Get Your Pet on

The IEEE 488 Bus

This 3-part odyssey takes you along route 488. The first stop is here . .. tickets, please.

Gregory Yob
Box 354
Palo Alto, CA 94301

erhaps the most obscure
Commodore PET feature is
its IEEE 488 (or HPIB or GPIB) in-
terface. This three-part article
describes the rudiments of the
488 bus and how to use your
PET to communicate with in-
struments having the 488 inter-
face. Several working examples
with Hewlett-Packard equip-
ment are shown. (HP lent me
several 488-compatible instru-
ments to prepare this article.)
if you just want your PET to
talk to that costly instrument on
your bench, skip this month’s in-
stallment and start next time
with part 2. The first two parts of

this article will sketch the pre-
requisites and give you enough
information to track down bugs
on your own.

What'’s a 488 Bus?

in 1972, engineers —some
with Hewlett-Packard — pro-
posed a method of joining many
instruments in a standardized
way to help automate lab and
test measurements. This re-
sulted in the IEEE Standard
488-1975, which describes how
to connect as many as 15 instru-
ments on the same cable.

HP and several other labora-
tory-instrument manufacturers
then offered the IEEE 488
scheme as an option. Presently,
several hundred instruments
have the 488 capability; Commo-

BACK OF PET

VIDEO
CABINET

BLACK BOX

SECOND
CASSETTE USER
13 RT

PO BUS

VEEE - 48

L]
INSTRUMENTATION

POWER
FUSE SWITCH

JC

]

{ (

N/

POWER CORD -

Fig. 1. Location of PET IEEE 488 port on the back of the PET next to

the power switch and fuse.

dore used to provide a 5-page
list of these. The PET was later
designed with the instrumenta-
tion and control market in mind,
so the |EEE 488 interface was
put into the PET.)

Before the introduction of the
PET, instruments capable of
controiling the 488 bus cost sev-
eral thousand dollars. Now the
PET often costs less than the in-
struments it controls. Some 488
manufacturers have trouble ad-
justing to this — their customers
balk at the idea of purchasing an
$800 microcomputer to control a
$30,000 instrument!

Now one connector joins the
PET to many peripherals. You

0l0 3
D10 4
EOL
Dav

-~
° o
o o

don’t need a separate interface
and connector for each new
gadget. Commodore’s printer
and disk are designed to use the
PET’s 488 interface.

Physical Aspects

A PET and a 488-compatible
device have different connec-
tors. Your first project is to wire
a cable to tie the two machines
together.

Fig. 1 shows the location of
the IEEE 488 connector on the
back of the PET, and Fig. 2
describes the pins and connec-
tors used for the PET and the
IEEE 488. | used a 20-conductor
ribbon cable and tied the

NRFD
NDAC
1FC
SRQ
ATN
GND

TOoP

TOP VIEW

BOT Tom el - -
EDGE VIEW N
PO,
220222 22¢¢ ¢
s z88535533z:z%:3
DJO)) 13 oI0 3
010 2 2 4 D10 6
DIO 3 3 5 910 7
DIO & 4 6 D10 8
€01 L] " REN
DAYV 6 a GND 6
NRFO 7 9 GNOD T
NOAL L] 20 GMD B8
1fFC 9 2t GND 9
SRQ 10 22 GND 10
ATN (K3 23 GND #1
SHIELD 12 24 GND {LOGIC)
-/inon THE

POLARIZATION

Fig. 2. Pin-outs and connectors for the IEEE 488.

Copyright 1980 by Kilobaud Microcomputing. All rights reserved. Used by permission

grounds together into the four
lines left over after | connected
the signal wires.

When making the cable, bear
in mind that there are strict
limits to cable lengths:

1. The maximum distance be-
tween two devices is 5 meters.
2. The longest distance from
one end of your setup to the
other is 20 meters.

3. A maximum of 15 devices, in-
cluding the PET, can be hooked
together.

Itis also wise to avoid electrical-
ty n'oisy areas; don't drape your
|EEE 488 cable over your TV set.

If more than one device is
connected to the 488, you must
use extension cables. HP has
cables for about $50. If you want
to make your own, consult the
two configurations in Fig. 3. The
488 instruments always have a
female connector, so have an
excess of male connectors on
your cables.

Electrically, the 488 bus
works on an active-fow princi-
ple. Fig. 4 shows a circuit similar
to a 488 bus line. When all the
switches are open, the voltmeter
will show 5 volts, which is the
faise state (or 0) for the line. If
any of the switches are closed,
the line is grounded, and the
voltmeter shows zero volts, or
the true state.

This peculiar arrangement
permits several devices to be
connected to the same line. If
any one of them has a switch
elosed, the line is true. Devices
frequently operate .at different
- speeds, and when each device is
ready, it opens its switch. How-
ever, the line remains true (low)
untit the slowest device opens
its switch,

JEEE Blinkin Lites Display
It is always convenient to

have a display and switches to
perform a front panel function

when you debug interfaces. |
built a box, which | cail the 488
Blinkin Lites, to display the
states of each of the IEEE 488
fines and some switches to
force lines low if needed. Fig. 5
shows the circuit, and Fig. 6 is a
sketch of my box.

Each line is pulled up to +5
volts with a 10k resistor —the
high value was chosen to mini-
mize the load on the 488 bus.
The switches can override any
line when they are closed to
ground. Though the PET doesn't
use all the IEEE 488 lines, future
machines will - so | put them ali
in my box.

If you build this box, don’t use
the PET’s + 5volts from the tape
port—the LEDs draw 170 mA,
which is too much for the PET.
Provide a connector to the PET's
IEEE port and a male and female
IEEE connector. This lets you in-
terpose the IEEE Blinkin Lites
between the PET and an instru-
ment.

| mounted a 5x7 inch perf-
board with 0.10 inch holes into a
standard breadboard box and
placed a label near each switch/
LED combination to identify the
IEEE lines. The three ICs are the
7404s used to drive the LEDs.
The cable leads to a homemade
junction with a PET connector
and IEEE male and female con-
nectors. A mini phono jack con-
nects to a separate + 5volt sup-
ply (see Fig. 6).

When you plug in the IEEE
Blinkin Lites, the LEDs wiil show
the state of the lines—an LED

that is off indicates a low line,

which is true; an on LED indi-
cates high, which is faise.

The IEEE 488 Lines

The IEEE 488 is composed of
16 lines. Eight are for transfer of
data, five are for bus manage-
ment and three are for hand-
shaking. The eight data lines are

MALE

MALE

MALE

MALE

TFEMALE

Fig. 3. Convenient cable configurations for the IEEE 488 bus.

