sounds at any of 16 volume levels.

This table shows you what numbers to POKE for sustain/release values:

HIGH MEDIUM LOw LOWEST | HIGH MED. Low LOWEST
SUSTAIN | SUSTAIN | SUSTAIN [SUSTAIN |RELEASE |RELEASE | RELEASE | RELEASE]
128 64 32 16 8 4 2 1

NOTE: You can increase the SUSTAIN level by adding together all the SUSTAIN
values: 128 + 64 + 32 + 16 = 240, which is the MAXIMUM SUSTAIN LEVEL. A
SUSTAIN level of 128 is approximately 50% of volume. You can increase the
RELEASE rate by adding together all the RELEASE values: 8 + 4 + 2 + 1 =
15, which is the MAXIMUM RELEASE RATE.

Combine the sustain level and release rate the same way you combine the at-
tack and decay rates: add the two values and POKE the total to the memory
location of the voice you want.

To see the effects of the sustain level setting add this line to the last sample
program:

35 POKE 54278,128

Now RUN the program again and note the change. With line 35, we tell the
computer to sustain the note at a HIGH SUSTAIN LEVEL (128). You can vary the
duration of a note by changing the count in line 70. Remember that the sustain
level maintains a note at a proportion of the volume as the note falls from its
peak volume; this isn’t the same thing as the note’s duration.

To see the effect of the release rate, try changing line 35 to POKE 54278,89
(sustain = 80, release = 9).

95

SAMPLE SOUND PROGRAM

This brief sound program summarizes what you've learned so far about mak-
ing music on your 64:
1. Choose the voice(s) you want to use. Recall that each voice uses different

memory locations into which you’ll POKE values for waveform, attack rate,
etc. You can play 1, 2, or 3 voice together, but this program only uses voice 1.

2. Clear the SID chip: 5 FORL =54272 TO 54296: POKEL,0:NEXT
3. Set VOLUME: 10 POKE54296,15
4. Set ATTACK/DECAY rates:

to define how fast a note rises

to and falls from its peak

volume level (0-255): 20 POKE54277,190
5. Set SUSTAIN/RELEASE to

define level to hold note and

rate to release it: 30 POKE54278,248
6. Find note you want to play in

the TABLE OF MUSICAL

NOTES in App. M and enter

the HIGH-FREQ. and LOW-

FREQ. values for that note

(each note requires 2 POKEs): 40 POKE54273,16:POKE54272,195
7. Start WAVEFORM (here,

TRIANGLE): 50 POKES4276,17
8. Enter a timing loop to time be-

tween notes (we use 250 for a

quarter note): 60 FORT = 1TO250:NEXT
9. STOP note by turning off
chosen waveform: 70 POKES54276,16

Here's a longer program that further demonstrates your 64’s music-making
abilities:
NEW

5 REM MUSICAL SCALE...........ccccecvvuenen.
7 FORL = 54272T054296:POKEL,0:NEXT clears SID chip

10 POKE 54296,15ovvieeieeiieeeiieeens sets volume

20 POKES54277,7:POKE54278,133 sets a/d/sir

S0READA......oo o READs 1st number from line 110

55IFA= —1THENENDccocce.... ENDs loop

BOREADB ... READs 2nd number

80 POKES54273 A:POKE542728B................ POKEs 1st number from line 110 as
HI-FREQ and 2nd number as LOW-
FREQ.

85 POKES4276,17ooooveeeeeeeeeeeeee, starts note

90 FORT = 1TO250:NEXT:POKES54276,16 lets note play, then stops it

95 FORT = 1TOS0:NEXTovvvvveiiiveeee, sets time for RELEASE, time be-
tween notes

100 GOTO20cveeieceeceeeee e restarts program

110 DATA 16,195,18,209,21,31,22,96 lists note value

120 DATA 25,30,28,49,31,165,33,135 from chart in App. M. Each part of
numbers = one note (16 and 19 =
4th octave C)

999 DATA-T .o ENDs program (see line 55)

You can change to a sawtooth wave by changing line 85 to read
POKE54276,33 and line 90 to read FORT=1TO250:NEXT:POKE54276,32.
Changing the waveform can dramatically change the sound your computer
produces.

You can also change the sound in other ways. For example, you can change
the harpsichord-like sound in the previous program to a banjo-like sound by
changing the ATTACK/DECAY rate of each note. Do this by changing line 20 to
read:

20 POKES54277,3:POKE54278,0 creates banjo effect by setting zero
SUSTAIN

As this program demonstrates, your 64 can sound like a variety of musicat in-
struments.

97

PLAYING A SONG ON YOUR 64

The next program lets you play a line from a song, “Michael Row Your Boat
Ashore”. The program uses the PULSE waveform, which is a variable width rec-
tangular wave. The third and fourth POKEs in line 10 define the pulse width for
this song.

In this song, we use a duration count of 125 for an eighth note, 250 for a
quarter note, 375 for a dotted quarter note, 500 for a half note, and 1000 for a
whole note. When you program your own songs, you can increase or decrease
these numbers to match a particular tempo or your own musical taste.

2 FORL =54272T054296: POKEL,0: NEXT

5 S=154272

10 POKES + 24,15: POKES + 5,88: POKES + 3,15: POKES + 2,15: POKES + 6,89
20 READH: IFH= — 1TTHENEND

30 READL

40 READD

60 POKES + 1,H: POKES,L: POKES + 4,65

70 FORT = 1TOD: NEXT: POKES + 4,64

80 FORT = 1TO50: NEXT

90 GOTO 20

100 DATA33,135,250,42,62,250,50,60,250,42,62,125,50,60,250
105 DATAS56,99,250

110 DATA50,60,500,0,0,125,42,62,250,50,60,250,56,99

115 DATA1000,50,60,500

120 DATA -1

Line 2 clears the SID chip.

Line 5 assigns the lowest SID chip memory location to the variable S.
Throughout the rest of the program, we just add the number of the SID register
to this variable. For example, POKES + 24,15 POKEs 15 to the volume register,
which is 54296, or 54272 + 24.

Line 10 POKEs values into:

1. The volume register: POKES + 24,15

2. Voice 1, ATTACK/DELAY rates: POKES + 5,88

3. Pulse width: POKES + 3,15 and POKES + 2,15

4. Voice 1, SUSTAIN level/lRELEASE rate: POKES + 6,89

Line 20 READs the first number from the DATA statement. If that number is

— 1, the program ENDs automatically. This occurs when the final DATA state-

ment (line 120) is read.

Line 30 READs the second number from the DATA list.
Line 40 READs the third number from the DATA list.
Line 60 POKEs:

1. The value for H that was assigned in the READH statement in line 20. Until
—1 is read, this value is assigned to the HIGH FREQUENCY register.

2. The value for L that was assigned in the READL statement in line 30. This
value is assigned to the LOW FREQUENCY register. Together these two
POKEs determine the pitch for one note.

3. The value that turns ON the variable pulse waveform for voice 1.

98

Line 70 uses a loop to set the duration for the note being played. The value
for D is assigned in the READ statement in line 40. As you can see, the numbers
in the DATA lists are clustered into threes: the first number (e.g., 35) is the high
frequency value for a note, the second number (e.g., 1395) is the low frequency
value for the same note, and the third number (e.g., 250) sets the duration for
that note (e.g., a quarter note C).

Line 80 is a timing loop that determines release time between notes.

Line 90 sends the program back to READ the number set for another note.

Lines 100 through 120 contain all the DATA for the line from this song.

CREATING SOUND EFFECTS

Your 64’s SID chip lets you create a wide variety of sound effects, such as an
explosion during a game, or a buzzer that warns you when you've made a
mistake.

Here are just a few suggestions for creating sound effects:

1. Vary rapidly between two notes to create a tremor sound.

2. Use the multivcice effects to play more than one voice at a time, with each
voice independently controlled, so you have different noises at once. Or use
one voice as an echo or response to another voice.

3. Use the different pulse widths to create different sounds.

4. Use the NOISE WAVEFORM to make white noise to accent tonal sound ef-
fects, create explosion noises, gunshots, footsteps, or alarms. When you
use the noise waveform with the same musical notes that create music, you
can create different types of white noise.

5. Combine several HIGH/LOW FREQUENCIES in rapid succession across dif-
ferent octaves.

6. Try POKEing the extra note settings in Appendix M.

Here are some sample sound effects programs. The Commodore 64 Pro-
grammer’s Reference Guide contains more examples as well as more informa-
tion on creating sound effects.

DOLL CRYING

NEW
5 FORL = 54272T054296:POKEL ,0:NEXT..... Clears SID chip
10 S =54272:POKE 54275,15:POKE 54274,40

20POKES+24,15 ..o Sets volume

B0POKES+4,65......ccccivieiiiiiiieiieee Turns ON pulse waveform in
voice 1

40POKES + 5,15 ..ot Sets attack/decay rate

50 FORX = 200TOSSTEP - 2coceeveiivr e Sets timing loop for RELEASE or
time between notes

60 POKES + 1,40:POKES X:NEXT Sets hi/lo frequencies

70 FORX = 150TOSSTEP — 2cocviiree Sets faster timing loop

80 POKES + 1,40:POKES X:NEXT Sets hi/lo frequencies

9OPOKES +4,0 ..o Turns OFF pulse waveform

99

SHOOTING

NEW
5 FORL = 54272T054296:POKEL,0:NEXT..... Clears SID chip
10 S=54272

20 FORX=15TOOSTEP — 1ccc0evevierecrirens Sets up volume loop
BOPOKES + 24Xovvviieeiiieeeeeeieieee e POKEs X to vol. register.
Q0 POKES + 4,129 ..., Starts NOISE waveform
50 POKES + 5,15 ..o Sets ATTACK/DECAY rate
60 POKES + 1,40cooiiiiiiiiieneccenceeeee Sets high frequency

70 POKES,200:NEXTccovevierieiinienensienes Sets low frequency

80 POKES + 4,128c.ovvvveeivieieee e Stops NOISE waveform
GO POKES+ 5,0 ..ccciiiiiiiiieieciiiee e POKEs 0 to attack/decay
100 GOTO20.....cicieceeeeee e Repeats program

The loop that begins in line 20 sets up fading volume so that the sound of the
gunshot starts at high volume (15) and fades to 0 as the loops executes.

Press the RUN/STOP key to end this program.

As we've said before, the best way to learn a new area of programming is to
experiment.

Filtering

Sometimes a certain waveform may not have quite the timbre you require. For
example, it would be difficult to imagine any of the preset waveforms in the SID
chip sounding anything like a trumpet. To give you additional control over the
sound parameters, the SID chip is equipped with three FILTERS.

HIGH-PASS FILTER. This filter reduces the level of frequencies below the
specified cutoff frequency. It passes all the frequencies at or above the cutoff,
while cutting down the frequencies below the cutoff.

LOW-PASS FILTER. As its name implies, this filter passes the frequencies
below the cutoff and reduces the level of those above.

BAND-PASS FILTER. This filter passes a narrow band of frequencies around
the cutoff and cuts down the level of all others.

An extra filter, called the NOTCH REJECT FILTER can be synthesized by
combining the high and low pass filters. This passes frequencies away from the
cutoff while reducing the level at the cutoff frequency.

Register 24 determines which filter type you want to use. Remember that this
is also the register used for the volume control. The following bits are used for
filters:

BIT No. USAGE

4 SELECT LOW-PASS FILTER
5 SELECT BAND-PASS FILTER
6 SELECT HIGH-PASS FILTER

100

A filter is activated by setting the relevant bit in register 24.
You may not wish to filter all voices at the same time. Register 23 determines
which voices are to be filtered. The bits are as follows:

BIT No. USAGE

7-4 FILTER RESONANCE 0-15
3 FILTER EXTERNAL INPUT
2 FILTERVOICE 3

1 FILTER VOICE 2

0 FILTER VOICE 1

When a specific bitis set, the output of that voice will be diverted through the filter.

The cutoff frequency is an eleven bit number. The upper eight bits (11-3) are
stored in register 22 while the lower three bits (0-2) are stored inregister 21. This
gives you a range of values between 0 and 2047.

Try adding the following lines to the example program to filter the voice and
hear the difference in sound. We will be using a Low Pass filter which will allow
only the lower components of the sounds to be heard.

30 POKE S+24,31:REM FULL VOLUME PLUS LOW PASS FILTER
35 POKE S+23,1:REM SELECT FILTER FOR VOICE 1
37 POKE S+22,128:POKE S+21,7:REM SELECT CUTOFF FREQUENCY

Try experimenting with filters. Filteringa sound as it passes through the ADSR
phases of its life can produce interesting effects.

For furtherinformation on how to use the SID chip, consult the COMMODORE
64 Programmer’s Reference Guide.

MUSIC COMPOSER

The Commodore MUSIC COMPOSER cartridge allows you to compose music
on your COMMODORE 64 without having to concern yourself with the workings
of the SID chip. Facilities are provided to allow you to type in program lines that
consist purely of special control characters. This enables you to play any
combination of sounds that you require using all the features of the SID chip.
Once you have composed your masterpiece, you can save it on tape and then
play it back at your leisure. While the music is playing, a music stave scrolls
across the screen displaying the notes as they are being played. This allows you
to get the most from the SID chip with the minimum of effort.

101

W R OOSSSnwW SRR OSSO S REOSSAOYRSRROSSAONSRE
e e e e
B025200r 0002388000925 880x00025830:0022553
BO23500E0R0Z 35000002 350nr0022250na 0002 300m
et S e et S e lele i e cla oL Tl
o e et e
2550 6R802 5508538025605 635025006 08322500600
S RER2550E6R022500E6R022200E6A0 222002580
EROS2S00LEReS2S00LEA0S2500LEA0S2200LEA0
S8033283r 0005523 r 00035200 0005 S 208T 000
0882250mE08 MMOCERODM S5owxo8 MMOCERODM =
E0R025800E0002 S50 00022 350naE0n02 3500002220,
WrOO0SS00LWEOO0=S00wWrO00=2200WaE0A0=2200WaE0002200warO0002200wWrO002 200w

{ve]
WWRR MMMOCER
OmEONO2350wed)
L O (el {elal OS300WrO002Z00WEOA02200LE A0S 2O0LEQN02200LEO00ZZ00LTO00Z200

ORECOMMODORECOMMODORECOMMOD

CHAPTER 9

ADVANCED DATA HANDLING
e READ and DATA Statements

e (Calculating Averages

e Subscripted Variables

* Dimensioning Arrays

e Simulated Dice Roll with Arrays

* Two-dimensional Arrays

READ AND DATA STATEMENTS

So far we’ve shown you how to assign values to variables directly (A = 2),
and how to assign values while the program is RUNning (INPUT and GET).

But often you'll find that neither way suits your needs for variable assign-
ment in a program, especially when you have large amounts of data.

In the chapter 7 when we introduced sprites, we used READ and DATA
statements to assign values for sprites. Here’s a short program that shows you
how these two statements work together:

10 READ X

20 PRINT “X IS NOW :”;X

30 GOTO 10

40 DATA 1, 34, 10.5, 16, 234.56

RUN

XISNOW: 1

XIS NOW: 34
XIS NOW : 10.5
XIS NOW: 16

X IS NOW : 234.56

?0UT OF DATA ERRORIN 10

READY
]

104

Line 10 READs a value from the DATA statement at line 40 and assigns the
value to X.

Line 30 tells the computer to return to line 10, where the READ assigns the
next value in the DATA statement to X. The loop continues until all the DATA
values are read.

There are a few important rules you must remember when you use DATA
statements:

e Follow the DATA statement format precisely:
40 DATA 1, 34, 10.5, 16, 234.65
Comma separates each item

e Use:
— integer numbers (e.g., 34).
— real numbers (e.g., 234.65),
— numbers expressed in scientific notation (e.g., 2.4E + 04),
— words (as long as you use a string variable in the READ statement),
but DON'T use:
— variables or
— arithmetic operations
in DATA statements. The items listed below are treated as strings if you try
to READ them, and you can only READ them as strings with string variables
in the READ statement.

DATA A, 23/56, 2*5, B + 2

When you use a READ statement, you can only get values from a DATA state-
ment because the two statements work as partners. Each time you READ a
value, the computer knows to move to the next value in the DATA statement. In
effect, there’s a pointer in the computer that keeps track of your place in the
DATA statement. After READing the first value, the DATA statement looks like
this:

40 DATA 1, 3’4, 10.5, 16, 34.56
pointer

When the last DATA value has been assigned to the variable in the READ
statement and the computer tries to execute the loop again, the OUT OF DATA
ERROR is displayed.

Here’'s an example that shows one way to avoid the OUT OF DATA ERROR.

NEW

10FORX = 1to3

15 READ A$

20 PRINT “A$ IS NOW: “; A$
30 NEXT

40 DATA THIS, IS, FUN

RUN

A$ IS NOW: THIS
A$ IS NOW : IS
A$ IS NOW : FUN
READY

105

This time we put the READ statement inside a FOR/NEXT loop that limited
the number of READings to equal the numbers of items in the DATA statement.

As long as you know how many items will be in your DATA statements, this
method is fine. But often either you won’t know or you won’t want to bother to
count.

Sometimes the best way to avoid an OUT OF DATA ERROR is to end your
DATA statement with a FLAG. A flag is some value that would not ordinarily ap-
pear in your DATA list, such as a negative number, a very large number, a very
small number, or a special word, such as END or STOP. When you use a flag,
add an IF/THEN statement to tell the computer to branch to another part of the
program when the flag is read. For example:

10 READ A

151IF A < 0 THEN END
20 DATA 13, 35, 29, — 999
25 PRINT “TOTAL ="; A
30 GOTO 10

This program READs and PRINTSs a value for A until it reaches —999. Line 15
tells the computer to END the program immediately when a negative value is
read.

There is also a way to reuse the items in a DATA statement by RESTOREing
the data pointer to the beginning of the DATA list. Try adding this line:

45 RESTORE
to the second program in this chapter and RUN it again. You'll see that the data
pointer has been RESTOREG to the first item in the DATA list, and that you can
reREAD all the items.

CALCULATING AVERAGES

Here's a program that READs a set of numbers from a DATA list and
calculates their average. This program also uses a flag to tell the computer
when to stop READing DATA.

NEW

5 T=0:CT=0

10 READ X

20 IF X = —1 THEN 50: REM CHECK FOR FLAG
25CT = CT + 1

30T = T + X:REM UPDATE TOTAL

40 GOTO 10

50 PRINT “THERE WERE ”; CT;** VALUES READ”
60 PRINT “TOTAL = ;T

70 PRINT “AVERAGE ="; TICT

80 DATA 75, 80, 62, 91, 87,93, 78, —1

RUN
THERE WERE 7 VALUES READ
TOTAL = 566

AVERAGE = 80.8571429

106

Line 5 sets CT, the CounTer, and T, the Total, to zero.