CONCEPT
OF 1EEE 488 LINES
+Sv

! l[

DEVICE ! JDEVICE 2 |DEVICE 3

VOLTME TER [° N8
TRUE (0)
FALSE (8) é

STANDARD TTL TO IEEE
488 INTERFACING

DRIVER| :
RECEIVER]

WHEN INTERFACING TO THE
1EEE 488 BUS, OPEN COLLECTOR
DEVICES MUST BE USED

Ve (USUALLY
sv

Fig. 4. IEEE 488 equivalent circuits. The lower circuit is the standard
method of connecting TTL logic to the 488 bus. The driver must be an
open collector and able to sink at least 48 mA at .4 volts and source
5.2mA at 2.4 or more volts. The PET uses MC 3446P bidirectional line

interface ICs for this function.

labeled DIO1 through DIO8, with
the most significant bit (MSB)
on DIO8. The 488 bus can trans-
fer one byte at a time and is
sometimes called byte-paraliel.

The tive bus-management
lines in various combinations
and sequences provide many
bus facilities, most of which are
rarely used:

EOI— End of Message. When
a group of bytes is sent via the
DIO lines, EOI is made true on
the last byte to indicate that the
message is completed. This is
optional, and many instruments
send the ASCII characters CR
and LF as data instead. Check
your instrument’s manual.

IFC—Interface Clear. When
this line is true, all instruments

disconnect to a defined state..

(This usually is unaddressed
and untalked.) When you tUm on
the PET, IFC is true for about 100

ms. if the PET is reset, IFC will-
_again be true. -

SRQ- Service Request. This
permits an instrument to.signal

that it needs attention ... and
the device in charge of the bus
must find out what it needs.
The PET has this line as an in-
put, but it takes some program-
ming effort to use SRQ; most in-
struments don't use SRQ.
REN — Remote Enable. Most
IEEE instruments have front
panels that permit stand-alone
operation —that is, they work
as ordinary instruments when
the 488 bus isn't connected.
REN lets the instrument dis-
connect from the bus and be
controlled from its front panel.

+sv TO IEEE MALE
el
oK .
TO IEEE
FROM PET IEEE FEMALE
SLIDE
svntcuL
$: 4T0R +5v
VGND- LED-
’ vi6 OF

7404

Fig. 5. IEEE “Blinkin Lites” cir-
cuit. Each IEEE line uses one
copy of this circuit.

Fig. 6. Sketch of the “Blinkin Lites.”

LISTENER

TALKER

SET DAV

for NDAC to go false, and when
it does, the talker sets DAV to
false. The listeners then make
NDAC true, and the entire hand-

SET NRFD

Poraw ! cau o4 shake sequence begins again.
o ,_j [Sl — Since a device is either a
- - l listener, talker or not addressed,
R I TR TV T N Fig. 7 is broken into two flow-

wosc sewses I 7
Ponign ¢
t [S|

charts; one for the talker and
one for the listener. A listener
will start the handshake with
NRFD and NDAC true, while the

T

o
PUT OR
CMANGE DATA SET NRFO
ON DATA - HiGH
LIN(S_-. .

Low

SET Dav

Yes NDAC Signay o,

ACCEPT
pata BYTE

[

LOw

SET NRFD

L

HIGH

SET DAV

NES STav,
e S_Low ux
CCEPTORS Have ACCEPTED 'YnL

HIGH

SET NDAC

r‘-_"—"\
' owas pav |
———— -1 GONE wiGM |
1 YET H

SET NDAC
LOow

l

Fig. 7. The IEEE 488 handshake reproduced from Electronics, Nov. 14, 1974, p. 98, as reproduced in HP

part #5952-0058.

The PET's REN line is always
grounded.

ATN—Attention. This is the
most relevant line for this arti-
cle. It tells the device whether
to regard the data on the DIO
lines as a command or as data.
When ATN is true, the byte on
the DIO lines is a command.
when ATN is false, DIO is seen
as data.

The three handshake lines
are used to pass bytes on the
DIO lines. When a byte is trans-
ferred, the slow devices will
keep one or more of the hand-
shake lines true until they are
finished. This ensures that data
is passed at the speed of the
slowest device and isn't lost.
The handshake lines are:

DAV (Data Valid)—When this
line is true, the data on the DIO
lines is correct and the receiv-
ing instruments can pick up the
byte.

NRFD (Not Ready For Data)—

When a receiving device is busy
or is still processing prior data,
it will make NRFD true, which
stops data transfers.

NDAC (Not Data Accepted)—
When the data is on the DIO
lines, the receiving devices
keep NDAC true until all of
them have read the data byte.
Note that the handshake lines
don’t care whether the datais a
command or not; every byte of
data or command has to under-
go the handshake sequence.

The Handshake

For data transfer, one device
is the “talker,” which provides
the data or commands for trans-
fer. The recipients, or “listen-
ers,” pick up the data, and more
than one device may listen at
the same time. The handshake
specifies exactly how the data
transfer is accomplished.

Fig. 7 shows a flowchart of
the handshake sequence. When

the first event, NRFD, goes
false, this tells the talker that all
of the listeners are now ready to
receive a new data byte. The
slowest listener is the last one
to release NRFD, which will go
high.

Next, the tatker puts the data
byte on the DIO lines and waits
briefly to tet the signals settle
(usually about 10 us). Once the
data is on the DIO lines, NRFD is
checked by the talker; if it is
talse, the talker sets DAV to
true. The listeners now know
that the new data is ready for
pickup. (If NRFD is true, the
talker waits until it goes false.)

The first listener that detects
DAV true now sets NRFD true,
and all of the listeners pick up
the data byte from the DIO lines.
Up to now, NDAC has been true,
and as each listener gets its
byte, it releases NDAC. NDAC
goes false when all the listeners
have the data. The talker waits

talker checks these. If both are
false — the listener isn't there —
an error condition exists.

Commands and Messages

When ATN is true, any dataon
DIO is seen as a command. Fig.
8 shows the entire ASCli set of
128 characters devoted to IEEE
488 commands.

The ASCll codes 32 through
62 (all numbers in decimal) des-
ignate the listen address for a
device. Most IEEE-488-compati-
ble devices have a five-position
DIP switch next to the 488 con-
nector set to the device's ad-
dress, a number from 0 to 31.
(Note: For the PET, use 4-15)
When the listen address is sent
with ATN true and this address
matches the device's address,
the device will now be ad-
dressed to listen and will accept
any data sent with ATN false.

if the device is supposed to
send data, the talk address —
trom ASCIi codes 64 through 94
—will be used instead. The
device (if with matching ad-
dress) will now send data bytes
to the bus.

If the device’s address (by the
switches) is number 7, the listen
address value will be 32 +7, or
39 (apostrophe). The talk ad-
dress will be 64 +7, or 71 (letter
G). Notice that bits'5-7 desig-
nate talk or listen, and bits 0-5
designate the address. Address
31 is reserved for two special
commands. Although you can
set the switches on a device to
31, it won't operate with this set-
ting.

One instrument must provide
these talk and listen addresses.
This device is the controller, and
the PET is always the controller.
The controtier can talk and lis-
ten too, but only the controller
can set ATN true.

Two of the ASCIi codes, 63 data is present. (In normal oper-
and 95, serve as “universai” ation of the bus, the controiler
. , ! Table 1. All PET I/O lines.
commands. The 63 code is doesn't have to take these
known as “unlisten™and tells all drastic measures.) IEEE 488 PIA (6520) ADDRESS: § €820 59424
a.ddrgssed devices to §tqp In some cases, a device will PAB {EEE Data in | PBO VEEE Data Out 1
listening to the bus. This is have a secondary address, ::; oo 2 PEY e 2
; K ! o 3 pE2 v
faster than trying to tell the which permits more than 31 ef- PA3 ¢ n 4 PB3 v 2
devices one at a time to stop fective addresses on the bus. o R oo R
listening. The 95 code, “untalk,” For example, the Commodore PAG 7 Pg6 v 7
. .) j PA7 v 8 [4:Y S 8
stops all data transmitters printer might be set as device 4.
R A CA1 ATN In CBt SRQ iIn
(talkers). To controf internal functions, CA2 NDAC Out B2 DAY Out
When a message — or a group secondary addresses select the
of data bytes—is sent on the function in use. (See Commo-
MULTILINE INTERFACE MESS, 1SO-7 BIT CODE REPRESENTATION i i
(S‘E:NTMAND“;E;:EIVEO WITIH ATN=1) PRESENTATIO tha NANDand Som? rES|Stors
p to the IEEE specification.
by ————— 10] (] 0 ' 1 1] .
T e "0 |msa] o {mss| msG| 1 |mse| o [mse| o |mse| 1+ {msei 1 {mse Table 1 reveals some interest-
bs ° ! ° ! ° ! ° ! ing irregularities concerning the
BITS Toe| s bz |5 [NCOL] 9 g 9
o ° l 2 3 a s € T |EEE 488 bus: If EOI is true, the
ololofol o Iwow OLE 'm ° . 11 >] PET’s display is turned off.
ofofof 1] v {soujercfoci Lo}] a @ [a _| (Programs that PEEK and POKE
ofojtjoy 2 |smx ocz 2 8 o L M - the display area in memory can
e I L i o = > z 2 - EELE . . this to avoid snow.) Lat
ojrjojfo] ajeorfsoc|ocafoa | s T w T at @ o] w v]9l ST]S use o) ater
o[o] s [em[ere®[wax [erv | % [2 [s L2l e 2 Tv 2T~ s> $7] model PETs don't have this prob-
ofi1 1 1o & |ack SYN a | o |6 | o F ol v] e RS v | > lem. REN isn’t listed; the PET's
2 2 2 2 H .
O V1 jrt 7 Jee €78 a4l lal® oW ol v lotlvlo |l REN line is wired to ground
t{ojo1o] @ | oS JoEv]can SeE} crg v st x L L2 LZ2l 121 (true). IFC is not shown. The
i o o] 9 HT T EM SPO) v 9 3 1 @ Y i g y g " .
1ol ol w Py . - A i e S Te e o] PET's IFC is connected to the
ol T v fvr €sc B ;. R [.; [HEIEGR; power-on one-shot, which sets
z -
tjptyololf iz jFrF s <113 \ ! $. 1 1 % | IFC true for about 100 ms when
Llljojrl e s - : ud 1 ») l- - the PET is turned on. f you reset
1 +] o 4 SO RS > ' N -~ n -~ . ——
1] | H 135 St us /7 4 UNL [+] —_ UNT ° DEL the PET by groundlng the RES
\ . [O= N line, IFC may not go true. A bet-
ADDRESSED UNIVERSA LISTEN T CONDARY i i
COMMAND CO»MANDL ADDRESS AIX:RLE“SS scEOMMAND te’ approaCh s to t"ggef the
GROUP GROULP GROUP GROUP GROUP

(ACG)

(UCG) {LAG)

(scG)

NOTES: (D) MSG «INTERFACE MESSAGE
@ b, =DIOI... by + DIOT

(D REQUIRES SECONDARY COMMAND

PRIMARY COMMAND GROUP (PCG)

@ DENSE SUBSET (COLUMN 2 THROUGH 5)

Fig. 8. IEEE 488 command set reproduced from the |IEEE Standard 488-1975/ANS! MC 1.1-1975, p. 77.

488 bus, the controller sets ATN
true and sends a listen address;
the controller sets ATN true and
sends a talk address; the talker
puts data on the bus, and the lis-
tener picks it up. When the
talker is finished, it may set EOI
true on the last byte or send CR
LF as the last bytes. The con-
trolier now sets ATN true and
sends untalk (UNT) and unlisten
(UNL), which reset the two de-
vices.

In many cases, the controller
—in this case, the PET —does
the talking or listening. The con-
trolier can make everything stop
by either setting IFC true or set-
ting ATN true and putting UNT
on the bus. Since UNT has its
five lowest signiticant bits true,
the active low operation of the
IEEE lines overrides whatever

dore’s “PET Communication
with the Outside World," p. 19.) If
a secondary address is in use, it
is sent immediately after the
talk or listen address, known &s
the primary address, with ATN
true.

Several of the bus-manage-
ment lines, such as SRQ, EOQI,
REN and IFC, serve special
functions. Many instruments do
respond to these, and often the
response depends upon the in-
strument.

When ATN is low. about half
the ASCH code is devoted to
special commands, which come
in defined sequences whose
definition takes about two-
thirds of the forma! IEEE 488
specification. Most instruments
use only a few of these.

Flipping Bits

The PET ultimately communi-
cates to the rest of the world by
the screen and some interface
chips—two 6520s and one 6522.
(For the specs on these chips,
contact MOS Technology.) The
6520 and 6522 chips can only
drive one TTL load, so the PET’s
IEEE lines are connected to
some buffer chips to provide the
currents needed in the IEEE 488
bus.

Table 1 indicates al! of the
PET's I/O line assignments as a
reference. The PET utilizes all 60
/O lines as shown here. Most of
the IEEE lines are buffered with
MC 3446P bidirectional line
driver chips to provide the IEEE
current requirements. SRQ is an
input only and connects directly
to the 6520 chip. IFC is buffered

power-on one-shot by inserting
a switch between power and the
555's power pin. The SRQ line is
an input only. The PET's firm-
ware does not use SRQ, so you
have to program it directly.

In a650x-based system, all /O
is seen as a set of memory ad-
dresses. This means that BA-
SIC's PEEK and POKE can be
used to control the |EEE 488
lines. Table 2 indicates the ad-
dresses and bits involved for the
PET's IEEE lines. in most cases,
a direct PEEK or POKE will do.
Two lines, ATN inand SRQ in, re-
quire a more complex sequence.
These are connected to CA1 and
CB1 of a 6520, which set flag
bits in the interrupt Flag regis-
ter. Resetting these bits re-
quires a memory access to the
DIO data register.