Line 10 READs a value from the DATA list and assigns it to X.

Line 20 checks to see if the value read to X is our flag (- 1). If it is, then the
program skips lines 25-40 and goes straight to line 50.

Line 25 adds one to CT, the counter, if the value of X is not the flag.

Line 30 adds X to T, the running total.

Line 40 sends the program back to repeat line 10.

Line 50, which isn’t executed until line 10 READs the flag, PRINTs the
number of values read (CT).

Line 60 PRINTSs the total of the numbers read (T).

Line 70 PRINTs the average.

You can also use more than one variable in the READ statement. You can mix
the types of DATA in a DATA list when you also mix the types of variables in the
READ statement. Here’s a program that does just that. It READs a name and
some scores and then calculates the average of the scores.

NEW

10 READ N$,A,B.C

20 PRINT N$;*’S SCORES WERE: ;A" "B "C
30 PRINT “AND THE AVERAGE IS: *;

40 PRINT: GOTO 10

50 DATA MIKE, 190, 185, 165, DICK, 225, 245, 190
60 DATA JOHN, 155, 185, 205, PAUL, 160, 179, 187

RUN

MIKE'S SCORES WERE: 190 185 165
AND THE AVERAGE IS : 180

DICK’S SCORES WERE: 225 245 190
AND THE AVERAGE IS : 220

Line 10 READs a value for each of the variables. The DATA statement lists its
items in the same order that the READ statement expects to find them. In other
words, there’s a name to go with the string variable, and numbers to go with the
integer variables.

107

SUBSCRIPTED VARIABLES

So far we've only used simple BASIC variables such as X and X$. It's doubtful
that you’ll write a program that requires more variable names than all the com-
binations of letters and numbers available in BASIC, but you might want to be
able to group variable names together when you’re using groups of data.

Subscripted variables let you use variable names so that they are obviously
grouped together. For example:

A@0,A(N)AQ,AQ)

The numbers in parentheses are the SUBSCRIPTS of variable A. Be aware
that the variable A1 does NOT equal the subscripted variable A (1).
You can use variables and arithmetic operation as subscripts. For example:

AX) AX+1) A@d-1) A(2%xX)

The expressions within the parentheses are evaluated according to the same
rules for arithmetic operations outlined in Chapter 3.

Subscripted variables, like simple variables, name a memory location within
the computer. But only subscripted variables name values that are organized in-
to an ARRAY.

An ARRAY is understood by the computer to be a unit, such as a list or a
table, of related values.

The following example uses subscripted variables to calculate an average:

5 PRINT CHR§147)

10 INPUT “HOW MANY NUMBERS :”;X
20FORA = 1TOX

30 PRINT “ENTER VALUE # ;A;:INPUT B(A)
40 NEXT

50SU =0

60 FORA = 1TO X

70 SU = SU + B(A)

80 NEXT

90 PRINT : PRINT “AVERAGE = ”; SU/X

RUN

HOW MANY NUMBERS :? 5
ENTER VALUE # 1 ? 125
ENTER VALUE # 2 ? 167
ENTER VALUE # 3 7189
ENTER VALUE # 4 ? 167
ENTER VALUE #5 ? 158

AVERAGE = 161.2

108

Line 5 clears the screen.

Line 10 asks you to enter the total number of items you’ll INPUT at line 30.

Line 20 sets up a loop that makes A the subscript for the array B. The loop
adds 1 to A for every execution. This updates array B.

Line 30 prompts you to INPUT a value for the subscripted variable B (A).

Lines 50 through 80 keep a running total (SU) of the numbers INPUT.

Line 90 PRINTs the average.

Each time the INPUT loop executes, A is increased by 1, so the next value
entered is assigned to the next element in array B. At the end of the program, ar-
ray B looks like this:

B(1) | 125
B | 167
B@3) | 189
B@) | 167
B(5) | 158

After you INPUT all the values, they are stored in array B. You can now ac-
cess these values just by using the subscripted variables. For example, see
what happens when you add these lines:

100 PRINT B (X —1)
120 PRINT B (3)
130 PRINT B (X-3)

DIMENSIONING ARRAYS

If you try to enter more than ten numbers in an array, you'll get a DIMENSION
ERROR. Arrays of more then ten elements need to be predefined in a DIMEN-
SION statement. For example, if you want an array to hold 25 values, you'd write
this statement in your program:

DIM B (25)

You can also use a variable in a DIMension statement. For example, in the
last program you could have used this statement since X equaled the total
number of values in array B:

15 DIM B (X)

But be careful when you use variables to define arrays: once an array is
DIMensioned, it can’t be reDIMensioned in another part of the program. So
don’t use a variable whose value will change in the program.

You can use more than one array in a program, and you can DIMension them
all on the same line:

10 DIM A (12), B (35), C (3,9)

Arrays A and B are one-dimensional arrays, but C is a two-dimensional array.
One-dimensional arrays just have ROWS of data, but two-dimensional arrays
have both rows and columns of data, just like a chart. Array C has 3 rows and 5
columns. Rows are always listed first in a DIMension statement.

109

SIMULATED DICE ROLL WITH ARRAYS

As you begin writing more complex programs, you’ll find that subscripted
variables cut down on the number of statements and make programs simpler to
write.

For example, a single subscripted variable can keep track of the number of
times each face on a die turns up in a dice roll:

1 REM DICE SIMULATION : PRINT CHR§147)
10 INPUT “HOW MANY ROLLS:”;X

20 FORL =1TOX

30R = INT(6*RND(1))+ 1

40 FR) = FR) + 1

50 NEXT L

60 PRINT “FACE”, “NUMBER OF TIMES”

70 FORC = 1 TO6: PRINT C, F(C): NEXT

Line 10 asks you how many times you’ll throw the dice iin the simulated roll.

Line 20 sets up a loop to count the number of dice rolls so that the program
ends on the Xth roll.

Line 30 makes R equal to the random number rolled.

Line 40 sets up the array F, for FACE, which keeps track of how many times
each face turns up. Whatever value R acquires in the dice roll becomes the
subscript for the array, and line 40 adds one to the appropriate array variable.
For example, every time a 2 is thrown, F (2 is increased by one.

Line 70 PRINTs the number of times each face shows up. Here’'s a sample
RUN:

HOW MANY ROLLS: ? 1000

FACE NUMBER OF TIMES
148

176

178

166

163

169

OB WN =

110

Now we’ll show you how much longer your program would be if you didn’t
use an array:

10 INPUT “HOW MANY ROLLS:”;X
20FORL =1TO0X

30 R = INT(6%*RND(1))+ 1

40IFR = 1THENF1 = F1 + 1:NEXT
41IFR = 2THEN F2 = F2 + 1: NEXT
42IFR = 3THENF3 = F3 + 1:NEXT
43IFR = 4 THEN F4 = F4 + 1: NEXT
44IFR = 5THENF5 = F5 + 1:NEXT
45IFR = 6 THEN F6 = F6 + 1: NEXT
60 PRINT “FACE”, “NUMBER OF TIMES”
70 PRINT 1, F1

71 PRINT 2, F2

72 PRINT 3, F3

73 PRINT 4, F4

74 PRINT 5, F5

75 PRINT 6, F6

As you can see, the program has twice as many lines. The longer the pro-
gram, the more space and time you can save when you use arrays.

111

TWO-DIMENSIONAL ARRAYS

As we mentioned before, two-dimensional arrays have both rows and
columns, like a chart or a table. Two-dimensional arrays have two subscripts:
the first one is for the ROW number; the second is for the COLUMN number.
For example:

A (4,6) has 4 ROWS
and 6 COLUMNS

Here’'s what array A would look like as a two-dimensional grid in memory:

0 1 2 3 4 5 6

w N

You'll notice that there's a zeroth row and column, so when you DIMension A
(4,6), you're creating an array with 5 rows and 7 columns, or 35 elements.

You can access any element of a two-dimensional array by using its row and
column subscripts. For example, suppose you want to assign 255 to A (3,4):

10 LET A(3,4) = 255
Here’s what the grid looks like now:

0 1 2 3 4 5 6
0
1
2
3 255
4

Two-dimensional arrays follow the same rules as one-dimensional arrays:

DIMensioning: DIM A (20,20)
Assigning data values: A(1,1) = 255
Assigning values to

other values: AB = A(1,1)
PRINTing values: PRINT A(1,1)

112

Here’s an example of how two-dimensional arrays can be used. This example
keeps track of responses to a club questionnaire like this:

CLUB QUESTIONNAIRE
Q1: ARE YOU IN FAVOR OF RESOLUTION #1?
1—YES 2 —- NO 3 — UNDECIDED
Let’s suppose thereare four questions, so the array, whichwe’llcall A, will be
DIMensioned A(4,3). Here's how the array table looks:

YES NO UNDECIDED

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

The program that keeps track of the responses is on the next page. This pro-
gram uses many of the programming techniques that have been presented so
far.

Lines 30-65 PRINT the questions in numerical order and ask you to INPUT the
response.

Line 70 adds one to the appropriate array element. Remember that R is the
question number, and the questions are in rows. C is the response number, and
the responses are in columns.

Line 90 asks if you have another set of responses to INPUT.

Lines 110 and 120 tell the program where to go, depending on your response
to line 90.

Lines 130-170 PRINT the total number of each response.

Each time you INPUT a response at line 61, line 70 updates the right element
of the array. Recall the R is the question number and C is the response number,
so if your response to question 2 is 3 (undecided), line 70 adds one to array ele-
ment A(2,3).

You'll notice that we didn’t use the zeroth row and column in this example.
You don’t have to use this row and column, but remember that they are always
present in every array you use.

113

20 PRINT **(SHIFT/CLR/HOME)”’

30FORR = 1TO 4

40 PRINT “QUESTION # : ”; R

50 PRINT “ 1-YES 2-NO 3-UNDECIDED”

60 PRINT “WHAT WAS THE RESPONSE : ’;

61 GET C: IFC <1 or C> 3 THEN 61

65 PRINT C: PRINT

70 A(R,C) = A(R,C) + 1: REM UPDATE ELEMENT

80 NEXT R

85 PRINT

90 PRINT “DO YOU WANT TO ENTER ANOTHER”: PRINT
“RESPONSE (Y/N)’;

100 GET A$: IF A$ = “ " THEN 100

110 IF A$ = “Y” THEN 20

120 IF A$ <> “N” THEN 100

130 PRINT “ (SHIFT/CLR/HOME) "';“ THE TOTAL RESPONSES

WERE:”:PRINT

140 PRINT SPC(18);“RESPONSE”

141 PRINT “QUESTION”,“YES”,“NO” “UNDECIDED”

142 PRINT “sremeee ermaremnianeees 2

150 FORR = 1TO 4

160 PRINT R, A(R,1), A(R,2), A(R,3)

170 NEXT R

RUN

QUESTION #: 1
1-YES 2-NO 3-UNDECIDED
WHAT WAS THE RESPONSE : 1

QUESTION #:2

1-YES 2-NO 3-UNDECIDED
WHAT WAS THE RESPONSE : 1
Andsoon...

THE TOTAL RESPONSES WERE:

RESPONSE
QUESTION YES NO UNDECIDED
1 6 1 0
2 5 2 0
3 7 0 0
4 2 4 1

114

S805530
S50LEAcE25008ER
S50LE Y552 S50LE RS
ZOREG00SS200EE003
OLEORO2 35000235

MOL
MC
MN
oM

ECO

REC
ORE

ECOMMOD(
M

0

@

E
AODORECOM
MODORECO
_OMMODOREC
ECOMMODORI

MODORECOMMOL
C
E
R
]
D
(o]
IV
M
0]

‘r'/\l/l()D()R

OMMODORECOMMC

COMMODORECOMN
MODOR

ECOMMODORECO(V\)AMODORFCOMMOD()F
CC
E
R
0]

i{elalep=p=3

ro00S50

LOOOSSOOLUEOQ0SSOOWION0 QOOSSOOLION0SS <
{ gss

DE000ESZCune SS5ow

rOB05220Q0r0A0522090x 000
3 3 =S00USA0SS200ESA0SS200LSA0S

= 2008600552002 50055 EER0ESS002ER0ES2002ER02520

SOLEO0ZZ50La 002230 SA0ZS50nx a2 =500a 00022300

o
[®]
=

=S
S

O
o
o
o
o
o
=
>
O
&}
D
o
Q
(]

MMODORECOMMODOR

C ot o e
szseenestiinane SoesStetncttienns i e
092 550EER59555086302 RS 9e 5050092 5008505 500 ER00SSSOEEA
220078005 2300760805220 50022200m80052200 2800522008005 230088005:
3OO e 0SS 2OoERCS 2200053 e e e st e e o et e
OWrOD0=200LWarO002200wWEO002200WaE 000220 OO0=2S00WrO00=200waE0002200WrO002200Lr0002200LEO00=200L
L OO0SS0O0WEOA0SSOOWErON0SSO0OLEo00SSO0WEON0SSO0LroN0SSO0Lro00SSO0NroN0SSO0NEro00SS00LEO00SS00WHEO00SS00LLO00SS0O0LEO00SS00W!

= e o o iy & O

5300a 0003530800055 ESO035 200 EO0SS 33080055300 6002= 200 SO0 S:

OOWE OO ploleNi<ola) =0 oo Z00mxo0n 200w OO S00WEO0P2200Lr 00 =0¢

m%mmwWMmeMWMWOMwwRMMWWOMmeMWW%OMW%RMODO SO GE0SS00Lr600SSO0LEOO0 OCEROWWOMwwK%W%%OMW%R%%W%WWW@K%mmwmmwwmwwmwmwwwmw
o o

HODOMMWCERODOMWWCERODOMMM == == == == ERODOMWWCERODOMWWCERODOMWWCERODOMMOCERODOMMOCERODOMMOCERm

APPENDICES
INTRODUCTION

Now that you've gotten to know your 64, we want you to know that our
customer support does not stop here. You may not know it, but Commodore
has been in business for over 23 years. In the 1970’s we introduced the first self-
contained personal computer (the PET). We have since become the leading
computer company in many countries of the world. Our ability to design and
manufacture our own computer chips lets us bring you new and better personal
computers at prices way below what you'd expect for this level of technical
excellence.

Commodore is committed to supporting you, the end user. We also assist
you by supporting the dealer who sold you your computer, magazines that
publish how-to articles showing you new applications or techniques, and soft-
ware developers who produce programs on cartridge and disk for use with your
computer. We encourage you to establish or join a Commodore “user club”
where you can learn new techniques, exchange ideas and share discoveries.
We publish two separate magazines which contain programming tips, informa-
tion on new products and ideas for computer applications. (See Appendix N).

In North America, Commodore provides a “Commodore Information Net-
work” on the CompuServe Information Service. To use this network, all you
need is your 64 computer and our low cost VICMODEM telephone interface cart-
ridge (or other compatible modem).

The following APPENDICES contain charts, tables, and other information
which help you program your COMMODORE 64 faster and more efficiently. They
also include important information on the wide variety of Commodore products
you may be interested in, and a bibliography listing of over 20 books and
magazines which can help you develop your programming skills and keep you
current on the latest information concerning your computer and peripherals.

116

APPENDIX A
EXPANDING YOUR COMMODORE 64 COMPUTER SYSTEM

The 64 is an extremely powerful computer and one that can be used in a wide
variety of applications from word-processing to data base management.

The basic 64 computer system consists of the computer, a suitable television
set or monitor and a cassette unit on which to store your programs. For some
applications, the cassette unit can be somewhat slow. This limitation can be
overcome by using a disk unit to save and recall your programs.

Why Use a Disk Drive?

If your programs or data files are very small, storing information on cassette
tape will not cause any great inconvenience. However, there will come a time
when the effective use of your systemis restricted by the time it takes to load from
and/or save to tape. This is when you should be thinking about using a
Commodore disk unit.

THE VIC 1541 DISK DRIVE

The VIC 1541 disk drive allows you to store up to 144 programs or data files on
a standard 5% inch diskette. When using adisk drive, you no longer have to think
about re-winding tapes or worry about overwriting existing information. The
1541 disk unit is an ‘intelligent device’, i.e. it does its own processing without
having to use any of the memory resources of the COMMODORE 64. Over
174000 characters of information can be stored on each diskette — the size of an
average Dickens' novel! The main advantage of a disk drive over a cassette unit
is speed. An operation on a diskdrive is typically up to 40 times faster than the
same operation on cassette. The VIC 1541 disk unit requires no special interface
— it plugs directly to your COMMODORE 64.

You are notrestricted to using one disk drive. By connecting the units together
(called ‘daisy-chaining’) as many as five disk drives can be used with one
COMMODORE 64 so that you can load and save programs and files without
having to change diskettes.

VIC 1525 DOT MATRIX PRINTER

A printer adds a great deal of versatility to your computer system. No computer
system is complete without one. It allows you to produce invoices, send letters,
or print out program listings so that you can examine your code away from the
computer. The VIC 1525 is a ‘dot matrix’ printer. This means that each character
is made up from a pattern of dots in agrid. You can print all the characters on your
COMMODORE 64 keyboard or print characters you have designed yourself. The
VIC 1525 prints at a speed of 30 characters/second at 12 characters/inch on
plain tractor-feed paper up to 10 inches wide. The printer plugs directly into your
COMMODORE 64 and requires no additional interface.

VIC 1526 BI-DIRECTIONAL DOT MATRIX PRINTER

The VIC 1526 printer differs from the VIC 1525 in two important respects. First,
it is a bi-directional printer. This means that the machine prints from right to left
as well as the conventional left to right. This means that the machine doesn't
waste time sending the printer head to the left edge of the paper every time a new
line of text is to be printed.

117

The second main difference between the 1526 and 1525 is in speed of
operation. The time taken to print each line is directly proportional to the width of
page you have set up. On an 80 column wide print out, the speed is 45 lines/
minute; on 40 columns, 78 lines/minute, and on 20 column wide paper, 124
lines/minute. The 1526 allows you to print up to 3 copies of your output including
the original. It has a cartridge ribbon for ease of interchange and accepts paper
up to 10 inches wide. The 1526 plugs directly to your COMMODORE 64 — no
special interface is required.