Table 3 lists the specific
PEEKs and POKEs to individual-
ly sense or modity the IEEE
lines. In many cases the PEEK
or POKE vatues can be ANDed
or ORed together to do several
operations at once. If you have
built the IEEE Blinkin Lites, try a

KEYBOARD P1A (6520)

PABP Keyboard Row Select, LSB
PAl " oo

PAZ o ”
PA3 " vooom, MSB
pal Switch, Cassette
PAS " "
PAE EO1 in

PA7 Diagnostic Jumper

- w
~ -

CAt Read, Cassette #1
CA2 Screen Blank & EOI Out

The Diagnostic LED will light

ADDRESS: § £810

59408

PBS Keyboard Column

P81

A
8
B2 " v
B3 B tD
PBL - vE
PBS S tF
PB6 - G
P87 " YA

CB! Video Horiz Sync In
(82 Motor, Cassette #1

it PAB-High, PA1-High, PAZ-Low, PA3-High.

USER PORT VIA (6522)

PAB User Port LS8
PAY " "
PA2 h b
PA3Y " o
PAL i " "
PAS " "
PAG w“ "
PA7 o ttMSB

CAl User Port Handshake
CA2 Characters ROM Select

ADDRESS: § EBLO 59456
PBB NDAC In

PB1 NRFD OQut

PB2 ATN Out

PB3 Write, Both Cassettes
PBL Motor, Cassette & 2
PB5 Video Horiz Sync In
PB6 NRFD In

PB7 DAV in

CBl Read, Cassette 72
CB2 User Port Handshake

CA2 selects the MSB of the characters ROM, selecting the PET's
graphics or lower case characters for the display.

few of these PEEKs and POKEs
to see how they work.

When | was tlipping bits with
PEEK and POKE for the IEEE
lines, | was confused each time |
had to figure out the decimal
numbers for each changed bit.
Perhaps it would be easier to
display a byte of memory on the
PET's screen in a “front panel”
format with simulated LEDs for
each bit and some simple key-
board commands to change bits
and addresses. Memory Monitor

(see Listing 1) does this.

When Memory Monitor is
loaded and run, and the first
page of instructions is read, the
display in Fig. 9 is shown. A box
with tour parts appears in the
middte of the screen with the ti-
tle Memory Monitor placed
above the box. Left of the box is
a marker, >>, which indicates
the part of the box accessible by
the keyboard.

The top of the box shows the
address of a memory location in

decimal. !f you press SPACE,
the address will be erased, and a
new number can be entered.
Pressing number keys enters a
new address, and a reverse-field
cursor appears.

When a cursor isn’'t on the
screen, pressing RETURN will
move the marker to the next part
of the box. (The second part in
the box indicates the bit num-
bers and is skipped by the
marker.)

The third part of the box dis-

plays a front panel made of sclid
or hollow “balls” (or “LEDs").
This shows the eight bits of the
byte under investigation. Th2
numbers above the “LEDs” in
dicate the bit numbers, 7 the
MSB and 0 the LSB. To change
the byte, enter 0 or 1 (or Shift-Q
and Shift-w), and the cursor will
appear. Pressing RETURN
enters the value.

The fourth part of the box is
the value of the byte in decimal
and is entered in the same way

40 PRINT™'FRONT PANEL' FORMAT.

80 PRINT"CHANGING.

170 PRINT"ITEM.
195 GETAS:1FA$=""THEN195

200 REM DRAW DISPLAY FORMAT

250 PRINTD3$"@"DIS"."

260 PRINTD3$"+"D1§"3"
265 PRINTD33"] 7 sp 6 s
270 PRINTD3S"+ @ 2 @

290 PRINTD3S"+ & 2 @ 2

310 PRINTD3§"="DI§"="
320 PRINT"dn dn dn®

400 REM IDLING PROGRAM
410 AD=59471:PT=1

500 REM DISPLAY ADDRESS
510 GOsuB 1000

520 REM DISP PANEL L!TES
525 OT=PEEK(AD)

530 GOsSuB 1200

540 REM DISP DECIMAL
550 GOSUB 1400

560 REM DISP PTR

570 GOSUB 1600

580 REM GET CHAR

590 GET AS

600 IF A$="" THEN 500

210 PRINT"cir dn dn dn dn dn dn";

255 PRINTD3$"] ADDRESS:sp sp sp sp sp sp sp sp]"

p
2€2 [
280 PRINTD3$"] sp 1 sp] sp 1 sp
______ e2eze

300 PRINTD3$"] DECIMAL: sp sp sp sp sp sp sp 1"

Listing 1. Memory Monitor.

10 PRINT™CIr Sp $p SP SPp Sp SPp Sp —-> MEMORY MONITOR {--
20 PRINT"dn sp sp THIS PGM DISPLAYS A LOCATION IN THE
30 PRINT"PET'S MEMORY IN BOTH DECIMAL AND IN A

S0 PRINT"dn sp sp YOU CAN CHANGE THE ADDRESS OR VALUE
60 PRINT"BY ENTERING A NEW VALUE WHEN THE '55'
70 PRINT"MARKER 1S NEXT TO THE ITEM YOU ARE

90 PRINT"dn sp sp PRESS 'RETURN' TO ENTER THE CHANGE

100 PRINT"OR TO MOVE THE MARKER.

110 PRINT™dn sp sp THE PGM CONSTANTLY PEEKS THE LOCATION
120 PRINT"WHEN YOU AREN'T CHANGING A VALLE. IF

130 PRINT"YOU CHANGE THE ADDRESS, THE PGM

140 PRINT"WILL SHOW THE NEW VALUE. IF YOU CHANGE

150 PRINT"A VALUE, IT IS POKED INTO MEMORY.

160 PRINT"dn sp sp 'H' WILL GIVE YOU SOME HELP FOR EACH

190 PRINT"dn PRESS ANY KEY TO START

(15 shift-@)
(10 rt's)

240 PRINT"rt rt rt rt rt rt rt == sp MEMORY MONITOR spg =-"

(] is a verticat

plsplselsr)
@ 3"

NOTE: For Lines 200-320 see Fig. 8.

lineg)

610 [F AS=CHR$(13) THEN 700
620 FG=0:G0SUB 2500

630 IF FG=0 THEN 510

640 GOTO 210

700 REM BUMP PTR

710 GOSUB 1800

720 GOTO 510

1000 REM DISP ADDR

1030 V$=MID$(VS,2,6)
1040 PRINT TAB(26);V$
1050 RETURN

1200 REM DISP PANEL

1210 PRINT"dn dn dn"TAB(11);
1220 vT=DT:0v=128

1230 FOR J=1 T0 8

1240 IF vT/ov< 1 THEN 1260

1260 PRINT" W r1";
1300 DV=0V/2
1310 NEXT J

1400 REM DISP DECIMAL
1410 PRINT"gn"

1430 v$=MiD$(Vv4,2,6)
1440 PRINT TAB(20);V$
1450 RETURN

1600 REM DISP PTR

1620 IF PT D1 THEN 1640
1640 PRINT"dn dn dn"
1650 1F PT >2 THEN 1670
1660 GOTO 1630

1670 PRINT"dn" :GOTO 1630
1800 REM BUMP PTR

1810 GOSWB 1600

1820 PRINT"rt rt sp sp"

1840 GOSLB 1600
1850 RETURN

2000 RETURN
2500 REM CHANGE 1TEM
2520 RETURN
3000 REM CHANGE ADDR

1630 PRINT TAB(8)™ >"; :RETURN

2510 ON PT GOSUB 3000, 3500, 4000

1010 PRINT"hm dn dn dn dn dn dn dn"
1020 V$=STR$(AD)+"sp sp sp sp sp sp sp”

1250 PRINT" Q rt";:VT=VT-DV:GOTO 1300

1420 V$=STRS(DT)+" sp sp sp sp sp sp sp sp "

1610 PRINT"hm dn dn dn dn dn dn dn"

1830 PT=PT+1: IF PT >3 THEN PT=t

(This line probably isn't needed)

3010 IF AS="H" THEN GOSUB 4500:RE1URN

VALUES FOR 1NPUTS VALUES FOR OUTPUTS
1EEE LINE ADDRESS ADDRESS 817 1EEE LINE ADDRESS ADDRESS 81T
{HEx) (DECIMAL) (HEX) (DECImAL)
010 1 E820 59424 0 010 1 €822 59426 [
pio 2 £820 59424 1 oi0 2 E822 59426 1
010 3 £820 59424 2 D10 3 €822 59426 2
[€820 59424 3 010 4 €822 59426 3
010 5 €820 59424 & DI0 S €822 59426 4
D10 6 €820 59424 5 BIO 6 €822 59426 [
o100 7 £820 S9k24 6 010 7 €822 59426 6
pio 8 E820 59424 7 Dio 8 €822 59426 7
£01 e8i0 59408 6 (1] e811 3
IFC semes ewmeee - 1FC - -
SRQ £823 59427 7 SRQ -—-- -
REN cees emeen - REN meee ceeee -
ATH E821 59425 7 AT €840 59456 2
DAV E8LO 59456 7 DAV €823 59427 3
NRFD €840 59456 6 NRFD £840 59456 [
NOAL E840 59456 [} NDAC . E82y 59425 3
Table. 2 Addresses and bits for the IEEE 488 lines.
as the address. The Memory Monitor eased Doing it the Hard Way

If you press RETURN several
times, the marker rotates
through the three accessible
parts of the box. To recall how to
enter a value, press the letter H,
which clears the screen and pro-
vides instructions. -

the tedium and frustration of
checking the PEEKs and POKEs
used in the IEEE 488 memory lo-
cations. | have made Memory
Monitor simple to use, and I con-
sider it a good exampie of user-
oriented programming.

With direct access to the

'PET's IEEE 488 lines, you can

use PEEK and POKE to operate
an IEEE instrument “by hand.”

"This is probably more difficult

than using the IEEE Blinkin
.ites box to communicate

switch by switch because it
takes more keystrokes to
change a bit with POKE.

The next step is to write a
BASIC program that performs
the required IEEE 488 opera-
tions directly. Though the PET
has these “built in,” there are a
few advantages to doing the
whole thing in BASIC.

Everything goes slowly. As
events happen, there is a
chance of seeing them as they

go by.
BASIC is accessible. If the
PET or your instrument decides

that the sky's the limit, pressing
the STOP key can illuminate
where the difficulties lie. The
PET's built-in IEEE 488 services

MEMORY MONITOR
>> | ADDRESS: 59471
7 63 43210
.l.l.l.l.l.l.!.

DECIMAL : 255

Fig. 8. Listing 1's initial display.

3020 vi=AD
3030 GOSUB 5000
3040 IF V24 @ THEN RETURN

3060 AD=V2:RETURN
3500 REM CHANGE BINARY VALUE

3520 Vi=0T

3530 GOSUB 5500

IF v2¢ @ THEN RETURN

IF ¥2>255 THEN RETURN
3560 DT=V2:POKE AD,OT:RETURN

4000 REM CHANGE VALUE

4020 V1=pT

4030 GOSLB 5000

IF V2¢ @ THEN RETURN
4050 IF V2> 255 THEN RETURN

1F V2 65535 THEN RETURN

IF AS="H"THEN GOSUB 4600: RETURN

IF AS="H" THEN GOSUB 4500: RETURN

5130 Dx$-0%:D§-""
5140 FOR J=1 TO 6

5150 IF PC=4 THEN D$-D3+A$:GOTO 5120

5160 DI=DI+MIDS(0S,J,1)
S170 MEXT J
5180 PC=PC+1: {F PC >7 THEN PC=1

5200 REM DISPLAY RESULT & RESTORE CURSOR

5210 FOR J=1 T0 6

5220 IF J=PC THEN PRINT "rvs"™;
5230 PRINT MiD$(DS,J,1);

5240 IF J=PC THEN PRINT "oft";

5250 NEXT J:PRINT™I1ft 1Ft 1§1 164 16¢ 1§14™;

5260 GET A$: IF A3="" THEN 5260
5270 GOTO 5090

5500 REM BINARY ENTRY

5510 PRINT TAB(11);

5520 FOR J= 1 TO 8

5525 vi=v1/2

4060 OT=v2:POKE AD,DT: RETURN

4500 PRINT"cIr sp sp TYPE IN THE NEW NUMBER AND PRESS
4505 FG=1

4510 PRINT'RETURN. PRESS 'X' TO ABORT & NOT MAKE

4515 PRINT"THE CHANGE .

4520 PRINT” sp sp PRESS SPACE TO ERASE REST OF NUMBER.
4530 PRINT"dn sp sp PRESS ANY KEY

4540 GETAS: IFAS=""THEN 4540

4550 RETURN

4600 PRINT"clr sp sp ENTER "1° OR * Q ' TO SET A BIT, AND
4610 PRINT"'@' OR * W ' TO RESET A BIT. PRESS

4620 PRINT"RETURN WHEN DOEN,

4625 PRINT” sp sp PRESS SPACE TO SKIP A BiT,

4630 PRINT"dn sp sp PRESS ANY KEY

4640 GETAS:IF A$=""" THEN 4540

4650 RETURN

5000 REM NUMERIC ENTRY

5010 REM POS CURSOR

5020 PRINT TAB(20);

5030 REM MAXKE DISP STR

5040 D$=MID$(STRS{V1),2)+"sp sp sp sp sp sp sp”
5050 D$=LEFT$(DS,6)

5060 REM SET RVS PTR 3 RETURN VALUE

5070 PC=1:v2=-1

5080 REM SEE INPUT & ACT

5090 IF A$="X" THEN RETURN

5100 1F AS=CHRI(13) THEN v2=vAL(DS) :RETURN

5110 IF AXO" sp " THEN 5120

3112 1F PC=} THEN D$="sp sp sp sp sp sp":GOT0 S210
5114 D3=LEFTS(D4,PC~1)+"sp sp sp sp sp sp":D3=LEFTSIDS,6)
5118 GOTO 5210

5120 1F ASC 9" OR AS >"9" THEN 5210

5125 REM REMAKE STRING

5530 IF VI=INT{V1) THEN D§=" W "+D$: GOTO 5540

5535 D3=" Q “+03

5540 v1 = INT(V1)