VIC 1520 PRINTER/PLOTTER

The VIC 1520 can be used both as a standard printer or as a plotter to allow
you to design and draw graphs, histograms, pie charts — in fact any shape you
like in a combination of four colors. You can print upper case/lower case letters
and graphics symbols. A further facility offered by the printer allows you to define
the size of each character you display. The printer prints at 14 characters/
second. Depending on the size of character selected, between 10 and 40
characters can be printed on each line of the paper. Characters can even be
printed ‘sideways’ by rotating them 90 degrees. Shapes are drawn by simply
telling the printer/plotter where the start and end co-ordinates or the shape are
to be on the paper and what type of line you wish to use. These range from solid
lines to coarse, broken lines. The plotter is accurate to 0.2 of a mm and has a
plotting speed of 60 mm/sec. The plotter uses small ball-point pens each of
which is user-selectable when plotting. The printer/plotter plugs directly into
your COMMODORE 64 and requires no additional interface.

1701 COLOR MONITOR

A computer with the versatility of the COMMODORE 64 needs a medium on
which to demonstrate its capabilities to the full. The 1701 color monitor has been
designed specifically for this purpose. The monitor has a 14 inch screen with
outstanding resolution. Sound can be generated either from the monitor’s
internal speaker or, via a simple connection, from your Hi-Fi system.

1311 JOYSTICK

A joystick can be used not only as a games controller but also, with suitable
software, as a tool for drawing and plotting. The COMMODORE 64
Programmer’s Reference Guide gives detailed information on how to
incorporate the use of a joystick in your programs.

118

SOFTWARE

A wide variety of software is available for the COMMODORE 64 covering
applications in the home, at work, entertainment and aids for the programmer.

Software for Business and the Home
EASYFILE EFI 6440 (diskette)

EASYFILE is acomprehensive data-base system for the COMMODORE 64. It
includes all the features of similar, highly-priced packages at a fraction of the
cost. The userdecides how he wishes his information to appear whenitis printed
out either on the screen or the printer. This means that EASYFILE can be tailored
to suit the needs of a wide variety of applications either in business or in the
home.

CLUBMANAGER CMG 6440 (diskette)

CLUB MANAGER has been designed to aid in the smooth running of sports
clubs, social clubs, associations — in fact any organization that needs to
maintain accurate membership records. The package allows you to record the
details of all the members of your club on diskette, much as records are stored
within a filing cabinet. Membership details can be amended where necessary
and records can be added to or deleted from the membership file. CLUB
MANAGER enables you to produce membership lists, subscription reminders,
address labels, and, because the package can be linked to the EASY SCRIPT
word processor, personalized copies of standard letters. CLUB MANAGER also
has a booking facility allowing you to enter details of when members wish to use
squash courts, tennis courts, snooker tables, restaurant tables, dance tickets or
any similar club facility or activity. Overbooking is now a thing of the past. CLUB
MANAGER allows you to maintain a diary and use it to record/amend details of
appointments, meetings, etc. CLUB MANAGER is an ideal tool for the club
owner or club secretary and will greatly reduce the amount of time spent on
maintaining membership records and booking club facilities.

FUTURE FINANCE FFI 6440 (diskette)

FUTURE FINANCE is a low-cost, financial planning package. It enables you to
predict your company’s profit and cash-flow position based on expected
production, sales and costs. Details can be altered to view the effect of these
changes on the company’s overall performance. Reports can be produced
showing the contribution to profits made by each product and the cash-flow
position at the end of each user-defined period.

EASYCALC ECL 6440 (diskette)

EASYCALC is an electronic spreadsheet package. It contains all the
traditional spreadsheet features — user-defined sheet size, replication of
information from one area of the sheet to the other etc. Allied to these facilities,
EASYCALC includes many other features including a library of trigonometrical,
statistical and other advanced mathematical functions, the ability to draw graphs
in a specific area of the sheet, data protection via a password option and much,
much more.

119

EASY STOCK EST 6440 (diskette)

EASY STOCK is a powerful inventory system containing a wide range of
stock-recording and reporting features. The details of each stock item are
entered directly from the keyboard onto the screen and then stored on diskette.
EASY STOCK also allows you to change the price of an individual item or arange
of products on the stock file. Each stock record is accessed by simply typing in
the reference/part number of thatitem. Records can be amended, added to your
stock file or deleted from it. If the amount of stock on hand falls below your
specified minimum level, the stock figure is highlighted when the record is
accessed. EASY STOCK allows you to produce a wide range of reports including
stock levels, analysis of stock movements, sales/stock valuation analyses and
much more.

EASY SCRIPT ESC 6440 (diskette)

EASY SCRIPT is a professional, low cost, word-processing package. It
enables you to create, modify and print text quickly and easily. EASY SCRIPT
can be used for writing letters, reports, memos, book manuscripts — in fact any
kind of document. Text can be stored on diskette or cassette so that it may be
printed or modified as required.

EASY SPELL ESP 6440 (diskette)

EASY SPELL is a spelling checker for files produced by the EASY SCRIPT
word processing package. It can be used to check text in individual EASY
SCRIPT files or text that is spread over files that have been linked together. The
EASY SPELL package comes complete with a dictionary diskette against which
the spelling of text is checked.

Aids for the Programmer

To assist in the development of your own software, Commodore has
introduced a range of programming utilities. These will help speed the entry and
debugging of BASIC and machine code programs.

SIMONS' BASIC SIB 6410 (cartridge)

SIMONS’ BASIC has been designed to enable programmers of all levels to
easily utilise the potential of their COMMODORE 64. The SIMONS’ BASIC
cartridge is really three packages in one. It contains a Toolkit to remove the
tedious aspects of computer programming, a vast range of commands to
facilitate the use of graphics and sound on the 64 and Structured Programming
commands to help the programmer write more meaningful code. The package is
supplied in cartridge form which means that you can use all its features by simply
inserting it into the slot at the rear of the COMMODORE 64 and turning the
computer on — it's as simple as that. You then use the additional SIMONS’
BASIC commands just as you would any other BASIC commands.

Toolkit commands include:

® AUTO — for automatic line numbering
® RENUMBER — for automatic program re-numbering
® KEY — to assign commands to the function keys

and many more.

120

Graphics commands include:

e HIRES — to putthe screen into high-resolution mode
® REC — to draw a rectangular shape

e CIRCLE — to draw a circular shape

® PAINT — tofill a shape with color

plus commands for creating sprites and user-defined graphics:

® DESIGN — to set up adesigngridfor a sprite or user-defined character
e MMOB — tomove asprite
® DETECT — to detect sprite collision

and much, much more.

The Structured-Programming commands supplied by the SIMONS' BASIC
cartridge are a boon to programmers of all levels of ability. It is now possible to
label BASIC routines and call these routines by name. Other structured-
programming commands include:

e PROC — to label BASIC routines
e CALL — to pass execution to a routine
® EXEC — to pass execution to a routine and return from it when

the routine has been completed
® REPEAT ...UNTIL — torepeat aloop dependent on a condition test

and many others.

SIMONS’ BASIC also includes commands for screen formatting, scrolling the
screen, input validation, character string manipulation, hexadecimal to decimal
and binary to decimal conversion, integer division and much, much more. The
cartridge also has a group of commands which allow you to trap certain BASIC
errors. You can even generate your own error messages! The range of
commands supplied by the SIMONS’ BASIC cartridge make it an essential tool
for any programmer who wants to easily utilise the special features of his
COMMODORE 64.

Works with cassette or diskette.

ASSEMBLER TUTOR AST 6440 (diskette) AST 6420 (cassette)

The ASSEMBLER TUTOR package is a must for all would-be machine code
programmers. It can also be valuable to those programmers who already know
something about assembly language programming but wish to expand their
knowledge of 6502 machine code. The ASSEMBLER TUTOR is divided into
three modules. Each module covers one aspect of assembly-language
programming and contains an introduction, a self-test and discussion of various
aspects of assembly-language programming.

ASSEMBLER DEVELOPMENT ASM 6440 (diskette)

The ASSEMBLER DEVELOPMENT package allows you to program in
assembler directly onto your COMMODORE 64. It provides all the tools the
assembler programmer needs to create, assemble load and execute 6510
assembly language code.

121

PROGRAMMER’S UTILITIES UTL 6440 (diskette)

The PROGRAMMER'’S UTILITIES package contains many useful routines to
help both the new and experienced programmer to get the most from his
COMMODORE 64. These include Disk-Handling routines for changing the
device number of a disk drive and copying disks using a single disk drive,
graphics utilities such as a sprite and character editor, sound commands and
BASIC programming aids for easier screen formatting and control operations.

ENTERTAINMENT

As well as a wide range of top quality arcade-style games forthe COMMODORE
64, Commodore have also produced a range of Business Simulation programs
for those who prefer to exercise their brain rather than their joystick fire button
finger. In these games, time is no restriction, only your capabilities to work out
complex scenarios.

LABYRINTH LBY 6420 (cassette)

Dare you enter the twisting Elizabethan maze? Will you ever get out, or will you
be trapped forever? LOST? Well you can take a quick peek at where you are but
remember that this reduces your score. Certainly a game to lose yourself in.

HIGH FLYER HFL 6440 (diskette)

It's 1945. The War has just ended and you have decided to run your own
airline. By making careful management decisions, you have to guide the
enterprise from 1945 up to the present day. The decisions are all yours — plane
schedules and routes; what is the best cargo/passenger ratio to maximise profit;
when is the best time to extend your fleet, make improvements to existing stock,
enhance support services; whether or not you need to borrow money from the
bank and which banks can offer you the best deal etc. You can save the position
you have reached until the next time you wish to join the high-flyers.

Available on diskette only.

RAIL BOSS RBO 6440 (diskette)

You are a pioneer railwayman in charge of building aline in the American West
between Base City and Junction City. It's your job to hire and fire surveyors,
workers and guards to protect you and your workforce against marauding
bandits. By building stations along the route, you can generate income to pay
your workforce and buy additional stock should you require it. To thwart your
efforts, warlike Indians try to disrupt your work by kiling members of the
workforce and ripping up the track. Your only hope is that the cavalry from Fort
Commodore can get to the Indians before they get to you. A game for budding
pioneersmen everywhere.

122

OCEAN RACER OCR 6440 (diskette)

You have entered the round-the-world yacht race. The race starts from
Portsmouth and goes via Cape Town South Africa, Auckland New Zealand, Rio
de Janeiro in Brazil and, finally, back to Portsmouth. You choose the type of ship
you wish to captain: a single-masted cutter/sloop; a twin-masted ketch or a
single-masted multi-hull boat. The race is in four stages, each of which contains
various hazards ranging from icebergs to boat damage caused by passing
whales! You decide which route to sail and how much sail to select for the
prevailing wind conditions. A game for old salts and aspiring mariners alike.

These are just the first of a series of thinking games especially designed for the

COMMODORE 64. More are being developed all the time. For details of release
dates, please keep in close touch with your local Commodore stockist.

123

APPENDIX B
DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the excep-
tion of 01 which gives information about the number of files scratched with the
SCRATCH command.

20:

21:

22:

23:

24:

25:

26:

27:

READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data
block. Caused by an illegal sector number, or the header has been
destroyed.

READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track.
Caused by misalignment of the read/writer head, no diskette is present, or
unformatted or improperly seated diskette. Can also indicate a hardware
failure.

READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that
was not properly written. This error message occurs in conjunction with
the BLOCK commands and indicates an illegal track and/or sector re-
quest.

READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the
data bytes. The data has been read into the DOS memory, but the
checksum over the data is in error. This message may also indicate
grounding problems.

READ ERROR (byte decoding error)

The data or header as been read into the DOS memory, but a hardware er-
ror has been created due to an invalid bit pattern in the data byte. This
message may also indicate grounding problems.

WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch between
the written data and the data in the DOS memory.

WRITE PROTECT ON

This message is generated when the controller has been requested to
write a data block while the write protect switch is depressed. Typically,
this is caused by using a diskette with a write a protect tab over the
notch.

READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data
block. The block has not been read into the DOS memory. This message
may also indicate grounding problems.

124

28

30:

31:

32

33:

39

50:

51:

52:

WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after
writing a data block. If the sync mark does not appear within a pre-
determined time, the error message is generated. The error is caused by a
bad diskette format (the data extends into the next block), or by hardware
failure.

DISK 1D MISMATCH

This message is generated when the controller has been requested to ac-
cess a diskette which has not been initialized. The message can also oc-
cur if a diskette has a bad header.

SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel.
Typically, this is caused by an illegal number of file names, or patterns are
illegally used. For example, two file names may appear on the left side of
the COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in
the first position.

SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it
as such. Typically, a colon (:) has been left out of the command.

SYNTAX ERROR (invalid command)
This error may result if the command sent to command channel (secon-
dary address 15) is unrecognized by the DOS.

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET# com-
mands. This message will also occur after positioning to a record beyond
end of file in a relative file. If the intent is to expand the file by adding the
new record (with a PRINT# command), the error message may be ignored.
INPUT or GET should not be attempted after this error is detected without
first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is truncated.
Since the carriage return which is sent as a record terminator is counted
in the record size, this message will occur if the total characters in the
record (including the final carriage return) exceeds the defined size.

FILE TOO LARGE

Record position within a relative file indicates that disk overflow will
result.

125

60:

61:

62:

63:

64:

65:

66:

67:

70:

71:

72

WRITE FILE OPEN
This message is generated when a write file that has not been closed is
being opened for reading.

FILE NOT OPEN

This message is generated when a file is being accessed that has not
been opened in the DOS. Sometimes, in this case, a message is not
generated; the request is simply ignored.

FILE NOT FOUND
The requested file does not exist on the indicated drive.

FILE EXISTS
The file name of the file being created already exists on the diskette.

FILE TYPE MISMATCH
The file type does not match the file type in the directory entry for the re-
quested file.

NO BLOCK

This message occurs in conjunction with the B-A command. It indicates
that the block to be allocated has been previously allocated. The
parameters indicate the track and sector available with the next highest
number. If the parameters are zero (0), then all blocks higher in number
are in use.

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or block which does not exist in
the format being used. This may indicate a problem reading the pointer to
the next block.

ILLEGAL SYSTEM TOR S
This special error message indicates an illegal system track or sector.

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A max-
imum of five sequential files may be opened at one time to the DOS.
Direct access channels may have six opened files.

DIRECTORY ERROR

The BAM does not match the internal count. There is a problem in the
BAM allocation or the BAM has been overwritten in DOS memory. To cor-
rect this problem, reinitialize the diskette to restore the BAM in memory.
Some active files may be terminated by the corrective action. NOTE:
BAM = Block Availability Map

DISK FULL

Either the blocks on the diskette are used or the directory is at its entry
limit. DISK FULL is sent when two blocks are available on the 1541 to
allow the current file to be closed.

126

73:

74:

DOS MISMATCH (73, CBM DOS V2.6 1541)

DOS 1 and 2 are read compatible but not write compatible. Disks may be
interchangeably read with either DOS, but a disk formatted on one ver-
sion cannot be written upon with the other version because the format is
different. This error is displayed whenever an attempt is made to write
upon a disk which has been formatted in a non-compatible format. (A utili-
ty routine is available to assist in converting from one format to another.)
This message may also appear after power up.

DRIVE NOT READY

An attempt has been made to access the 1541 single Drive Floppy Disk
without any diskettes present in either drive.

127

APPENDIX C
COMMODORE 64 BASIC

This manual has given you an introduction to the BASIC languge — enough
for you to get a feel for computer programming and some of the vocabulary in-
volved. This appendix gives a complete list of the rules (SYNTAX) of 64 BASIC,
along with concise descriptions. Please experiment with these commands.
Remember, you can’t damage the computer by just typing in programs, and the
best way to learn computing is by experimenting.

This appendix is divided into sections according to the different types of
operations in BASIC. These include:

1. Variables and Operators: describes the different type of variables, legal
variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs, such as
editing, storing, and erasing.

3. Statements: describes the BASIC program statements used in numbered
lines of programs.

4. Functions: describes the string, numeric, and print functions.

VARIABLES

The 64 uses three types of variables in BASIC. These are real numeric, in-
teger numeric, and string (alphanumeric) variables.

Variable names may consist of a single letter, a letter followed by a number,
or two letters.

An integer variable is specified by using the percent (%) sign after the
variable name. String variables have the dollar sign ($) after their name.

EXAMPLES

Real Variable Names: A, A5, BZ

Integer Variable Names: A%, A5%, BZ%

String Variable Names: A$, A5$, BZ$

ARRAYS are lists of variables with the same name, using numbers called
subscripts to specify the element of the array. Arrays are defined using the DIM
statement, and may contain floating point, integer, or string variables. The array
variable name is followed by a set of parentheses () enclosing the number of
variables in the list.

A(7), BZ%(11), A$(50), PT(20,20)

NOTE: There are three variable names which are reserved for use by the 64,
and may not be defined by you. These variables are: ST, Tl, and TI$. ST is a
status variable which relates to input/output operations. The value of ST will
change if there is a problem loading a program from disk or tape.

Tl and TI$ are variables which relate to the real-time clock built into the 64.
The variable Tl is updated every 1/60th of a second. It starts at 0 when the com-
puter is turned on, and is reset only by changing the value of TI$.

128

TI$ is a string which is constantly updated by the system. The first two
characters contain the number of hours, the 3rd and 4th characters the number
of minutes, and the 5th and 6th characters are the number of seconds. This
variable can be given any numeric value, and will be updated from that point.

TI$ = “101530” sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts at zero when
the system is turned back on.

OPERATORS
The arithmetic operators include the following signs:

+ Addition

— Subtraction

* Multiplication

/ Division

4+ Raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in which
operations always occur. If several operations are used together on the same
line, the computer assigns priorities as follows: First, exponentiation. Next,
multiplication and division, and last, addition and subtraction.

You can change the order of operations by enclosing within parentheses the
calculation to be performed first. Operations enclosed in parentheses will take
place before other operations.

There are also operations for equalities and inequalities:

Equal To

Less Than

Greater Than
= Less Than or Equal To
>= Greater Than or Equal To
< > Not Equal To

Finally, there are three logical operators:

AND
OR
NOT

These are used most often to join multiple formulas in IF . . . THEN
statements. For example:

IF A = BANDC = D THEN 100 (Requires both parts to be true)
IFA = BORC = D THEN 100 (Allows either part to be true)

COMMANDS
CONT (Continue)

This command is used to restart the execution of a program which has been
stopped by either using the STOP key (but not STOP & RESTORE), a STOP
statement, or an END statement within the program. The program will restart at
the exact place from where it left off.

A VA

129

CONT will not work if you have changed or added lines to the program, or if the
program halted due to an error, or if you caused an error before trying to restart
the program. In these cases you will geta CAN'T CONTINUE ERROR.

LIST

The LIST command allows you to look at lines of a B,
memory. You can ask for the entire program tobe displayed, or only certain line
numbers.

LIST Shows entire program

LIST 10- Shows only from line 10 until end
LIST 10 Shows only line 10

LIST - 10 Shows lines from beginning until 10
LIST 10-20 Shows line from 10 to 20, inclusive
LOAD

This command is used to transfer a program from tape or disk into memory so
the program can be used. If you just type LOAD and hit RETURN, the first
program found on the cassette unit will be placed in memory. The command may
be followed by a program name enclosed within quotes. The name may then be
followed by a comma and a number or numeric variable, which acts as a device
number to indicate where the program is coming from.

If no device number is given, the COMMODORE 64 assumes device #1,
which is the cassette unit. The other device commonly used with the LOAD
command is the disk drive, which is device # 8.

LOAD Reads in the next program on tape

LOAD “HELLO” Searches tape forprogram called HELLO, and loads
program if found

LOAD A$ Looks for program whose name is in the variable A$

LOAD “HELLO’ 8 Looks forprogram called HELLO on the disk drive

LOAD “x’8 Looks for first program on disk

A secondary address of 1 must be specified if you want to load a machine code
program without relocating it.

LOAD “M/C PROGRAM”,1,1 Loads machine code from tape without
relocating

130

NEW

This command erases the entire program in memory, and also clears out any
variables that may have been used. Unless the program was SAVE(, it is lost.
BE CAREFUL WHEN YOU USE THIS COMMAND.

The NEW command can also be used as a BASIC program statement. When
the program reaches this line, the program is erased. This is useful if you want
to leave everything neat when the program is done.

RUN

This command causes execution of a program, once the program is loaded
into memory. If there is no line number following RUN, the computer will start
with the lowest line number. If a line number is designated, the program will
start executing from the specified line.

RUN Starts program at lowest line number
RUN 100 Starts execution at line 100
RUN X UNDEFINED STATEMENT ERROR. You must always specify

an actual line number, not a variable representation

SAVE

This command will store the program currently in memory on cassette or disk.
If you just type SAVE and RETURN, the program will be SAVEd on cassette. The
computer has no way of knowing if there is a program already on that tape, so be
careful with your tapes or you may erase a valuable program.

If you type SAVE followed by a name in quotes or a string variable, the
computer will give the program that name, so it can be more easily located and
retrieved in the future. The name may also be followed by a device number.

After the device number, there can be a comma and a second number, either O
or 1. If the second number is 1, the COMMODORE 64 will putan END-OF-TAPE
marker after your program. This signals the computer not to look any further on
the tape if you were to give an additional LOAD command. If you try to LOAD a
program and the computer finds one of these markers, you will get a FILE NOT
FOUND ERROR.

SAVE Stores program to tape without name
SAVE ““HELLO" Stores on tape with name HELLO
SAVE A% Stores ontape withname in A$

SAVE “HELLO" 8 Stores ondisk with name HELLO

SAVE “HELLO”,1,1 Stores on tape with name HELLO and reloads in same
position of memory

SAVE “HELLO”,1,2 Stores in tape with name HELLO and follows program
with END-OF-TAPE marker

SAVE “HELLO”,1,3 As above but reloads in same position in memory

131

VERIFY

This command causes the computer to check the program on disk or tape
against the one in memory. This is proof that the program is actually SAVEd, in
case the tape or disk is bad, or something went wrong during the SAVE. VERIFY
without anything after the command causes the COMMODORE 64 to check the
next program on tape, regardless of name, against the program in memory.

VERIFY followed by a program name, or a string variable, will search for that
program and then check. Device numbers can also be included with the verify
command.

VERIFY Check the next program on tape
VERIFY “HELLO” Searches for HELLO, checks against memory
VERIFY “HELLO",8 Searches for HELLO on disk, then checks

To check if a program is already on a tape, just VERIFY and the computer will
say which program it has found (if any).

STATEMENTS

CLOSE

This command completes and closes any files used by OPEN statements.
The number following CLOSE is the file number to be closed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, but leaves the program
itself intact. This command is automatically executed when a RUN command is
given.

CMD

CMD sends the output which normally would go to the screen (i.e., PRINT
statements, LISTs, but not POKEs onto the screen) to another device instead.
This could be a printer, or a data file on disk. This device or file must be OPEN-
ed first. The CMD command must be followed by a number or numeric variable
referring to the file.

OPEN 1,4 OPENSs device #4, which is the printer

CMD 1 All normal output now goes to printer

LIST The program listing now goes to the printer, not the
screen

To send output back to the screen, CLOSE the file with CLOSE 1.

132

DATA

This statement is followed by a list of items to be used by READ statements.
Items may be numeric values or test strings, and items are separated by com-
mas. String items need not be inside quote marks unless they contain space,
colon, or comma. If two commas have nothing between them, the value will be
READ as a zero for a number, or an empty string.

DATA 12, 145, “HELLO, MOM”, 3.14, PART1

DEF FN

This command allows you to define a complex calculation as a function with
a short name. In the case of a long formula thatis used many times within the
program, this can save time and space.

The function name will be FN and any legal variable name (1 or 2 characters
long). First you must define the function using the statement DEF followed by
the function name. Following the name is a set of parentheses enclosing a
numeric variable. Then follows the actual formula that you want to define, with
the variable in the proper spot. Youcan then “call” the formula, substitutingany
number for the variable.

10 DEF FNA(X) = 12*(34.75 — X/.3)
20 PRINT FNA(7)

7 is inserted where
X is in the formula

For this example, the result woud be 137.

DIM

When you use more than 11 elements of an array, you must execute a DIM
statement for the array. Keep in mind that the whole array takes up room in
memory, so don't create an array much larger than you’ll need. To figure the
number of variables created with DIM, multiply the total number of elements
plus one in each dimension of the array.

10 DIM A$(40), B7(15), CC%(4,4,4)

41 ELEMENTS 16 ELEMENTS 125 ELEMENTS

133

You can dimension more than one array in a DIM statement. However, be
careful not to dimension an array more than once.

END

Whena program encounters an END statement, the program halts, as if it ran
out of lines. You may use CONT to restart the program.

FOR...TO...STEP

This statement works with the NEXT statement to repeat a section of the pro-
gram a set number of times. The format is:

FOR (Var. Name)= (Start of Count) TO (End of Count) STEP (Count By)

The loop variable will be added to or subtracted from during the program.
Without any STEP specified, STEP is assumed to be 1. The start count and end
count are the limits to the value of the loop variable.

10 FORL = 1 TO10STEP 1
20 PRINT L
30 NEXT L

The end of the loop value may be followed by the word STEP and another
number or variable. In this case, the value following STEP is added each time in-
stead of 1. This allows you to count backwards, or by fractions.

GET

The GET statement allows you to get data from the keyboard, one character
at a time. When GET is executed, the character that is typed is assigned to the
variable. If no character is typed, then a null (empty) character is assigned.

GET is followed by a variable name, usually a string variable. If a numeric
variable was used and a nonnumeric key depressed, the program would halt
with an error message. The GET statement may be placed into a loop, checking
for any empty result. This loop will continue until a key is hit.

10 GET A$: IF A$ =""THEN 10

GET#
The GET# statement is used with a previously OPENed device or file, to input
one character at a time from that device or file.

GET #1,A%
This would input one character from a data file.

GOSuB

This statement is similar to GOTO, except the computer remembers which
program line it last executed before the GOSUB. When a line with a RETURN
statement is encountered, the program jumps back to the statement im-
mediately following the GOSUB. This is useful if there is a routine in your pro-
gram that occurs in several parts of the program. Instead of typing the routine
over and over, execute GOSUBs each time the routine is needed.

20 GOsSUB 800

134

GOTO OR GO TO
When a statement with the GOTO command is reached, the next line to be
executed will be the one with the line number following the word GOTO.

IF ... THEN

IF . .. THEN lets the computer analyze a situation and take two possible
courses of action, depending on the outcome. If the expression is true, the
statement following THEN is executed. This may be any BASIC statement.

If the expression is false, the program goes directly to the next line.

The expression being evaluated may be a variable or formula, in which case it
is considered true if nonzero, and false if zero. In most cases, there is an ex-
pression involving relational operators (=, < , > ,< =,> =, <>
AND, OR NOT).

10IF X > 10 THEN END

INPUT

The INPUT statement allows the program to get data from the user, assign-
ing that data to a variable. The program will stop, print a question mark (?) on
the screen, and wait for the user to type in the answer and hit RETURN.

INPUT is followed by a variable name, or a list of variable names, separated
by commas. A message may be placed within quote marks, before the list of
variable names to be INPUT. If more than one variable is to be INPUT, they must
be separated by commas when typed.

10 INPUT “PLEASE ENTER YOUR FIRST NAME";A$
20 PRINT “ENTER YOUR CODE NUMBER”;:INPUT B

INPUT#
INPUT# is similar to INPUT, but takes data from a previously OPENed file.

10 INPUT#1, A

LET

LET is hardly ever used in programs, since it is optional, but the statement is
the heart of all BASIC programs. The variable name which is to be assigned the
result of a calculation is on the left side of the equal sign, and the formula on
the right.

10 LETA =5
20 LET D$ = “HELLO”

NEXT

NEXT is always used in conjunction with the FOR statement. When the pro-
gram reaches a NEXT statement, it checks the FOR statement to see if the limit
of the loop has been reached. If the loop is not finished, the loop variable is in-
creased by the specified STEP value. If the loop is finished, execution proceeds
with the statement following NEXT.

NEXT may be followed by a variable name, or list of variable names,
separated by commas. if there are no names listed, the loop started is the one
being completed. If variables are given, they are completed in order from left to
right.

10 FOR X = 1TO 100: NEXT

135

ON

This command turns the GOTO and GOSUB commands into special versions
of the IF statement. ON is followed by a formula, which is evaluated. If the
result of the calculation is one, the first line on the list is executed; if the result
is 2, the second line is executed, and so on. If the result is 0, negative, or larger
than the list of numbers, the next line executed will be the statement following
the ON statement.

10 INPUT X
20 ON X GOTO 10,20,30,40,50

OPEN

The OPEN statement allows the 64 to access devices such as the disk for
data, a printer, or even the screen. OPEN is followed by a number (0-255), to
which all following statements will refer. There is usually a second number
after the first, which is the device number.

The device numbers are:

0 Screen
4 Printer
8 Disk

Following the device number may be a third number, separated again by a
comma, which is the secondary address.

In the case of the disk, the number refers to the buffer, or channel, number. In
the printer, the secondary address controls features like expanded printing. See
the Commodore 64 Programmer’s Reference Manual for more details.

10 OPEN 1,0 OPENSs the SCREEN as a device

20 OPEN 2,8,8,“D” OPENSs the disk for reading, file to be searched for
isD

30 OPEN 3,4 OPENSs the printer

40 OPEN 48,15 OPENSs the data channel on the disk

Also see: CLOSE, CMD, GET#, INPUT#, and PRINT#, system variable ST, and
Appendix B.

POKE

POKE is always followed by two numbers, or formulas. The first location is a
memory location; the second number is a decimal value from 0 to 255, which
will be placed in the memory location, replacing any previously stored value.

10 POKE 53281,0
20 S=4096"13
30 POKE S + 29,8

PRINT
The PRINT statement is the first one most people learn to use, but there are a
number of variations to be aware of. PRINT can be followed by:

Text String with quotes
Variable names
Functions

Punctuation marks

136

Punctuation marks are used to help format the data on the screen. The com-
ma divides the screen into four columns, while the semicolon suppresses all
spacing. Either mark can be the last symbol on a line. This results in the next
thing PRINTed acting as if it were a continuation of the same PRINT statement.

10 PRINT “HELLO”
20 PRINT “HELLO",A$
30 PRINT A+ B

40 PRINT J;

60 PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINT#

There are a few differences between this statement and PRINT. PRINT# is
followed by a number, which refers to the device or data file previously
OPENed. This number is followed by a comma and a list to be printed. The com-
ma and semicolon have the same effect as they do in PRINT. Please note that
some devices may not work with TAB and SPC.

100 PRINT#1,“DATA VALUES”; A%, B1,C$ =

READ

READ is used to assign information from DATA statements to variables, so
the information may be put to use. Care must be taken to avoid READing
strings where READ is expecting a number, which will give a TYPE MISMATCH
ERROR.

REM (Remark)

REMark is a note to whomever is reading a LIST of the program. It may ex-
plain a section of the program, or give additional instructions. REM statements
in no way affect the operation of the program, except to add to its length. REM
may be followed by any text.

RESTORE

When executed in a program, the pointer to which an item in a DATA state-
ment will be READ next is reset to the first item in the list. This gives you the
ability to re-READ the information. RESTORE stands by itself on a line.

RETURN

This statement is always used in conjunction with GOSUB. When the pro-
gram encounters a RETURN, it will go to the statement immediately following
the GOSUB command. If no GOSUB was previously issued, a RETURN
WITHOUT GOSUB ERROR will occur.

STOP

This statement will halt program execution. The message, BREAK IN xxx will
be displayed, where xxx is the line number containing STOP. The program may
be restarted by using the CONT command. STOP is normally used in debugging
a program.

137

SYS

SYS is followed by a decimal number or numeric value in the range 0-65535.
The program will then begin executing the machine language program starting
at that memory location. This is similar to the USR function, but does not allow
parameter passing.

WAIT

WAIT is used to halt the program until the contents of a memory location
changes in a specific way. WAIT is followed by a memory location (X) and up to
two variables. The format is:

WAIT XY, Z

The contents of the memory location are first exclusive-ORed with the third
number, if present, and then logically ANDed with the second number. If the
result is zero, the program goes back to that memory location and checks
again. When the result is nonzero, the program continues with the next state-
ment.

NUMERIC FUNCTIONS

ABS(X) (absolute value)
ABS returns the absolute value of the number, without its sign (+ or —). The
answer is always positive.

ATN(X) (arctangent)
Returns the angle, measured in radians, whose tangent is X.

COS(X) (cosine)
Returns the value of the cosine of X, where X is an angle measured in ra-
dians.

EXP(X)
Returns the value of the mathematical constant e(2.71828183) raised to the
power of X.

FNxx(X)
Returns the value of the user-defined function xx created in a DEF FNxx(X)
statement.

INT(X)

Returns the truncated value of X, that is, with all the decimal places to the
right of the decimal point removed. The result will always be less than, or equal
to, X. Thus, any negative numbers with decimal places will become the integer
less than their current value.

LOG(X) (logarithm)
Will return the natural log of X. The natural log to the base e (see EXP(X)). To
convert to log base 10, simpy divide by LOG(10).

PEEK(X)

Used to find out contents of memory location X, in the range 0-65535, giving a
result from 0-255. PEEK is often used in conjunction with the POKE statement.

138

RND(X) (random number)

RND(X) returns a random number in the range 0-1. The first random number
should be generated by the formula RND(— Tl) to start things off differently
every time. After this, X should be a 1 or any positive number. If X is zero, the
result will be the same random number as the last one.

A negative value for X will reseed the generator. The use of the same negative
number for X will result in the same sequence of “random” numbers.

The formula for generating a number between X and Y is:

N = RND(1)*(Y — X) + X

where,
Y is the upper limit
X is the lower range of numbers desired.

SGN(X) (sign)
This function returns the sign (positive, negative, or zero) of X. The result will
be + 1 if positive, 0 if zero, and — 1 if negative.

SIN(X) (sine)
SIN(X) is the trigonometric sine function. The result will be the sine of X,
where X is an angle in radians.

SQR(X) (square root)
This function will return the square root of X, where X is a positive number or
0. If X is negative, an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)
The result will be the tangent of X, where X is an angle in radians.

USR(X)

When this function is used, the program jumps to a machine language pro-
gram whose starting point is contained in memory locations. The parameter X
is passed to the machine language program, which will return another value
back to the BASIC program. Refer to the Commodore 64 Programmer’s
Reference Manual for more details on this function and machine language pro-
gramming.

STRING FUNCTIONS

ASC(XS$)
This function will return the ASCII code of the first character of X$.

CHR$(X)
This is the opposite of ASC, and returns a string character whose ASCII code
is X.

LEFTS$(X$,X)
Returns a string containing the leftmost X characters of $X.

LEN(XS$)

Returned will be the number of characters (including spaces and other sym-
bols) in the string X$.

139

MID$(X$,S,X)
This will return a string containing X characters starting from the Sth
character in X$.

RIGHT$(X$,X)
Returns the rightmost X characters in X$.

STR$(X)

This will return a string which is identical to the PRINTed version of X.

VAL(XS)

This function converts X$ into a number, and is essentially the inverse opera-
tion from STRS. The string is examined from the leftmost character to the right,
for as many characters as are in recognizable number format.

10 X = VAL(*123.456") X = 123.456
10 X = VAL(“12A13B") X = 12
10 X = VAL(“RIUO17") X=0
10 X = VAL(“ - 1.23.4567") X = —123

OTHER FUNCTIONS

FRE(X)

This function returns the number of unused bytes available in memory,
regardless of the value of X. Note that FRE(X) will read out in negative numbers
if the number of unused bytes is over 32K.

POS(X)

This function returns the number of the column (0-39) at which the next
PRINT statement will begin on the screen. X may have any value and is not
used.

SPC(X)
This is used in a PRINT statement to skip X spaces forward.

TAB(X)

TAB is also used in a PRINT statement; the next item to be PRINTed will be
in column X.

140

APPENDIX D
ABBREVIATIONS FOR BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commodore’s
BASIC for the 64 lets the user abbreviate most keywords. The abbreviation for
PRINT is a question mark. The abbreviations for other words are made by typing
the first one or two letters of the word, followed by the SHIFTed next letter of
the word. If the abbreviations are used in a program line, the keyword will LIST
in the full form.