5550 NEXY J

5570 REM SET RVS PTR

5580 PC=1:v2=-1

5590 REM LOOK AT I1NPUT

5600 1F A$="X" THEN RETURN
5605 if AS=CHRE${13)THEN 5780
5610 iF AS="sp™ THEN 5715
5620 IF A$="1" OR A3=" Q
5630 w
S640 GETAS:IFAS=""THEN 5640

5650 GOTO 5600

5660 REM REMAKE STRING

5670 Dx$=0§:08=""

5680 FOR 4= 1 10 8

5690 1f PC=J THEN D§=D$+AS: GOTO S0
5700 D3=08+MiDSIDXS, 3, 1)

5710 NEXT J

5715 PC=PC+1:iF PCH B THEN PC=1

S720 REM DISP & Fix CURSOR

573 FOR J= 1 70 8

5735 If J = PC THEN PRINT "rys";

5740 PRINT MID$IDS, 4, V)%rt™;

5745 1IF J=PC THEN PRINT “off"™;

= THEN AS=™ Q “:GOTO 5660
IF A3="g" OR AS=" W " THEN AS$+" W ~:GOTO 5660

S750 NEXT S:PRINT™ 141 161 061 143 161 16t 461 041

IS 16T 16T 16T 08T [6T 162 1527,

516G GOTO 5640

S77C REM MAKE VALUE

5780 v2=8:FORJ=1 T0O 8

5785 V2=v2*2

5790 iF MiDS(DY,J,1)=" W " THEN 5810
5800 V2=v2+}

5810 NEXT

5820 RETURN

{16 1ft's)

are mostly invisible, and there's ~ something went wrong.

is simple enough to display

IEEE time standard, and the BA-

often no way to find out why Everything is under control. It every step with suitable mes- SIC 488 program wiil not be fast
sages to the screen. If neces- enough to prevent time-outs.
Al DIO Lines:- sary, you can insert a GET loop | buiit the program from the
4 N

OUT. V=(NOT(V)AND255: POKE 59426.V
EOI
TRUE OUT: POKE 59409. PEEK(53409) AND 247
FALSE OUT: POKE 59409, PEEK(53409) OR 8
REN & IFC — Not Apphcabie
SRQ"*
2 = PEEK(59426)

LO-H! POKE 58427 PEEK(59427) OR 2
HILO POKE 59427. PEEK(59427) AND 253

ATN®*
Z = PEEK(53424)

LO-HI: POKE 59409. PEEK(59408) OR 2
HI-LO: POKE 59409. PEEK(53409) AND 253

TRUE QUT: POKE 59456, PEEK(59456) AND 251
FALSE OUT. POKE 53456, PEEK(53456) OR 4
DAV

TRUE OUT: POKE 59427, PEE¥(59427) AND 247
FALSE OUT: POKE 59427, PEEK(59427) OR 8
NRFD

TRUE OUT: POKE 59456, PEEK(59456) AND 253
FALSE OUT: POKE 59456, PEEK(53456) OR 2
NDAC

TRUE OUT: POKE 59425. PEEK(53425) AND 247
FALSE OUT: POKE 59425, PEEK(53425) OR 8

evaluates AND before NOT

SRQ OUT is not availabie on the PET.

IN: POKE 59426,255:V = PEEK(59424) V = INOT(V)AND255

IN: V= 1:IF PEEK(59408)AND 64 THEN V=0

IN: V=0:F PEEK(53427) AND 128 THEN V =1

IN: V=0:JF PEEK(59425) AND 64 THEN V=1

IN: V=1 IF PEEK(59456) AND 128 THEN V=0

IN: V=1 IF PEEK(59456) AND 64 THEN V =0

IN: V=1 IF PEEK(53456) AND 1 THEN V=0

“The extra parenthesis in the complementation of V is required. for the PET
*~The Hi-LO or LO-Hi determines which transition the CA/CB1 inputs will respond

10. Set the HI-LO or LO-Hi betore doing the IN: line. The Z = PEEK resets the flag bit
Be sure to reset the flag bit before checking the first time.

Table 3. PEEKs and POKEs for the IEEE 488 lines.

tc make the PET wait until a key
is pressed before proceeding.

Changes are easy.

It's an educational experi-
ence—those who must learn the
“nuts and bolts” of the IEEE bus
will find a BASIC emulator
useful.

| constructed the BASIC 488
program (see Listing 2) to pro-
vide the following essential ser-
vices: put the PEEK and POKE
values into variable form for rea-
sonably fast execution and to
simptlify debugging with direct
commands; do most of the
PEEKs and POKEs for line con-
trot as short subroutines; pro-
vide the listen and talk hand-
shake sequences for one byte
and display their progress; pro-
vide a way to send and receive
strings to a device on the bus;
set the program up as a skeleton

onto which you can add specific)

programs to suit changing
needs.

Table 4 indicates the subrou-
tines and variables used in the
BASIC 488 program. Load these
subroutines and then add the
code you need for your devices.
Some devices, such as those by
Commodore, may not follow the

bottom up, starting with subrou-
tines 1500 and the series start-
ing at 9000. Subroutine 1500
sets up the essential variables.
A1-7 are the addresses of the
PEEK/POKE locations; M0-M7
and NO-N8 are AND and OR
masks to extract bits 0-7 froma
location (or to set the desired
bits); 01-07 are the original
values for addresses A1-A7.
(POKE A1,01, for exampie, will
restore location A1 to the PET's
power-on value, which helps you
to recover from disasters.)

The variables H1 to H6 are the
sense values for the |EEE lines.
For example, if H1 is 1, the DAV
line is true. If H1 is zero, DAV is
false.

When you enter BASIC 488,
enter lines 1000-1620 and lines
9000-9640 first. Use the IEEE
Blinkin Lites to check that the
subroutines in the 9000 series
function correctly. First, GOSUB
1000 in direct mode ta set things
up. Then, GOSUB to the section
under test and look at the
Blinkin Lites to see what hap-
pened. A PRINT H1 will inform
you of the sensing subroutines’
resuits. Be sure to thoroughly
test the 9000 series first!

1000 REM *#** |EEE 488 **»*

1005 REM GREGORY YOB, JAN 1979
1010 REM BOX 354, PALO ALTG CA 94301
1015 REM

1020 REM THESE ROUTINES PERMIT DIRECT
1025 REM MANIPULATION OF THE PET IEEE
1030 REM 488 BUSS LINES AND (SLOW!)
1035 REM 1EEE 488 COMMAND AND DATA
1040 REM TRANSFERS

1045 REM

1500 REM == INITIALIZATION ==

1510 RESTOR:READ A1,A2,A3,A4,A5,AE,A7

1530 READ M@ ,M1 M2 M3 M4, M5 MG M7

1540 DATA 1,2,4,8,16,32,64,128

1550 READ N@,N1,N2,N3,N4 N5, NE,NT

1560 DATA 254,2%3,251,247,239,223,191,127

1600 DATA 255,266,€,60,724%,255,60
1610 DEF FNF(X)=(NST/¥))ANDZ25S
1620 RETURN

7000 PRINT"clr GET MESSAGE™
7010 PRINT"dn PRESS KEY TG START®

Listing 2. BASIC 488 program.