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
ABS AE@Ees Al END E NE [
AND A Bilag N AZ EXP E BLIAE X E E]
ASC AEEs AY FN NONE FN

ATN A S 1 Al FOR r 3 o F [
CHR$ C Eiliag H CE]] FRE F &3l R F Q
coste ci@mo <[] GET Y s+ K: ¢
CLR c B3 . c GET# NONE GET#
CMD cgmvn <N Gosus GO [FIIED s Go(v]
cont c Bflo <[] coro cEmo o [
cos NONE cos IF NONE IF

DATA o G ~ D (&) INPUT NONE INPUT
DEF o @e o7 INPUT# | N A
DIM o B N INT NONE INT

141

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
teFts e CED F e 4 RIGHTS R [EED ! N
LEN NONE LEN RND R & N R /]
LET . TG ¢ L [RUN R (G v R A
LisT . EIE L 8] save s G A s (4]
a0 L @@Eoe [0 son sEm e sl
LOG ~ NONE LOG SIN s I N
mos mETER mAJ SPC(Y siF1 I s
NEW NONE NEW SQR s @ @ s @
NexT N (D E N 5 STATUS ST ST
not N (& o N 7] STEP S stiier i sTH
ON NONE ON stor s ONER T s]
oreN O P o] stes sTEEERR sTH
OR NONE OR SYS s Y s]
PEEK ¥ sHiFT Ji: P 3 TAB(T A T[4
POKE X shiFT e} r [TAN NONE TAN
POS NONE POS THEN T H T[]
PRINT 2 ? TIME Tl T
PRINT# P R P TIMES TI$ TI$
reap R (IED € R [USR v EED s ulw
REM NONE REM VAL v A v (4]
rResTORE Re (MR S RE ()] veriey v (EIED ¢ v [
RETURN Re (ED 7 re([] |war w DA ey

142

APPENDIX E
SCREEN DISPLAY CODES

The following chart lists all of the characters built into the 64’s character
sets. It shows which numbers should be POKEd into screen memory (locations
1024-2023) to get a desired character. Also shown is which character cor-
responds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means that
you cannot have characters from one set on the screen at the same time you
have characters from the other set displayed. The sets are switched by holding
down the WA and [Cz| keys simultaneously.

From BASIC, POKE 53272,21 will switch to upper case mode and POKE
53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The reverse
character code may be obtained by adding 128 to the values shown.

If you want to display a solid circle at location 1504, POKE the code for the
circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each
character displayed on the screen (locations 55296-56295). To change the color
of the circle to yellow (color code 7) you would POKE the corresponding
memory location (55776) with the character color: POKE 55776,7.

Refer to Appendix G for the complete screen and color memory maps, along
with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1, 27-64,
91-93, 96-104, 106-121, 123-127.

SCREEN CODES

SET1 SET2 POKE | SET1 SET2 POKE | SET1 SET2 POKE

@ 0 Cc c 3 F f 6
A a 1 D d 4 G g 7
B b 2 E e 5 H h 8

143

POKE

[Te]
o

3

N~
©

@©
[7e]

[o2]
o

o
~

-~
~

N
~

™
~

<
~

wn
~

o N~
~N ~

@©
~

[o2]
~

o
@®

-
[]

N
@®

[32]
@©

<
@®

0
@©

©
@©

N
@©

@
@®

[o2]
@®

8

1
(o]

N
(=]

m «mOOoOWuwLOOTI->Y¥ 132z 000axcowkF>S>3 X >N
(]
b FEIDOO0E85AA0ONODNeO0NENXO+ B e H k6
Y 5329592399532 38R 388583858833
o~
G
[
....n.%&,().+-_ ~ O =~ N O T OV O~ O O -<__>?B
(]
Yl oorooroer 228 s YR ILERNRIBFIB I8 8
o~
mi.l.klmnopo.rstuvwxv.z

(98]
- <
Ll - s ¥ oS z0a 0 o rF >D>2 x>N—wu—« |Ig- * o
[

144

SET1 SET2 POKE| S8ET1 SET2 POKE | SET1 SET2 POKE
M 3 | P A s | L 17
B e | 106 | [N 118
N N | [F w07 | O 119

9% | (o 108 | ™ 120
L o7 | (O 100 | 121
- 9% | {) 1m0 | 122
) 9 |] 1M | @l 123
O 100 | [H 112 [W 124
[] 101 | [13 | H] 125
B2 102 | 14 | W] 126
] 103 | H] 115 | Mg 127
= 10s | [J 116

Codes from 128-255 are reversed images of codes 0-127.

145

APPENDIX F
ASCIl AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT CHR$(X),
for all possible values of X. It will also show the values obtained by typing
PRINT ASC(“x”), where x is any character you can type. This is useful in
evaluating the character received in a GET statement, converting upper/lower
case, and printing character based commands (like switch to upper/lower case)
that could not be enclosed in quotes.

146

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
0 17 34 3 51
Ly . 18 35 4 52
2 | o™ 19 $ 36 5 53
3 20| % 37 6 54
4 21 & 38 7 55
B 5 22 39 8 56
6 23 (40 9 57
7 24) 41 58
oisasLes [N (QS 25 > 42 ; 59
evasLes (RN (Q9 26 + 43 - 60
10 27 , 44 = 61
AR - W - 45 > 62
12 Chs 29 46 ? 63
13 B 30 / 47 @ 64
14 | B 3 0 48 A 65 |
15 32 1 49 B 66
16 ! 33 2 50 C 67

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
D 68 | (4 97 126 | Greyd 155
E 69 | (][] 8 | N 127 |) 156
F 70 | H 99 128 P 157
G 7 | 5 100 | orange 129 | fEE 158
H 72 | & 101 130 | KB 159
| 73 |5 102 131 160
J 74 | [J] 103 132 |] e
K 75 | [104 | 1 133 162
L 76 | K] 105 | 13 134] 163
M 77 | Y 106 | f5 135 O 164
N 78 |] 107 | 7 13| [J 1es
o 79 | 108 | f2 137 B 166
P o | N 109 | t4 138 (] 167
a 8 |/ 10| t6 139 | k& 168
R 82 | [J 1m | 8 140 | P 169
S 83 | [] 112 | Rl 41 (1 170
T 8¢ | @ 13 142 | [H 171
u 8s | [114 143 | [172
v gs | (¥ 15 | [144 U 473
w 87 | I 116 145 Al 174
X 8 |4 17 | B 146 | b 175
v 8 | X 118 147 | [d 176
z 90 119 48 | A3 177
[91 | [120 | Brown 149 o 178
£ 92 | LI 121 | e 150 | H] 179
] 93 | [122 | eeytr 151] 180
) 94 | HH 123 Grey 2 152 | BT}
- 95 | Bl 124 | weeen 153 | [} 182
H 9 | Ul 125 | wew 154 | 7 183

I

147

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
™ 18 | [186 | (W 188 | M 190
e 85 | W] 187 | H) 189 | B 1o

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

148

APPENDIX G
SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing characters
on the screen, which locations are used to change individual character colors,
and they show character color codes.

SCREEN MEMORY MAP

COLUMN

0 10 20 30 39
1063

1024 —] 0

1064]

1104 ‘

1144 ! N

1188 1 ||

1224 i I

1264) BB

1304 IBE i !

1344 bl DR

1384 ! ! 1 RS -

1424 | 0 I D U

1464]]

1504

1544

1584

1624 j ! |

1664 B Hep. |

1704 T

1744 I

1784 I B

1824 | 20

1864

1904

1944

1984 24

i
2023

The actual values to POKE into a color memory location to change a
character’s color are:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

149

For example, to change the color of a character located at the upper left-hand
corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

COLUMN
0 10 20 30 39

55335

55296 — EEEEEEEEEREEREE I 0
55336 %]

55376 11 INERE
55416 I
55456 i 11 [
55496 ¥9] I |
55536 |l
55576
55616
55656 ! 17 i !
55696 I i mE ‘ 10
55736 '

55776 Feeete I B
I
|

Crr

L

= €

!

|
Moy

55816
55856 § IENNEEEAE
55896 |
55936 |
55976 111
56016 [T11 I
56056]
|

I O
i

.
s M

s

56096 i
56136] ENEEE
56176

56216
56256

20

H

|
T
[
!
|
— 11

|
| 1] 24

¢
56295

150

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to 64 BASIC may be calculated as follows:

FUNCTION BASIC EQUIVALENT

SECANT SEC(X) = 1/COS(X)

COSECANT CSC(X) = 1SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(— X*X + 1))

INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT
INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

ARCCOS(X)= — ATN(X/SQR
(=X*X+1) + X/2

ARCSEC(X)= ATN(X/SQR(X*X — 1))
ARCCSC(X) = ATN(X/SQR(X* X — 1))
+(SGN(X)— 1* XX /2)

ARCOT(X)= ATN(X)+ X /2

SINH(X) = (EXP(X) — EXP(— X))/2
COSH(X) = (EXP(X) + EXP(— X))/2
TANH(X) = EXP(— X)/(EXP(x) + EXP
(=x)*2+1

SECH(X) = 2/(EXP(X) + EXP(— X))
CSCH(X) = 2/(EXP(X) — EXP(— X))
COTH(X) = EXP(— XV(EXP(X)
—EXP(-X)*2+1

ARCSINH(X) = LOG(X + SQR(X* X + 1))
ARCCOSH(X) = LOG(X + SQR(X*X — 1))
ARCTANH(X) = LOG((1 + X)/(1 = X))/2
ARCSECH(X) = LOG((SQR

(= X*X+ 1)+ VX)

ARCCSCH(X) = LOG((SGN(X)* SQR
(X* X+ 1/x)

ARCCOTH(X) = LOG((X + 1)/(X — 1))/2

151

APPENDIX |
PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be made to
the 64.

1) Game I/0 5) Modular Output
2) Cartridge Slot 6) Cassette
3) Audio/Video 7) User Port
4) Serial I/0 (Disk/Printer)
Control Port 1
Pin Type Note
1 JOYAO
2 JOYA1
3 JOYA2
4 JOYA3
5 POT AY
6 BUTTON A/LP
7 +5V MAX. 100mA
8 GND
9 POT AX

-y
N
w
&
(3]

Control Port 2

2
5

Type Note
JOYBO
JOyB1
JOYB2
JOYB3
POT BY

BUTTON B
+5V MAX.100mA

GND
POT BX

OCONOO A WN =

152

Cartridge Expansion Slot Cartridge Expansion Slot

Pin Type Pin Type
1 GND 12 BA
2 + 5V 13 DMA
3 +5V 14 CD7
4 IRQ 15 CD6
5 CR/W 16 CD5
6 Dot Clock 17 CDh4
7 o 1 18 CD3
8 GAME 19 CD2
9 EXROM 20 CD1

10 110 2 21 CcDo

11 ROML 22 GND

Pin Type Pin Type
A GND N CA9
B ROMH P CA8

C RESET R CA7
D NMI S CA6
E S 02 T CA5
F CA15 U CA4
H CA14 v CA3
J CA13 w CA2
K CA12 X CA1
L CA11 Y CAO0
M CA10 z GND

2221201918 17161514131211109 8 7 6 5 4 3 2 1

———

ZYXWVUTSRPNMLKJHFEDCSBA

Audio/Video
Pin Type Note
1 LUMINANCE
2 GND
3 AUDIO OuT
4 VIDEO OUT
5 AUDIO IN
Cassette
Pin Type
A-1 GND 12 3 45 6

B-2 +5V
Cc-3 CASSETTE MOTOR

D-4 CASSETTE READ A BCDEHTF
E-5 CASSETTE WRITE
F-6 CASSETTE SENSE

153

Serial 110

Pin Type

SERIAL SRQIN
GND
SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
RESET

OB WN =

User 11O

p)
5

Type Note

GND
+ 5V MAX. 100mA
RESET
CNTI
SP1
CNT2
SP2
PC2
SER. ATN IN
10 9 VAC MAX. 100mA
11 9 VAC MAX. 100mA
12 GND

OCONOOBABWN =

Pin Type Note

GND
FLAG2
PBO
PB1
PB2
PB3
PB4
PBS
PB6
PB7
PA2
GND

ZrXceIMmMoOOm>»

1.2 3 456 7 8 9 10 11 12
—A AN E REEEBREBRE®R
T T e e ETWEEwwww

A BCDEFHUJIKLMN

154

APPENDIX J
PROGRAMS TO TRY

We've included a number of useful programs for you to try with your 64.
These programs will prove both entertaining and useful.

100
120
130
140
150
160
170
180
190
200
210
220
250
260
270
280
290
300
310
320
330
340
400
410
420
430
440
450
500
510
520
530
540
550
560
570

580
590
600
610
620
630
640
650
660

870
680
690
700
710
720
730

print"Bjotto jim butterfield"
input”"®want instructions";z%:ifasc(z$)=78g0t0250
print"®try to guess the mystery S-letter word"

print"Byou must guess only legal S-letter"
print"words, too..."

print"you will be told the number of matches"”
print"(or "jots’) of your gusss."
print"®hint: the trick is to vary slightly”

print" from one guess to the next; so that"
print" if you quess ’'hkatch’ and get 2 jots"”
print" you might try 'botch’ or 'chart’"
print” for the next guess..."

data bxbsf,ipccz,dbdif,esfbie,pqggbim

data hpshf,ibudi,djwjm,kpamnz, lbzbl

data stkbi,mfwfm,njnjd,bboofy,qjqfs

data rvftu,sjwfs,gsftt,puufs,fuwfou

data xfbwf, fyupm,nvtiz,afcsb,qjaaz

data uijdl,esvol,gnppe,ujhfs,gblfs

data cppui,mzjoh,trvbu,hbvaf,px joh

data uisff,tjhiu,bymft,hsvng,bsfob

data rvbsu,dsffg,cfmdi,qsftt,tqbsl

data sbtebs,svsbm,tnfmm,gspsxo,=s jgqu

n=50

dim n$(n),z(5),y(S)

for j=1ton:readns$(j):inext;

t=ti

t=t/1000:ift>=1theéngoto440

z=rnd(-t)

g=0:n8=n8(rnd(1)*¥n+1)

print "Bi have a3 five letter word:":ifr>0gotoS560
print '"guess (wWwith leaal words)"

print "and i’11 tell you how many"

print “’jots’, or matching letters,"”

print "you have...."

g=g+l:input "your word'";z$

if len(z$)<>Sthenprint'you must Juess a
S-letter word!":gotoS560

v=0:h=0:2m=0

for j=1toS
z=asc(mids(z%,j,1)):y=asc(mids(ns, j,1))-1:ify=64theny=90
ifz<6S0orz:90thenprint"that’s not a word'":30t03560
ifz=650rz=6%90rz=730orz=7%90rz=8%0rz=8%9thenv=v+1
ifz=ythenm=m+1

=(j)=z:y(j)=y:rnextj

ifm=Sg0to0l00

ifv=0orv=Sthenprint"come on..what kind of

3 word is that?":qo0to0560

tor j=1toS:y=y(j)

for k=1toS:ify=z(k)thenh=h+1:z(k)=0:20t0700
next k

next j

print"0DDDDUDDRODDDDDDDDDD" ;H; " JOTS"
1£g<30g0to0560

print"i’d.better tell you.. word was ’";

155

740 forj=1toS:printchrs$(y(;));snext;

750 print""":gotod810

800 print"you got it in only";g;"guesses."”
210 input"®another word";:z$

320 r=1:ifasc(c$)<>7890t0500

1 rem #%% seauence

2 rem

3 rem %% from pet user aroup

4 rem %% software exchanas

S rem *%* po box 371

b6 rem ¥**% montgomeryville, pa 18936
7 rem

S0 dim 38(26)

100 zs="abtcdefahi jklmnopgrstuvwiuz"

110 z1$="12345678901234567890123456"
200 print"30Benter lenath of strina to be seauencedd”
220 incut "maximum lenath is 26 "isi
230 if sZ<1 or si:2é then 200

240 s=sZ

200 for i=1 to s

310 asCi)=mids(z$,i,1)

320 next i

400 rem randomize string

420 for i=1 to =

430 k=int(rnd(1)ss+1)

440 ts=as$(i)

450 3%(i)=3$(k)

460 3$(h)=ts

470 next

480 aosub 950

8595 t=0

600 rem reverse cubistring

605 t=t+1

610 1nput "how many Lo reverse ";rX
620 if rk=0 goto 900

630 i1 f rZ>0 and r%Z<=s qoto 650

640 rrint "must be betwesn 1 and ";s: agoto 610
650 r=int(ri/2)

660 for i=1 to r

670 ts=as$(i)

680 3s(i)=as(ri-i+l)

690 as(rZ-i+l1)=ts

700 next

750 aosub 9%0

800 c=1: for 1=2 tc s

810 if 3%(i)>as(i—-1) goto 840
820 c=0

830 next

240 1f c=0 goto 6400

850 crint "Buou did it in "it;" tries”
900 rem check for another game

910 input "fwant to play 3aain ";ys$
920 if lefts(us, 1)="u" or ys="ok" or u$="1" goto 200
930 end

950 print

9260 print lefts(zls,s)

970 tor i=f1 to s: print 3$C1);:next
980 trint 0"

990 return

This program courtesy of Gene Deals

156

23 FEM FIAMD FEYEORRD

1oy FRIMT"Z X 80 Al | % ponah | M0
113 FRIMT™ o3 hb al | b B 60§ RE pf | Rf R
29 FPRIMT™ 3 bR w3 Loag ahom b Al ol b mE e

Hs 55 & & o I T S Y N A N A R
3 PRIMT" QUHMIEIRIT I LT P2 ey
G PRIMT"® SPACE"™ FOR Z0LD DR POLYFHOMIC!

FPRIMT"®'F1.FZ.FS DCTRYE LECTION"
FRINT "8 'F2.F4.F5 . F2° LRAYEFIRMA"
FRINT"HAMG OH, = WP FRECUENCY TAELE..."

—-I r=FleS. 2+ iFI=F1,
kT
CoMTDE B F DD =] tHERT

k::-;:"u -1._-EF"3T'-'«'v‘TIII_4
FORI=1TOLEH b £l sk 0 FyS
F'PIHT":J

HT—H'DE

+T . Z:FEM FIHIZH ATT.REL
PORECR 2 :FEM FI: OFF
ES+T . FR-HE®INT FFR-HE>» :REM ZET LO
EZ+1+T .FR.HE::FEM ZET HI
ES+e2+T .SV iFEM SET DEC, SIS
EZ+S+T A :iFEM SET ATT.FEL

ECR LM+ sFORI =1 TOSOeAT tHEXT
FOEECR WY :REM FULZE
IFP=1THEMY=""+1 : IF"=3THEH"'=

i
IFAE="5%" THEHIL
IFFE="8"THEH!
IFAE=" "THEHF
IFAE="J"THEHIDD
SOTDZ2G0
FRINT"HIT A KEY"

GETRE: (FFE=""THEZIZ LD LAIT FOR 5y 1 EY
FRIMTHE :FETLIFH

SISOT I A

NOTES:

Line 100 uses (SHIFT CLR/IHOME), Line 530 uses ({7)

(CTRL 9),(CTRL)),(SHIFT B). Line 540 uses (f2)

Line 150 uses (CRSR DOWN) Line 550 uses (14)

Line 240 uses (CRSR UP) Line 560 uses (f6)

Line 500 uses (f1) Line 570 uses (f8)

Line 510 uses (f3) Line 590 uses (SHIFT CLR/HOME)

Line 520 uses (15)

157

w11

20 HEN

APPENDIX K
CONVERTING STANDARD BASIC PROGRAMS
TO COMMODORE 64 BASIC

If you have programs written in a BASIC other than Commodore BASIC,
some minor adjustments may be necessary before running them on the 64.
We've included some hints to make the conversion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A state-
ment such as DIM A$(l,J), which dimensions a string array for J elements of
length I, should be converted to the Commodore BASIC statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation. Each of
these must be changed to a plus sign, which is the Commodore BASIC
operator for string concatenation.

In Commodore 64 BASIC, the MID$, RIGHTS$, and LEFTS$ functions are used
to take substrings of strings. Forms such as A$(1) to access the Ith character in
AS$, or A$(l,J) to take a substring of A$ from position | to J, mustbe changed as
follows:

Other BASIC Commodore BASIC
A3(l) = X$ A$ = LEFT$(AS,1— 1)+ X$+ MIDS(AS, + 1)
AS(J) = X$ AS$ = LEFT$(AS,I - 1)+ X$+ MIDS(AS,J + 1)

Multiple Assignments
To set B and C equal to zero, some BASICs allow statements of the form:

1OLETB=C=0

Commodore BASIC on the 64 would interpret the second equal sign as a
logical operator and set B = — 1 if C = 0. Instead, convert this statement to:

10C=0:B=0
Multiple Statements

Some BASICs use a backslash (\) to separate multiple statements on a line.
With Commodore BASIC, separate all statements by a colon (:).

MAT Functions
Programs using the MAT functions available on some BASICs must be
rewritten using FOR . . . NEXT loops to execute properly.

158

APPENDIX L
ERROR MESSAGES

This appendix contains a complete list of the error messages generated by
the 64, with a description of causes.

BAD DATA String data was received from an open file, but the program was ex-
pecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of an array
whose number is outside of the range specified in the DIM statement.

BREAK Program execution was stopped because you hit the STOP key.

CAN’T CONTINUE The CONT command will not work, either because the pro-
gram was never RUN, there has been an error, or a line has been edited.

DEVICE NOT PRESENT The required I/O device was not available for an OPEN,
CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not allowed.

EXTRA IGNORED Too many items of data were typed in response to an INPUT
statement. Only the first few items were accepted.

FILE NOT FOUND If you were looking for a file on tape, an END-OF-TAPE
marker was found. If you were looking on disk, no file with that name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT#, INPUT#, or
GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the number of an already
open file.

FORMULA TOO COMPLEX The string expression being evaluated should be
split into at least two parts for the system to work with, or a formula has too
many parentheses.

ILLEGAL DEVICE NUMBER Occurs when you try to access a device illegally
(e.g., LOADiIng from keyboard, screen, or RS-232C).

ILLEGAL DIRECT The INPUT statement can only be used within a program, and
not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or statement
is out of the allowable range.

LOAD There is a problem with the program on tape or disk.

MISSING FILE NAME LOADs and SAVEs from the serial port (e.g., the disk) re-
quire a file name to be supplied. Key in the file name.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops or hav-
ing a variable name in a NEXT statement that doesn’t correspond with one in a
FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from a file which
was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which was
specified as input only.

159

OUT OF DATA A READ statement was executed but there is no data left
unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for program or variables.
This may also occur when too many FOR loops have been nested, or when
there are too many GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest number
allowed, which is 1.70141884E + 38.

REDIM’D ARRAY An array may only be DIMensioned once. If an array variable is
used before that array is DIM’d, an automatic DIM operation is performed on
that array setting the number of elements to ten, and any subsequent DIMs will
cause this error.

REDO FROM START Character data was typed in during an INPUT statement
when numeric data was expected. Just re-type the entry so that it is correct, and
the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered, and no
GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

?SYNTAX ERROR A statement is unrecognizable by the 64. A missing or extra
parentheses, misspelled keywords, etc.

TOO MANY FILES You tried to OPEN more than 10 files at one time.

TYPE MISMATCH This error occurs when a number is used in place of a string,
or vice-versa.

UNDEF’D FUNCTION A user defined function was referenced, but it has never
been defined using the DEF FN statement.

UNDEF’D STATEMENT An attempt was made to GOTO or GOSUB or RUN a
line number that doesn't exist.

VERIFY The program on tape or disk does not match the program currently in
memory.

160

APPENDIX M
MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the values
to be POKEd into the HI FREQ and LOW FREQ registers of the sound chip to
produce the indicated note.

OSCILLATOR FREQ
MUSICAL NOTE Cycles/Sec. HIGH LOW
0 C-0 268 1 12
1 C#-0 284 1 28
2 D-0 301 1 45
&) D#-0 318 1 62
4 E-O 337 1 81
5 F-0 358 1 102
6 F#-0 379 1 123
7 G-0 401 1 145
8 G#-0 425 1 169
9 A-O0 451 1 195
10 A#-0 477 1 221
11 B-0 506 1 250
16 C-1 536 2 24
17 C#-1 568 2 56
18 D-1 602 2 90
19 D#-1 637 2 125
20 E-1 675 2 163
21 F-1 716 2 204
22 F#-1 758 2 246
23 G-1 803 &) 35
24 G#-1 851 &) 83
25 A-1 902 3 134
26 A#-1 955 &) 187
27 B-1 1012 3 244
32 C-2 1072 4 48
33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71
40 G#-2 1703 9 167
41 A-2 1804 7 12
42 A#-2 1911 7 119
43 B-2 2025 7 233
48 C-3 2145 8 97

161

OSCILLATOR FREQ.

MUSICAL NOTE Cycles/Sec. HIGH LOW
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 9 247
52 E-3 2703 10 143
53 F-3 2864 11 48
54 F#-3 3034 11 218
55 G-3 3215 12 143
56 G#-3 3406 13 78
57 A-3 3608 14 24
58 A#-3 3823 14 239
59 B-3 4050 15 210
64 C4 4291 16 195
65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239
68 E-4 5407 21 31
69 F-4 5728 22 96
70 F#-4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49
74 A#-4 7647 29 223
75 B-4 8101 31 165
80 C5 8583 33 135
81 C#-5 9094 35 134
82 D-5 9634 37 162
83 D#-5 10207 39 223
84 E-5 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
91 B-5 16203 63 75
96 C-6 17167 67 15
97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199
106 A#-6 30588 119 124

162

OSCILLATOR FREQ.
MUSICAL NOTE Cycles/Sec. HIGH LOW
107 B-6 32407 126 151
112 C-7 34334 134 30
113 C#-7 36376 142 24
114 D-7 38539 150 139
115 D#-7 40830 159 126
116 E-7 43258 168 250
117 F-7 45830 179 6
118 F#-7 48556 189 172
119 G-7 51443 200 243
120 G#-7 54502 212 230
121 A7 57743 225 143
122 A#-7 61176 238 248
123 B-7 64814 253 46
FILTER SETTINGS
Location Contents
54293 Low cutoff frequency (0-7)
54294 High cutoff frequency (0-255)
54295 Resonance (bits 4-7)
Filter voice 3 (bit 2)
Filter voice 2 (bit 1)
Filter voice 1 (bit 0)
54296 High pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0-3)

163

APPENDIX N

BIBLIOGRAPHY

Addison-Wesley “BASIC and the Personal Computer”, Dwyer and
Critchfield

Compute “Compute’s First Book of PET/CBM”

Cowbay Computing “Feed Me, I'm Your PET Computer”, Carol
Alexander
“Looking Good with Your PET”, Carol Alexander
“Teacher’'s PET — Plans, Quizzes, and Answers”

Creative Computing “Getting Acquainted With Your VIC 20", T. Hartnell

Dilithium Press “BASIC Basic-English Dictionary for the PET”,

Larry Noonan
“PET BASIC”, Tom Rugg and Phil Feldman

Faulk Baker Associates ‘“MOS Programming Manual’’, MOS Technology

Hayden Book Co. “BASIC From the Ground Up”, David E. Simon
“| Speak BASIC to My PET”, Aubrey Jones, Jr.
“Library of PET Subroutines”, Nick Hampshire
“PET Graphics”, Nick Hampshire

“BASIC Conversions Handbook, Apple, TRS-80, and
PET”, David A. Brain, Phillip R. Oviatt, Paul J.
Paquin, and Chandler P. Stone

Howard W. Sams “The Howard W. Sams Crash Course in
Microcomputers”, Louis E. Frenzel, Jr.
“Mostly BASIC: Applications for Your PET”,
Howard Berenbon
“PET Interfacing”, James M. Downey and Steven
M. Rogers

“VIC 20 Programmer’s Reference Guide”, A. Finkel,
P. Higginbottom, N. Harris, and M. Tomczyk

Level Ltd. “Programming the PET/CBM’’, Raeto West.
Little, Brown & Co. “Computer Games for Businesses, Schools, and
Homes”, J. Victor Nagigian, and William S. Hodges

“The Computer Tutor: Learning Activities for
Homes and Schools”, Gary W. Orwig, University of
Central Florida, and William S. Hodges

McGraw-Hill “Hands-On BASIC With a PET"”, Herbert D.
Peckman

“Home and Office Use of VisiCalc”, D. Castlewitz,
and L. Chisauki

164

Osborne/McGraw-Hill

P. C. Publications
Prentice-Hall

Reston Publishing Co.

Telmas Courseware
Ratings

Total Information
Services

“PET/CBM Personal Computer Guide”, Carroll S.
Donahue

“PET Fun and Games”, R. Jeffries and G. Fisher
“PET and the IEEE”, A. Osborne and C. Donahue

“Some Common BASIC Programs for the PET”, L.
Poole, M. Borchers, and C. Donahue

“Osborne CP/M User Guide”, Thom Hogan

“CBM Professional Computer Guide”

“The PET Personal Computer Guide”

“The 8086 Book”, Russell Rector and George Alexy

“Beginning Self-Teaching Computer Lessons”

“The PET Personal Computer for Beginners”, S.
Dunn and V. Morgan

“PET and the IEEE 488 Bus (GPIB)”, Eugene Fisher
and C. W. Jensen

“PET BASIC — Training Your PET Computer”,
Ramon Zamora, Wm. F. Carrie, and B. Albrecht

“PET Games and Recreation”, M. Ogelsby, L.
Lindsey, and D. Kunkin

“PET BASIC”, Richard Huskell
“VIC Games and Recreation”

“BASIC and the Personal Computer”, T. A.
Dwyer, and M. Critchfield

“Understanding Your PET/CBM, Vol. 1,
BASIC Programming”

“Understanding Your VIC”, David Schultz

Commodore Magazines provide you with the most up-to-date information for
your Executive 64. Two of the most popular publications that you should
seriously consider subscribing to are:

COMMODORE — The Microcomputer Magazine is published bi-monthly and is
available by subscription ($15.00 per year, U.S., and $25.00 per year, worldwide).

POWER/PLAY — The Home Computer Magazine is published quarterly and is
available by subscription ($10.00 per year, U.S., and $15.00 per year worldwide).

165

APPENDIX O
SPRITE REGISTER MAP

Register #
Dec Hex | D87 | D86 | 085 | D84 | D83 | D82 | D81 | D80
0 0 |SOox7 SO0XO SPRITE O X
Component
1 1 SOoY7 SO0YO SPRITEO Y
Component
2 2 S1X7 S1X0 SPRITE 1 X
3 3 |s1y7 S1Y0 SPRITE 1Y
4 q S2x7 S2X0 SPRITE 2 X
5 5 S2Y7 S2Y0 SPRITE2 Y
6 6 | S3X7 S3X0 SPRITE 3 X
7 7 S3Y7 S3Y0 SPRITE 3 Y
8 8 | S4x7 S4X0 SPRITE 4 X
9 9 S4Y7 S4Y0 SPRITE 4 Y
10 A | S5x7 S5X0 SPRITE 5 X
1 B | S5Y7 S5Y0 SPRITES Y
12 C | Sex7 S6X0 SPRITE 6 X
13 D |s6Y7 S6YO SPRITE 6 Y
14 E S7X7 S7X0 SPRITE 7 X
Component
15 F S7Y7 S7Y0 SPRITE7 Y
Component
16 10 | S7X8| S6X8 | S5X8 | S4X8 | S3X8 | S2X8 | S1X8 | SOX8 MSB of X N
COORD.
17 11 RC8 | ECM | BMM | BLNK | RSEL |YSCL2 |YSCL1|YSCLO Y SCROLL
MODE
18 12 RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RCO RASTER
19 13 LPX7 LPX0 LIGHT PEN X
20 14 [Lpy7 LPYO | LIGHT PEN Y.

166

Register #
Dec Hex | D87 | DB6 | D85 | D84 | D83 | D82 | D81 | D80
21 15 SE7 SEO SPRITE
ENABLE
(ON/OFF)
22 16 N.C. | N.C. | RST | MCM |CSEL [XSCL2|XSCL1|XSCLO X SCROLL
MODE
23 17 |SEXY7| SEXYO0 SPRITE
EXPAND Y
24 18 |VS13| VS12 | VS11 | VS10 |CB13 |CB12 |CB11| N.C. SCREEN
Character
Memory
25 19 IRQ | N.C. | NC. | N.C. |LPIRQ]ISSC | ISBC | RIRQ Interupt
Request's
26 1A N.C. | NC. | NC. | N.C. | MLPI MISSC|MISBC|MRIRQ Interupt
Request
MASKS
27 1B |BSP7 BSPO Background-
Sprite
PRIORITY
28 1C |SCM7 SCMO Multicolor
SPRITE
SELECT
1D [SEXX7 SEXXO SPRITE
EXPAND X
30 1E |SSC7 SSCO | Sprite-Sprite
COLLISION
31 1F |SBC7 SBCO Sprite-
Y Background
COLLISION
Register # Register #
Dec Hex Color Dec Hex Color
32 20 BORDER COLOR 39 27 SPRITE 0 COLOR
33 21 BACKGROUND 40 28 SPRITE 1 COLOR
COLOR 0
4 29 SPRITE 2 COLOR
34 22 BACKGROUND
COLOR 1 42 2A SPRITE 3 COLOR
35 23 BACKGROUND 43 2B SPRITE 4 COLOR
COLOR 2 44 2c SPRITE 5 COLOR
36 24 BACKGROUND
45 2D SPRITE 6 COLOR
COLOR 3 oo
4 2l PRITE 7 R
37 25 SPRITE 6 € > E7.S00
MULTICOLOR 0
38 26 SPRITE
MULTICOLOR 1

167

COLOR CODES

Dec Hex Color Dec Hex Color
0 0 BLACK 8 8 ORANGE
1 1 WHITE 9 9 BROWN
2 2 RED 10 A LT. RED
3 3 CYAN 1 B GRAY 1
4 4 PURPLE 12 C GRAY 2
5 5 GREEN 13 D LT. GREEN
6 6 BLUE 14 E LT. BLUE
7 7 YELLOW 15 F GRAY 3
LEGEND

ONLY COLORS 0-7 MAY BE USED IN MULTICOLOR CHARACTER MODE

168

APPENDIX P
6566/6567 (VIC-1l) CHIP REGISTER MAP

The 6566/6567 are multi-purpose color video controller devices for use in
both computer video terminals and video game applications. Both devices con-
tain 47 control registers which are accessed via a standard 8-bit micro-
processor bus (656XX) and will access up to 16K of memory for display informa-
tion. The various operating modes and options within each mode are described.

ADDRESS *].Y4 .1} D8s D84 oe3l D82 D81 080 DESCRIPTION
00 ($00) MOX? MOX6 MOXS MOX4 MOX3 MOX2 MOXI MOXO MOB O X-position
01 (301) MOY7 MOY6 MOYS MOY4 MOYI MOY2 MOYl MOYO MOB O Y-position
02 (302) MIX7 MIX6 MIXS MIX4 MIX3 MIX2 MIX1 MIX0 MOB 1 X-position
03 (303) MIY7 MIY6 MIYS MIY4 MIYI MIY2 MIYT MIYO MOB 1 Y-position
04 (304) M2X7 M2X6 M2XS5 M2X4 M2X3 M2X2 M2X1 M2X0 MOB 2 X-position
05 (305) M2Y7 M2Y6 M2Y5 M2Y4 M2Y3 M2Y2 M2Y] M2Y0 MOB 2 Y-position
06 (308) M3X7 M3IX6 M3IXS M3IX4 M3IXI M3IX2 M3IXT M3IX0O MOB 3 X-position
07 (307 M3IY7 M3Y6 M3IY5 M3IY4 M3IY¥YI M3IY2 M3IY1 M3IYO MOB 3 Y-position
08 (308) MAX7 MAXE M4AXS M4AX4 MaXI M4AX2 M4aXT MaX0 MOB 4 X-position
09 (309) MAY7 MAYS MAYS MAY4 MAYI MAY2Z M4AYL M4AY0 MOB 4 Y-position
10 (30A) M5X7 M5X6 M5X5 MS5X4 MSX3 M5X2 MSX1 M5X0O MOB 5 X-position
11 (308) M5Y7 MSY6 MSYS M5Y4 MS5YI MS5Y2 MSYT MSY0 MOB 5 Y-boli'ioﬂ
12 (30Q) M6EX7 MOXE MEXS M6EX4 M6EXI M6EX2 MEXT MEXO0 MOB & X-position
13 (300) MOY7 MEYS MOYS MEY4 MEYI MEY2 MOYI MEYD MOB 6 Y-position
14 (SOE) M7X7 M7X6 M7XS5 M7X4 M7X3 M7X2 M7X1 M7X0 MOB 7 X-position
15 ($0F) M7Y7 M7Y6 M7Y5 M7Y4 M7Y3 M7Y2 M7Y1 M6YO MOB 7 Y-position
16 (310) M7X8 M6X8 M5X8 M4X8 MIXB M2X8 MIX8 MOX8 MSB of X-position
17 ($11) RC8 ECM BMM DEN RSEL Y2 Yl Y0 See text

18 (312) RC7 RC6 RCS RC4 RC3 RC2 RCY RCO Raster register

19 (313) LPXx8 LPX7 LPX6 LPXS LPX4 LPX3 LPX2 LPX) Light Pen X

20 (314} LPY7 LPYS LPYS LPY4 LPY3 LPY2 LPY) LPYO Light Pen Y

21 (315) M7E M6E MSE MJE M3E M2E MIE MOE MOB Enable

22 (316) o —_ RES MCM CSEL X2 X1 X0 See rext

23 $17) M7YE M6OYE MSYE MAYE M3IYE M2YE MIYE MOYE MOB Y-expand

24 (%18) VMI13 VMI2 VMiI1 VMIO CB13 CB12 (CBII - Memory Pointers

25 (319) IRQ e o _ ILP IMMC IMBC IRST Interrupt Register
26 ($1A) S o S o ELP EMMC EMBC ERST Enable Interrupt

27 (318) M70P M6DP MSDP M4DP M3DP M20P MIDP MODP MOB-DATA Priority
28 (310 M7MC MOMC MSMC MAMC MIMC M2ZMC MIMC MOMC MOS8 Multicolor Sel
29 (310) M7XE M6OXE MSXE M4XE M3IXE M2XE MIXE MOXE MOB X-expand

30 ($1E) M7M MM M5M MM MIM M2M MIM MOM MOB-MOB Collision
31 ($1F) M70 M6D M50 M40 M30 Mm20 MI1D MO0D MOB-DATA Collision
32 (320) e o o o EC3 EC2 ECI ECO Exterior Color

33 (32)) o o — S B80C3 B80C2 BOCI BOCO Bkgd #0 Color

34 (322) e e e o B1C3 B81C2 BICI BICO Bkgd #1 Color

35 (323) - —_ S S 82C3 B82C2 B2CI B82CO Bkgd #2 Color

36 (324) e — S S 83C3 83C2 B83C! B83CO Bkgd #3 Color

37 (325) e — — - MM03 MM02 MMOI MMO0 MOB Muiticolor #0
38 (326) e e —_ —_ MM13 MMI2 MMI1 MMI0 MOB Multicolor #1
39 (327) o — —_ —_ MOC3 M0C2 MOCI MOCO MOB 0 Color

40 (328) e e c o MIC3 MIC2 MIC1I MICO MOB 1 Color

41 (329) e o o e M2C3 M2C2 M2C1 M2CO0 MOB 2 Color

42 (32A) e o —_ — M3C3 M3C2 M3CT M3ICO MOB 3 Color

43 (328) e e o = M4C3 M4C2 M4Cl M4CO MOB 4 Color

44 (320) e e S ey MS5C3 M5C2 MSC! M5CO MOB 5 Color

45 (320) —_ o o —_ M6C3 M6C2 MOC! MOCO MOB 6 Color

46 (32€) = = = —_ M7C3 M7C2 M7C1 M7CO0 MOB 7 Color
[NOTE: A dosh indicores o no connect. All no connects are read as o “1." _}

L.