1520 DATA 59424,59426,59425,59427,59408,55456,59409

7565 PRINT"cIr SEND MESSAGE"

7510 INPUT"dn dn MESSAGE :";C$
7520 D2=FNF (DV+32) :GOSURS450 :GOSUBBS00 :GOSUBI4 70

7530 FOR J=1 TO LEN(CS)

7540 D2=FNF (ASCIMiD$(C$,)))

7550 GOSUBSSQ0 :NEXTJ

7560 PRINT"dn dn MESSAGE SENT: sp"C$

7570 RETURN

8000 PRINT"clr LISTEN HANDSHAKE dn"
8010 GOSUB9350 :GOSUBI250 :GOSUBS 370
8020 PRINT" sp NRFD TRUE dn":PRINT" sp NDAC TRUE™

:PRINT" sp NRFD FALSE"

8030 PRINT"WAITING FOR DAV TRUE"

8040 GETAS: IFASC D" THENPRINT"-~FORCED" : GOTO8060
8050 GOSUE9100: iFH1=@THENBOAO

8060 GOSUBIOO0:PRINT"dn spDATA:"FNF (D1)CHRE(FNF(D1))

8070 G0SUB9350:G0SUBS27C

80B0 PRINT"dn sp NRFD TRUE™:PRINT" sp NDAC FALSE™
8090 PRINT"WAITING FOR DAV FALSE™

8120 GOSUBS250

813C PRINT"dn sp NDAC TRUE™

814G RETURN

:g;g SEAQAD ggs 8100 GETA$: IFASK) ""THENPRINT"--FORCED" :GOTO8120
1590 READ 01,02,03,54,05,06,07 (Each ot these is Letter). 8110 GOSUBI100: IFH1=1THENB100

39500 PRINT"clr TALK HANDSHAKE"

£510 GOSUBI170

7020 GETAS:|FAS=""THEN PETURN (" is an empty string) 852G PRINT"dn sp DAV FALSE"

7030 D2=FNF (DV+64) :60SUBS450 :GOSUBBS0G :G0SUBSAT0 8530 GOSUBI200 :GOSUBS 300

7040 BS="" BS540 1F H14H2 > @ THEN 8570

7050 GOSUB BOQO:1F FNF(D1)=13THEN7070 8550 PRINT"dn >> sp ERROR STATE-PRESS KEY TO FORCE"™
7060 B$=BS+CHRS (FNF (D1)3:GOTGTO50 8555 PRINT"NOTE : MAKE NRFD, NDAC TRUE"

7070 GOSUBBOOO:REM LF BUCKET 8560 GETAS; {FAS=""THENBS60

7080 PRINT"dn dn MESSAGE 1S: sp"B% 8570 GOSUB9OSQ

7090 RETURN 8580 PRINT"dn DATA ON L INE :"FNF(D2)CHRS (FNF(D2)}

Nothing else will work if these
don't!

If all else fails, refer to Tables
1, 2 and 3 and try a few direct
PEEKs and POKEs to ensure
that the |EEE lines are func-
tional.

Add lines 8000-8140 and lines
8500-8690, which you can check
by attaching the 488 Blinkin
Lites and carefully tracing
through the handshake flow-
chart in Fig. 7. Again, it is essen-
tial to be sure these routines
work correctly. An additional
benefit is that you will iearn the
handshake sequence in detail.

Note that the data trans-
ferred, D1 or D2, must be com-
plemented with the FNF func-
tion as it enters or leaves the
IEEE bus. In some of the waiting
loops, such as lines 8030-8050,
a GET AS$ check is inserted. If
the instrument hangs up, press-
ing a key will force the hand-
shake to proceed, and a suitable
message will appear on the
screen. As the handshakes pro-
ceed, their progress is reported
to the screen for your reference.

Next, add lines 7000-7570.
These routines require a device
address, DV, to function correct-
ty. Subroutine 7000 will fetch a
message from a device, and
subroutine 7500 will send a mes-
szge. The strings B$ and C$ are
used to store the messages.

Most devices will send an EOI
along with the last character of
their messages. This will turn off
the screen. in some cases, you
will have to provide an EOI,
which will again turn off the
screen. To recover, enter:

GOSUB 9570 (and RETURN)

Another approach is to move the
cursor down until the screen
scrolls. A scrol turns the screen
off, and then on. If you have a
16K PET, the screen will not
blink.

Testing the last part via the
IEEE Blinkin Lites is tedious. If
you have an instrument avail-
able, try talking to it! Be sure
you know exactly what your in-
strument expects and its re-
sponses!

Talking to the HP Clock via
BASIC 488 .

Now that you have checked
out BASIC 488 by hand, try it
with areal live instrument! | con-
nected the HP clock, ioaded
BASIC 488 and gave it a try (see
Exampile 1). The clock’s front
panel shows the reset worked.

These commands can be
compressed to one line (see Ex-
ample 2).

Next, try to read the clock. Ad-
dress the clock to talk, then read
the 14.character message

shown in Example 3. if you look
at the line DATA: on the display
for the Listen Handshake, you
can barely see the clock’s mes-
sage. A different version (see Ex-
ample 4) will pick up the mes-
sage and leave it later. Below
the Listen Handshake display
appears the clock’s message:
0101000520

The BASIC 488 program has
two routines for sending and
reading entire strings via the
|EEE 488. Subroutine 7000 ad-

dresses device DV to talk and
read a string. Subroutine 7500
addresses device DV to listen
and sends a string. (Note: Rou-
tine 7000 reads a string until a
carriage return is seen, and then
reads one more character. This
is because the HP clock ends
messages with CR and LF. You
might have to change this for
your device.)

To reset the clock:
DV =7:GOSUB 7500
The screen clears and asks for

8590 print"dn WAITING FOR NRFD FALSE"
8600 GETAS: IFA$C D "M THENPRINT"-~FORCED" :GOTOB620
8610 GOSUB9300: | FH3=1THENB60O