169

APPENDIX Q
COMMODORE 64
SOUND CONTROL SETTINGS

This handy table gives you the key numbers you need to use in your sound
programs, according to which of the 64’s 3 voices you want to use. To set or ad-
just a sound control in your BASIC program, just POKE the number from the se-
cond column, followed by a comma (,) and a number from the chart . .. like this:
POKE 54276,17 (Selects a Triangle Waveform for VOICE 1).

Remember that you must set the VOLUME before you can generate sound.
POKES54296 followed by a number up to 15 to set the volume for all 3 voices.

It takes 2 separate POKEs to generate each musical note. For example
POKES54273,33:POKES54272,135 designates low C in the sample scale below.

Also, you aren’t limited to the numbers shown in the tables. If 33 doesn’t
sound “right” for a low C, try 34. To provide a higher SUSTAIN or ATTACK rate
than those shown, add two or more SUSTAIN numbers together. (Examples:
POKES54277,96 combines two attack rates (32 and 64) for a combined higher at-
tack rate, POKE54277,20 provides a low attack rate (16) and a medium decay
rate (4).

170

SETTING VOLUME — SAME FOR ALL 3 VOICES

VOLUME CONTROL Settings range from O (off) to 15 (loudest)

VOICE NUMBER 1

[TO CONTROL] POKE THIS FOLLOWED BY ONE OF THESE NUMBERS
THIS SETTING: NUMBER: (0to15...o0r...0 to 255 depending on range)
TO PLAY A NOTE C|ICs |D|D#|E FIFe|G |Gy | A |A® | B
HIGH FREQUENCY 54273 33 |35 [37 |39 |42 | 44 |47 |50 | 53 |56 |59 |63
LOW FREQUENCY 54272 135 |1 134 [162 223 | 62 | 193|107 | 60 | 57 | 99 |190 | 75
" WAVEFORM POKE TRIANGLE SAWTOOTH PULSE NOISE
- | 54278 7 3 | e | 129 | |

PULSE RATE (Pulse Waveform)
HI PULSE 54275 | A value of 0 to 15 (for Pulse waveform only)

LO PULSE 54274 A value of 0 to 255 (for Pulse waveform only)
ATTACK/DECAY | POKE | ATk4 |ATK3 | ATK2 | ATK1 |DEC4 | DEC3 | DEC2 | DEC1
| sa277 | 128 | 6a [32| 6 [8 | 4 | 2 | 1
SUSTAIN/RELEASE POKE sus4 | sus3 | susz | sus1 [ReLs | REL3 | REL2 | REL1
54278 128 | 64 | 32 | 16 8 4 2 1

VOICE NUMBER 2

TO PLAY A NOTE C|Cy|D|DW|E|F |F¥|]G|G¥|A |A® |B
HIGH FREQUENCY 54280 33 |35 |37 |39 |42 |44 | 47 | S0 [53 |56 [59 |63
LOW FREQUENCY 54279 135|134 162|223 [62 | 193|107 | 60 | 57 | 99 [190 |75

WAVEFORM POKE TRIANGLE | SAWTOOTH PULSE NOISE
54283 17 3 [e | 129

PULSE RATE (Pulse Waveform)
HI PULSE 54282 | A value of 0 to 15 (for Pulse waveform only)

LO PULSE 54281 A value of 0 to 255 (for Pulse waveform only)
|
l ATTACKIDECAY | POKE | ATk4 | ATK3 | ATK2 | ATK1 |DEC4 | DEC3 | DEC2| DECT [

| 54284 | 128 | 64 | 321 6 | 8 | « | 21 1+ W
|
lSUSTAIN/RELEASE I POKE susalsusalsusz sust | REL4 lneulneul REL1 I

54285 128 | 64 | 32 16 8 4 2 1

VOICE NUMBER 3

TO PLAY A NOTE
HIGH FREQUENCY

LOW FREQUENCY

WAVEFORM

54290 17| 3 [65 | 129
|
PULSE RATE (Pulse Waveform) | |
HI PULSE I 54289 A value of 0 to 15 (for Pulse waveform only) I
LO PULSE 54288 A value of 0 to 255 (for Pulse waveform only)

ATTACKIDECAY | POKE | ATKa |ATK3 | ATK2 | ATK1 [DEC4 | DEC3 | DEC2 | DEC1 [
54291 [8 [« | 2|

SUSTAIN/RELEASE POKE ISUSA SUS3 | SUS2 | SUST | REL4 | REL3 | REL2 | REL1

128 64

| 54202

171

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

Instrument Waveform Attack/Decay Sustain/Release Pulse Rate

Piano Pulse 9 0 Hi-0, Lo-255

Flute Triangle 96 0 Not applicable
Harpsichord Sawtooth 9 0 Not applicable
Xylophone Triangle 9 0 Not applicable
Organ Triangle 0 240 Not applicable
Colliape Triangle 0 240 Not applicable
Accordian Triangle 102 0 Not applicabie
Trumpet Sawtooth 96 0 Not applicable

MEANINGS OF SOUND TERMS

ADSR — Attack/Decay/Sustain/Release

Attack — rate sound rises to peak volume

Decay — rate sound falls from peak volume to sustain level

Sustain — prolong rate at certain volume level
Release — rate at which volume falls from sustain level

Waveform — “shape” of sound wave
Pulse — tone quality of Pulse Waveform

NOTE: Attack/Decay and Sustain/Release settings should always be POKEd in your program BEFORE
the Waveform is POKEd.

172

APPENDIX R

6581 SOUND INTERFACE DEVICE (SID)
CHIP SPECIFICATIONS

CONCEPT

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electronic
music synthesizer/sound effects generator compatible with the 6510 and
similar microprocessor families. SID provides wide-range high-resolution con-
trol of pitch (frequency), tone color (harmonic content), and dynamics (volume).
Specialized control circuitry minimizes software overhead, facilitating use in ar-
cade/home video games and low-cost musical instruments.

FEATURES

¢ 3 TONE OSCILLATORS
Range: 0-4 kHz
4 WAVEFORMS PER OSCILLATOR
Triangle, Sawtooth,
Variable Pulse, Noise
3 AMPLITUDE MODULATORS
Range: 48 dB
3 ENVELOPE GENERATORS
Exponential response
Attack Rate: 2 ms-8 s
Decay Rate: 6 ms-24 s
Sustain Level: 0-peak volume
Release Rate: 6 ms-24 s
OSCILLATOR SYNCHRONIZATION
¢ RING MODULATION

DESCRIPTION

The 6581 consists of three synthesizer “voices” which can be used in-
dependently or in conjunction with each other (or external audio sources) to
create complex sounds. Each voice consists of a Tone Oscillator/Waveform
Generator, an Envelope Generator and an Amplitude Modulator. The Tone
Oscillator controls the pitch of the voice over a wide range. The Oscillator pro-
duces four waveforms at the selected frequency, with the unique harmonic con-
tent of each waveform providing simple control of tone color. The volume
dynamics of the oscillator are controlled by the Amplitude Modulator under the
direction of the Envelope Generator. When triggered, the Envelope Generator
creates an amplitude envelope with programmable rates of increasing and
decreasing volume. In addition to the three voices, a programmable Filter is pro-
vided for generating complex, dynamic tone colors via subtractive syntheses.

SID allows the microprocessor to read the changing output of the third
Oscillator and third Envelope Generator. These outputs can be used as a
source of modulation information for creating vibrato, frequency/filter sweeps
and similar effects. The third oscillator can also act as a random number
generator for games. Two A/D converters are provided for interfacing SID with
potentiometers. These can be used for “paddles” in agame environment or as
front panel controls in a music synthesizer. SID can process external audio
signals, allowing multiple SID chips to be daisy-chained or mixed in complex
polyphonic systems.

173

\ZA"

o v s N

~

21
22
23
24

25
26
27
28

o oo oo oo

o ©o o © o o o

o o

o o oo o oo

o

o oo oo

- o oo

ADDRESS
Az
0

- o o o

-~ o o oo

o

o o o

-~ o o -

>

'0

© - o - o = o

o~ 0 =0 = o0 50 = O = O

o -~ o =

o -~ o =

REG #
(HEX)

co
01
02
03
04
05
06

08
09
0A
oB
oC
0D

DATA
o, g Ds D, D, D, Dy Do
F; e Fo Fa Fa [3 Fo
Fis | Fua Fia Fi2 Fu | Fuo Fg Fa
[Pw, PWg PWsg PW, PW, PW, W, PW,
—= I = I =1 = PWy, | PWy | PWg | PWg
| NOISE | UL | A | AN | TEST | s | sync | caTE
ATK; | ATK, | ATK, | ATK, | DCY; | DCY, | DCY, | DCYq |
STN, | STNy | STN, | STNg | RLS; | RLs, | RLS; | RLSg
B> (A Fo Fo Fy | F, F Fo
Fis Fra Fia Fi2 Fin Fio | Fo Fg
PW; PWe | PWs | PW, PW, PW, PW, PW,
= = = - PWy, | PWy | PWg | PWg
NOISE | TUL | 11 | A | TEsT | RBINS [syNC | GATE
| ATK; | ATK, | ATK, | ATKg | DCY; | DCY, | DCY, | OCYq
STN; | STN, | STN, | STNg | RLS; | RS, | RLS, | RLSg
£, B3 Fo Fa Fy F, & Fo
Fis Fra Fi3 Fi2 F Fio Fo Fs
PW, PWe | PWs | PW, PwW, | Pw, | PW, | PW,
- - = = PWyy | PWyg PWq PWs
NoISE | TUL | 41 | A | TesT | U85 | sync [Gare
ATk, | ATK, | ATK, | ATKg | DCY; | DCY, | DCY, | DCYq
STN; | STN, | STN, | STNg | RLs; | RS, | RLS, | RLSg
= - - = = FC, FC, FCo
FCho FCo FCq FC, FCq FCy FCq FC,
RES, | RES, | RES, | RESp | FILTEX | FLT 3 | FILT 2 | FILT 1
30FF | HP BP e voL, | voL, | vou, | voig
=S —y
PX; PXg PXs PX, PXy PX, PX, PXo
PY, PYg PYy PY, PYq PY, PY, PYq
@ o [o o 0, Op
O 3 s J 3 2 i
3] Eg Es Ea Ey E; € Eo

REG NAME
Voice 1

FREQ LO

FREQ HI

PW LO

PW HI
CONTROL REG
ATTACK/DECAY
SUSTAIN/RELEASE
Voice 2

FREQ LO

FREQ HI
PWLO

PW HI
CONTROL REG
ATTACK/DECAY
SUSTAIN/RELEASE
Voice 3

FREQ LO

FREQ HI
PWLO

PW HI
CONTROL REG
ATTACK/DECAY
SUSTAIN/RELEASE
Filter

FCLO

FC HI

RES/FILT
MODE/VOL
Misc.

POT X

POTY
OSC3/RANDOM
ENVy

REG

TYPE
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY

WRITE-ONLY
WRITE-ONLY
WARITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY

WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY

WRITE-ONLY
WRITE-ONLY
WRITE-ONLY
WRITE-ONLY

READ-ONLY
READ-ONLY
READ-ONLY
READ-ONLY

dow Jays16ay QIS "L 31901

‘L 8lqelL
16a1 asay)

-1yb19 gz aJe aseyy

19 ale SI9)s

I| ase pue Ajuo-Qv3y 40 AJUO-3LIHM Byl
q

SYH31SI1934 TOHLNOD aiIS

1621}

19q pais
‘punos jo uoyesauab ay} |04)U0D YaIYM QIS Ul S19IS

ul mo

APPENDIX S
DISK and PRINTER COMMANDS and
STATEMENTS

The following BASIC commands and statements let you perform a variety of
operations on disk drives and any compatible Commodore printer.

CLOSE

TYPE: I/0 Statement
FORMAT: CLOSE < file number >

Action: This statement shuts off any data file or channel to a device. The file
number is the same as when the file or device was OPENed (see OPEN state-
ment and the section on INPUT/OUTPUT programming).

When working with storage devices like disks, the CLOSE operation stores
any incomplete buffers to the device. When this is not performed, the file will
be unreadable on the disk. The CLOSE operation isn’t as necessary with other
devices, but it does free up memory for other files. See your external device
manual for more details.

EXAMPLES of CLOSE Statement:

10 CLOSE 1
20 CLOSE X
30 CLOSE9 * (1 + J)

CMD

TYPE: I/0 Statement
FORMAT: CMD < file number > [,string]

Action: This statement switches the primary output device from the TV
screen to the file specified. This file could be on disk, printer, or an /O device
like the modem. The file number must be specified in a prior OPEN statement.
The string, when specified, is sent to the file. This is handy for titling printouts,
etc.

When this command is in effect, any PRINT statements and LIST commands
will not display on the screen, but will send the text in the same format to the
file.

Tore-direct the output back to the screen, the PRINT# command should send
a blank line to the CMD device before CLOSEing, so it will stop expecting data
(called “un-listening” the device).

Any system error (like 2SYNTAX ERROR) will cause output to return to the
screen. Devices aren’t un-listened by this, so you should send a blank line
after an error condition. (See your printer or disk manual for more details.)

175

EXAMPLES of CMD Statement:

OPEN 4, 4: CMD 4, “TITLE” : LIST: REM LISTS PROGRAM ON
PRINTER
PRINT# 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 8, 4, “TEST”: REM CREATE SEQ FILE

20 CMD 8: REM OUTPUT TO TAPE FILE, NOT SCREEN
30 FORL = 1TO 100
40 PRINT L: REM PUTS NUMBER IN DISK BUFFER
50 NEXT _
60 PRINT# 1: REM UNLISTEN
70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY
FINISH
GET#

TYPE: 1/0 Statement
FORMAT: GET# (file number) , {variable list)

Action: This statement reads characters one-at-a-time from the device or file
specified. It works the same as the GET statement, except that the data comes
from a different place than the keyboard. If no character is received, the variable
is set to an empty string (equal to **”) or to 0 for numeric variables. Characters
used to separate data in files, like the comma (,) or key code (ASC code
of 13), are received like any other character.

When used with device #3 (TV screen), this statement will read characters
one by one from the screen. Each use of GET# moves the cursor 1 position to
the right. The character at the end of the logical line is changed to a CHR$ (13),
the key code.

EXAMPLES of GET# Statement

5 GET#1,A$
10 OPEN 1, 3: GET# 1, 27$
20 GET#1, A, B, CS, D$

176

INPUT#

TYPE: 110 Statement
FORMAT INPUT# (ﬁle number) , (variable list)

Action: This is usually the fastest and easiest way to retrieve data stored in a
file on disk. The data is in the form of whole variables of up to 80 characters in
length, as opposed to the one-at-a-time method of GET#. First, the file must
have been OPENed, then INPUT# can fill the variables.

The INPUT# command assumes a variable is finished when it reads a
RETURN code (CHR$(13)), a comma (), semicolon (;), or colon(;). Quote marks
can be used to enclose these characters when writing if they are needed (See
PRINT# statement).

If the variable type used is numeric, and non-numeric characters are received,
a BAD DATA error results. INPUT# can read strings up to 80 characters long,
beyond which a STRING TOO LONG error results.

When used with device #3 (the screen), this statement will read an entire
logical line and move the cursor down to the next line.

EXAMPLES of INPUT# Statement:

10 INPUT# 1, A
20 INPUT# 2, AS, BS

LOAD

TYPE: Command
FORMAT LOAD “ { file-name) ” ,{ device) [, { address >]

Action: The LOAD statement reads the contents of a program file from disk
into memory. That way you can use the information LOADed or change the in-
formation in some way. The disk unit is normally device number 8. The LOAD
closes all open files and, if it is used in direct mode, it performs a CLR (clear)
before reading the program. If LOAD is executed from within a program, the
program is RUN. This means that you can use LOAD to “chain” several pro-
grams together. None of the variables are cleared during a chain operation.

If you are using file-name pattern matching, the first file which matches the
pattern is loaded. The asterisk in quotes by itself (“*”) causes the first file-name
in the disk directory to be loaded. If the file-name used does not exist or if it is
not a program file, the BASIC error message ?FILE NOT FOUND occurs.

If you use the secondary address of 1 this will cause the program to LOAD to
the memory location from which it was saved.

EXAMPLES of LOAD Command:

LOAD A$,8 (Uses the name in A$ to search)
LOAD “*”8 (LOADs first program from disk)
LOAD “$”,8 (LOADs disk directory)

LOAD “FUN”,8 (LOAD a file from disk)
SEARCHING FOR FUN

LOADING

READY.

LOAD “GAME ONE”,8,1 (LOAD a file to the specific memory
SEARCHING FOR GAME ONE location from which the program was
LOADING saved on the disk)

READY.

177

OPEN

TYPE: /0 Statement
FORMAT: OPEN (file-num) , {device)> [,{ address)] [,“{ file-name)

[, {type) 11, {mode) "]

Action: This statement OPENs a channel for input and/or output to a
peripheral device. However, you may NOT need all those parts for every OPEN
statement. Some OPEN statements require only 2 codes:

1) LOGICAL FILE NUMBER
2) DEVICE NUMBER

The {file-num) is the logical file number, which relates the OPEN, CLOSE,
CMD, GET#, INPUT#, and PRINT# statements to each other and associates
them with the file-name and the piece of equipment being used. The logical file
number can range from 1 to 255 and you can assign it any number you want in
that range.

NOTE: File numbers over 128 were really designed for other uses so it’s good
practice to use only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive) in the system has its own number
which it answers to. The {device)» number is used with OPEN to specify on
which device the data file exists. Peripherals like disk drives or printers also
answer to several secondary addresses. Think of these as codes which tell
each device what operation to perform. The device logical file number is used
with every GET#, INPUT#, and PRINT#.

The file-name can also be left out, but later on in your program you can NOT
call the file by name if you have not already given it one.

Fordisk files, the secondary addresses 1thru 14 are available fordata-files,
but other numbers have special meanings in DOS commands. Youmustusea
secondary address when using yourdiskdrive(s). (See yourdisk drive manual
for DOS command details.)

The { file-name) is a string of 1-16 characters and is optional for printer
files. If the file (type) is left out the type of file will automatically default to
the Program file unless the mode is given. Sequential files are OPENed for
reading { mode)» =R unless you specify that files should be OPENed for
writing { mode) =W is specified. A file { type) can be used to OPEN an ex-
isting Relative file. Use REL for (type) with Relative files. Relative and Se-
quential files are for disk only.

If youtry to access a file before it is OPENed the BASIC error message ?FILE
NOT OPEN will occur. If you try to OPEN a file for reading which does not exist
the BASIC error message ?FILE NOT FOUND will occur. If a file is OPENed to
disk for writing and the file-name already exists, the DOS error message FILE
EXISTS occurs. If a file is OPENed that is already OPEN, the BASIC error
message FILE OPEN occurs. (See Printer Manual for further details.)

178

EXAMPLES of OPEN Statements:
10 OPEN 2, 8, 4 “DISK-OUTPUT,

SEQ,W” (Opens sequential file on disk) —
For Write
10 OPEN 50, 0 (Keyboard input)
10 OPEN 12,3 (Screen output)
10 OPEN 130, 4 (Printer output)
10 OPEN 1,2,0, CHR$(10) (Open channel to RS-232 device)
10 OPEN 1,4,0, “STRING” (Send upper casel/graphics to the
printer)
10 OPEN 1,4,7, “STRING” (Send upper/lower case to printer)
10 OPEN 1,5,7, “STRING” (Send upper/lower case to printer
with device #5)
10 OPEN 1,8,15, “COMMAND” (Send a command to disk)
10 OPEN 1,8,1, “NAME,L” + (Relative file OPEN (1st time) where
CHR$(X) X is the length of the relative record)
10 .OPEN, 1,8,1,“NAME” (Relative or sequential read)
PRINT#

TYPE: 110 Statement
FORMAT: PRINT# file-number > [variable >] [{ ;> {variable)]...

Actions: The PRINT# statement is used to write data items to a logical file. It
must use the same number used to OPEN the file. Output goes to the device-
number used in the OPEN statement. The (variable’) expressions in the
output-list can be of any type. The punctuation characters between items are
the same as with the PRINT statement and they can be used in the same way.
The effects of punctuation are different in two significant respects.

If no punctuation finishes the list, a carriage-return and a line-feed are written
at the end of the data. If a comma or semicolon terminates the output-list, the
carriage-return and line-feed are suppressed. Regardless of the punctuation,
the next PRINT# statement begins output in the next available character posi-
tion. The line-feed will act as a stop when using the INPUT# statement, leaving
an empty variable when the next INPUT# is executed. The line-feed can be sup-
pressed of compensated for as shown in the examples below.

The easiest way to write more than one variable to a file on disk is to set a str-
ing variable to CHR$(13), and use that string in between all the other variables
when writing the file.

179

EXAMPLES of PRINT# Statement

1)
10 OPEN 1,84, “MY FILE”
20 R$ = CHR$(13) (By Changing the CHR$(13) to
30 PRINT# 1,1;R$;2;R$;3;R$;4;R$;5 CHR$(44) you put a “,” between each
40 PRINT# 1,6 variable. CHR$(59) would put a “;”
50 PRINT# 1,7 between each variable.)
2
10 CO$ = CHR$(44): CR$ = CHR$(13)
20 PRINT# 1, “AAA”CO$“BBB”, AAA,BBB CCCDDDEEE
“CCC”;“DDD”;“EEE”CR$ (carriage return)
“FFF”CRS; FFF(carriage return)
30 INPUT#1, AS,BCDES,F$
3)
5 CR$=CHRS$(13)
10 PRINT#2, “AAA”;CRS$;“BBB” (10 blanks)AAA
20 PRINT#2, “CCC”; BBB
(10 blanks) CCC
30 INPUT#2, A$,B$,DUMMYS,CS
SAVE

TYPE: Command
FORMAT: SAVE “ (file-name) " , { device-number) [, {address) |

Action: The SAVE command is used to store the program that is currently in
memory onto a diskette file. The program being SAVEd is only affected by the
command while the SAVE is happening. The program remains in the current
computer memory even after the SAVE operation is completed until you put
something else there by using another command. The file type will be “prg”
(program). The SAVE statement can be used in your programs and execution
will continue with the next statement after the SAVE is completed.

When saving programs onto a disk, the (file-name’ must be present.

EXAMPLES of SAVE Command:

SAVE “FUN DISK”,8 (SAVES on disk (device 8 is the disk))
SAVE A$8 (Store on disk with the name A$)

180

SAVE and REPLACE

TYPE: Command
FORMAT: SAVE “@0: <file-name>", <device-number>

Action: This version of the SAVE command is used to overwrite an existing file
or program on disk. Saving a program with the normal version of the SAVE
command will not store the program if the name used already exists, although no
disk error is indicated.

EXAMPLE of SAVE and REPLACE
SAVE“@0:ME”, 8 (Overwrites ‘“ME’’ on disk with update version)

VERIFY

TYPE: Command
FORMAT: VERIFY “ {file-name) ” , {device)

Action: The VERIFY command is used, in direct or program mode, to com-
pare the contents of a BASIC program file on disk with the program currently in
memory. VERIFY is normally used right after a SAVE, to make sure that the pro-
gram was stored correctly on tape or disk.

For disk files (device number 8), the file-name must be present. If any dif-
ference in program text are found, the BASIC error message ?VERIFY ERROR
is displayed.

A program name can be given either in quotes (‘") or as a string variable.

EXAMPLE of VERIFY Command:

9000 SAVE “ME”,8
9010 VERIFY “ME”,8 (Looks at device 8 for the program)

181

182

EI(EC
.tl(rLCNMOCRODOM
[CNMOCRODOMMOCEODOM

O OLERS oEes 23
MMW%E%DOMWMOC SE0S

MN
COM

OMMOCMODOM
Q=>00E6a0
SR aeO At 0a0 e AR eos AR 950
{elatey felatel= 22352 3o 255
RODOMMOCEODOM QLER0S2 2002 S50
COOOS! [SF-telale) ERDO =0 r4e) 29
S5oofeRsesstiiescety
50!

INDEX

A

Abbreviations, BASIC COMMANDS, 28, 141-142
Accessories, 12-14

Addition, 27

AND operator, 129

Animation, 47-48, 69

Arithmetic, Operators, 27-28, 129
Arithmetic, Formulas, 151

Arrays, 108

ASC function, 139

ASCII character codes, 146-148

B
BASIC
abbreviations, 28, 141-142
commands, 129-132
numeric functions, 27-29, 138-139
operators, 129
other functions, 140
string functions, 139-140
variables, 38-40, 128
Bibiliography, 164-165
Binary arithmetic, 73-75
Bit, 73
Business aids, 117-120
Byte, 73

C
Calculations, 27-31
Cartridge slot, 2-3
Cassetteunit,5
Cassette port, 2
CHRS$ codes, 63, 139, 146-148
CHRS function, 139
CLR statement, 132
CLR, HOME key, 19
Clock, 128-129
CLOSE statement, 23. 132, 175
Color
adjustment, 10-11
keys, 20-21
memory map, 68, 149
PEEKS and POKES,
screen and border, 65, 66
Commands, BASIC, 129-132
Commodore key (see graphics keys), 20
Connections,
optional, 5-7
rear, 2
TV/Monitor, 2, 6
CONT command, 129

184

ConTRoL key, 20
COSine function, 138
CuRSoRkeys, 18
Correctingerrors, 18-19
Cursor, 10

D
Data, loading and saving (disk), 22-24
DATA statement, 104, 133
Decay, 93
DEFine statement, 133
DELete key, 18
DIMension statement, 109, 133
Directory, 24 ’
Disk drives
commands, 17-24, 175-181
errormessages. 159-160
Division, 27
Duration (see For...Next), 41

E

Editing programs, 21-24, 37, 64
END statement, 134

Equal, not-equal-to signs, 129
Equations, 30, 31

Error messages, 159-160
EXPonent function, 138
EXPonentiation, 28

F
Files (disk), 22-24
FOR statement, 41
FRE functions, 140
Function keys, 20, 52
Functions, 138-140

G

Game controls and ports, 2

GET statement, 51-52, 134

GET # statement, 134, 176

Getting started, 16-25

GOSUB statement, 134

GOTO (GO TO) statement, 36, 135

Graphic keys, 17, 20

Graphic symbols (see graphic keys), 17, 20. 66, 143-148
Greater than, 129

H
Headering disks, 23
Hyperbolic functions, 151

I
|IEEE-48 Intertace, 12

185

IF...THEN statement, 135
INPUT statement, 49-50, 135
INPUT#, 135,177

INSert key, 18

INTeger function, 54, 138
Integer variable, 38-40, 152-153
1/0 pinouts, 152-155

J
Joysticks, 2, 13

K
Keyboard, 16-21

L

LEFTS$ function, 139

LENGgth function, 139

Less than, 129

LET statement, 135

LIST command, 37, 130
LOAD command, 22-23, 130
LOGarithm function, 151
Loops, 36, 41

Lower case characters, 16

M

Mathematics, 27-29
formulas, 151
function table, 151
symbols, 27-30, 129

Memory maps, 149-150

MID$ function, 140

Multiplication, 27

Music, 11, 88-102

N
Names

program, 22-23

variable, 38-41, 128
NEW command, 23, 131
NEXT statement, 41, 135
NOT operator, 129
Numeric variables, 38-40, 128
Numeric functions, 138-139

(0]
ON statement, 136
OPEN statement, 23, 136, 178-179
Operators,
arithmetic, 27-30, 129
logical, 129
relational, 129

186

P
Parenthesis, 30
PEEK function, 65, 138
Peripherals, 6-7, 12-13, App. A
POKE statement, 65, 136
POS function, 140 :
PRINT statement, 26-31, 136
PRINT#, 136, 179
Printer commands, App. S
Programs
editing, 18-19, 37, 64
line numbering, 35
loading/saving (disk), 21-24, 130, 131, 177, 180
loading/saving (cassette), 21-24, 130, 131
Prompt, 49-50

Q
Quotation marks, 26-27, 31

R

RaNDom function, 53-54, 139
Random numbers, 53-54
READ statement, 104, 137
REMark statement, 137
Reserved words (see Command statements), 128-140
Restore key, 19

RESTORE statement, 137
Return key, 16

RETURN statement, 137
RIGHTS$ function, 138

RUN command, 131
RUN/STOP key, 20

S

SAVE command, 17, 131, 180
Saving programs, 17

Screen memory maps, 67-68
SGN, function, 139

Shift key, 16-17

SINe function, 139

Sound effects, 100-101

SPC function, 140

SPRITE EDITOR, 122
SPRITE graphics, 73-86
SQuaRe function, 139
STOP command, 129, 137
STOP key, 20

String variables, 38-40, 128
STR$ functions, 140
Subscripted variables, 108
Subtraction, 27

Syntaxerror, 26, 159-160
SYS statement, 138

187

T
TAB function, 140
TAN function, 139
Tlvariable, 128-129
TI$ variable, 128-129
Time clock, 128-129
TV connections, 3, 4

U
Upper/Lower Case mode, 20
USR function, 139

User defined function (see DEF), 133,

v

VALue function, 140

Variables, 38-40, 128
array, 108-110
dimensions, 109
floating point, 38-40, 128
integer, 38-40, 128
numeric, 38-40, 128
string ($), 38-40, 128

VERIFY command, 132, 181

Voice, 88-101

w
WAIT command, 138

188

COMMODORE 64 QUICK REFERENCE CARD

SIMPLE VARIABLES

Type Nome Range
Real XY +1.70141183E+38
+2.93873588E— 39
Integer XY% *32767
String XY$ 0 to 255 characters

X is a letter (A-Z), Y is a letter or number (0-9). Variable names
can be more than 2 characters, but only the first two are recog-
nized.

ARRAY VARIABLES

Type Nome
Single Dimension XY(5)
Two-Dimension XY(5,5)
Three-Dimension XY(5,5,5)

Arrays of up to eleven elements (subscripts 0-10) con be used
where needed. Arrays with more thon eleven elements need to
be DIMensioned.

ALGEBRAIC OPERATORS

= Assigns value to variable
— Negation

Exponentiation
Multiplication

Division

Addition

Subtraction

-

+ 8=

|

RELATIONAL AND LOGICAL OPERATORS

= Equal

<> Not Equal To
< Less Than

> Greater Than
<=
S

Less Than or Equal To

Greater Than or Equal To

NOT Logical “Not”

AND Llogical “And"”

OR Llogical “Or"”

Expression equals -1 if true, O if false

SYSTEM COMMANDS

LOAD “NAME" Loads a program from tape

SAVE “NAME" Saves a program on tape

LOAD “NAME”,8 Loads a program from disk

SAVE “NAME",8 Saves a program to disk

VERIFY “NAME” Verifies that program was SAVEd
without errors

RUN Executes a program

RUN xxx Executes program starting at line
XXX

STOP Halts execution

END Ends execution

CONT Continues program execution from
line where program was halted

PEEK(X) Returns contents of memory
location X

POKE X,Y Changes contents of location X
to valve Y

SYS xxxxx Jumps to execute a machine language
program, starting at xoo

WAIT X,Y,Z Program waits until contents of
location X, when EORed with Z and
ANDed with Y, is nonzero.

USR(X) Passes value of X to a machine

language subroutine

EDITING AND FORMATTING COMMANDS
List

LIST A-B

REM Message

Lists entire program

Lists from line A to line B

Comment message can be listed but
is ignored during program execution
Used in PRINT statements. Spaces X
positions on screen

TAB(X)

SPC(X)

POS(X)
CLR/HOME
SHIFT CLR/HOME
SHIFT INST/DEL

INST/DEL

CTRL

CRSR Keys

Commodore Key

PRINTs X blanks on line

Returns current cursor position
Positions cursor to left corner of
screen

Clears screen and places cursor in
“Home" position

Inserts space at current cursor
position

Deletes character at current cursor
position

When used with numeric color key,
selects text color. May be used in
PRINT statement

Moves cursor up, down, left, right
on screen

When used with SHIFT selects
between upper/lower case and
graphic display mode.

When used with numeric color key,
selects optional text color

ARRAYS AND STRINGS

DIM A(X.Y,Z)

LEN (X$)

STR$(X)

VAL(XS)

CHR$(X)

ASC(X$)

LEFT$(AS,X)
RIGHT$(A$,X)

MID$(AS,X,Y)

Sets maximum subscripts for A;
reserves space for (X+1)*(Y+1)*(Z+1)
elements starting at A(0,0,0)
Returns number of characters in X$
Returns numeric value of X,
converted to a string

Returns numeric value of A$, up to
first nonnumeric character

Returns ASCII character whose code
is X

Returns ASCII code for first
character of X$

Returns leftmost X characters of A$
Returns rightmost X characters

of A%

Returns Y characters of A$

starting at character X

INPUT/OUTPUT COMMANDS

INPUT A$ OR A

INPUT “ABC";A

GET A$ or A

DATA A,“B",C

READ A$ or A
RESTORE

PRINT “

PROGRAM FLOW

GOTO X
IF A=3 THEN 10

FOR A=1TO 10
STEP 2 . NEXT

NEXT A
GOSUB 2000

RETURN

ON X GOTO A,B

ON X GOSUB A,B

PRINTs '?" on screen and waits for
user to enter a string or value
PRINTs message and waits for user
to enter value. Can also INPUT A$
Woits for user to type one-
character value; no RETURN needed
Initializes a set of values that

can be used by READ statement
Assigns next DATA value to A$ or A
Resets data pointer to start
READing the DATA list again

PRINTs string ‘A= “ and value of A
';" suppresses spaces - ',' tabs data
to next field.

Branches to line X

IF assertion is true THEN execute
following part of statement. IF
false, execute next line number
Executes all statements between FOR
and corresponding NEXT, with A
going from 1 to 10 by 2. Step size
is 1 unless specified

Defines end of loop. A is optional
Branches to subroutine starting at
line 2000

Marks end of subroutine. Returns to
statement following most recent
GOosus

Branches to Xth line number on
list. 1f X = 1 branches ta A, etc.
Branches to subroutine at Xth line
number in list

ABOUT THE COMMODORE 64
USER’S GUIDE . ..

Outstanding color . . . sound synthesis . . . graphics. ..
computing capabilities . . . the synergistic marriage of
state-of-the-art technologies. These features make the
Commodore 64 the most advanced personal computer
in its class.

The Commodore 64 User’'s Guide helps you get started
in computing, even if you've never used a computer

before. Through clear, step-by-step instructions, you
are given an insight into the BASIC language and how
the Commodore 64 can be put to a myriad of uses.

For those already familiar with microcomputers, the
advanced programming sections and appendices
explain the enhanced features of the Commodore 64
and how to get the most of these expanded
capabilities.

PRINTED IN HONG KONG

	0000
	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img888
	img999