8620 GOSUB9150 .

8630 PRINT"dn sp DAV TRUE*
8640 PRINT"WAITING FOR NDAC FALSE"
8650 GETAS: IFASKD ""THENBET0

8670 GOSUB 70

8680 PRINT"dn sp DAV FALSE"

8690 RETURN

9000 POKEAZ,NB:D1=PEEK(A?) :RETURN

9050 POKEA2,D2:RETURN

9100 H1=1:1FPEEK(A6 JANDMTTHENH =@

9110 RETURN

9150 POKEA4,PEEK(A4)ANDN3:RETURN
9170 POKEA4,PEEK(A4)ORM3:RETURN
9200 H2=1:1FPEEK(A6)ANOMBTHENH2=(

9210 RETURN

9250 POKEA3,PEEK(A3)ANDN3 :RETURN
9270 POKEA3,PEEK(A3)ORM3 :RETURN
9300 H3=1:1FPEEK(A6)ANDMETHENH 3=0

9310 RETURN

9350 POKEAG,PEEK(AG)ANDNT :RETURN
9370 POKEAG,PEEK{AG)ORM1 : RE TURN
9400 PRINT"NO ATN LEVEL":STOP

H4=0: IFPEEK (A3} ANDM7THENH4=1
ZZ=PEEK(AY) :RETURN

POKEAG , PEEK (A6) ANDN2 :RE TURN
POKEAG , PEEK (A6)ORMZ : RE TURN
H5=1: IFPEEK (A5)ANDME THENHS=0
RETURN
POKEA7,PEEK(ATIANDN3: RETURN
POKEA7,PEEK(A7 JORM3 : RETURN
REM SRQ NOT QUTPUT

H6=@: IFPEEK (A4 YANDMTTHENH6=1
ZZ=PEEK(A2) :RETURN

MO 0000 0001
M1 0000 0010
M2 0000 0100
M3 0000 1000
M4 0001 0000
M5 0010 0000
M6 0100 0000 64
M7 1000 0000 128

Coroan-

Entry Points:
SUBROUTINE 1500 Initialization (Must be done first)
SUBROUTINE 7000 Get Message as B$, Requires DV
SUBROUTINE 7500 Put Message C$, Requires DV
SUBROUTINE 8000 Listen Handshake
SUBROUTINE 8500 Tatk Handshake
SUBROUTINES 9000£19600 IEEE Lines Primitives
9000 Read DIO as D1
9050 Write DIO as D2
9100 Read DAV as H1
9150 Set DAV TRUE
9170 Set DAV FALSE
9200 Read NDAC as H2
9250 Set NDAC TRUE
9270 Set NDAC FALSE
9300 Read NAFD as H3
9350 Set NRFD TRUE
9370 Set NRFD FALSE
9400 Trap for ATN
9430 Check ATN as H4 (if changed)
9450 Set ATN TRUE
9470 Set ATN FALSE
9500 Read EOt as HS
9550 Set EOI TRUE (Screen will blank)
9570 Set EOI FALSE (Screen returns)
9630 Check SRQ as H6 (if changed)
Variables:
PEEK/POKE ADDRESSES ORIGINAL VALUES
Al 59424 01 255
A2 59426 02 255
A3 59425 03 60
A4 59427 04 60
A5 59408 05 249
A6 59456 06 255
A7 59409 07 60
Masks:

NO 111 1110 254
N1 111 1101 253
N2 1111 1011 251
N3 1111 0111 247
N4 1110 1111 239
NS 1101 1111 223
N6 1011 1111 191
N7 o1t 1111 127 .
N8 1111 1111 256

Miscellaneous:
DV Device Address
A Keyboard dummy entry
8% Message from Device
o3 Message to Device
Functions:
FNF(X) Returns comptement of argument

Table 4. BASIC 488 program notes.

oA
GOSUE 1500 GOSUB 1900
PRINT FNF32 + 7}
216
GOSUB 8450
D2 =216:GOSUB 8500
TALK HANDSHAKE
DAV FALSE
DATA ON LINE 39
WAITING FOR NRFD FALSE
DAV TRUE
WAITING FOR NDAC FALSE
DAV FALSE
READY.
GOSUB 9470
PRINT FNF{ASC(R™)
173
D2 = 173:GOSUB 8500

Example 1. My cialogue with the HP clock via BASIC 488.

Get everything ready . .

This is the value for D2 as a listen address
Make ATN true.

Send hsten address via handshake

The PET responds with the step-by-step
output handshake and goes successiully
through the entire process

The HP Clock’s "addressed ™ light turns on!

Make ATN talse
R resets the clock

Send ‘R asdata.....
And this handshakes through OK too.

D2 = 216:GOSUBY450:GOSUBB500:GOSUBY470:02 = 173:GOSUBE500

Example 2. A one-line command for Example 1.

PRINT FNF(64 + 7) Find out D2 for talk address

184
D2 = 184:GOSUBY450.GOSUBBS00.GOSUBI470
(S | The handshake goes through
FOR J =1 TO 14:GOSUB 8000:NEXT
{ .. fort4times}

Example 3. The dialogue for reading the clock.

the message (see Example 5).

The Talk Handshake flashes
on the screen twice, and the
message sent is displayed be-
low:

[I R
MESSACE SENT: R

The program uses routine 7000
to read the time. Since DV is al-
ready set, we don’t have to reas-
sign DV =7 again. See bxample
5. Note that there are three
spaces between the colon and
the first zero. Two of these are
from the HP clock, which starts
all messages with two blanks.

The BASIC 488 program,
though slow to operate, never
times-out and lets you control
the IEEE 488 bus. This is helpful
when you debug a new IEEE
device with your PET.

If you are an experienced 6502
programmer, it is simple to
translate the BASIC 488 pro-
gram into a set of machine-
language routines. If you do so,
i'd like a copy (tape and source).
Listing 3 shows a copy of the
|EEE handshakes in machine
language. (From the PET User
Notes, PO Box 371, Mont-
gomeryville, PA 18936, Vol. 1, Is-
sue 7, (Nov.-Dec. '78), p. 8. This
is a reprint from the Commodore
PET Users Club of England.)

The PET handles the |IEEE 488
as a file. Part 2 will cover this. @

IEEE Bus Handshake Routine
- Main Program

1800 A200 LDX ¥00 prepare index register
1802 A9F8 LDA #¥3 set ATN low

1804 2D4OEB AND E840

1807 BD4OE8S STA E840

180A A928 LDA 428 MLA (28 for this device)
180C 8501 STA 01

180¢ 208018 JSR 1880 hendshake into bus
1811 A%08 LDA #08 cet

1813 8501 STA O}

1815 208018 JSk 1880 handshake

1818 AS48 LDA 448 WTA

1814 8501 STA Ol

181C 208018 JSR 1880 handshake

181F ASFD LDA #FD set NRFD low

1821 2D4LOES AND EB4O (resdy to receive data)
1824 BD4OES STA EB840

1827 ASF7 LDA ¢F7 snd NDAC lov also

1829 2DZ1E8 AND EB821

182C 8D21E8 STA ES821

182F A04 LDA #04 set ATN high

1831 OD4OES ORA EB840

1834 8D4LOEB STA E84O

1837 A008 LDY 408 ready to count 3 bytes
1839 208018 JSR 1830 handshake data from bus
183C AS02 LDA 02 result to A

183E 9D0119 STA 1901,X store in 19014X

1841 E8 INX

1842 88 DEY

1843 DOP4 BNE 1839 jump if Y not gero
1845 A9FB LDA ¢TB set ATN low

1847 2DLOES AND EB4O

184A BDLOES STA EB4O

184D A902 LDA #02 set NRFD high

184F OD4OES ORA EB40

1852 BD4OE8 STA EB40

1855 A908 LDA #08 set NDAC high

1857 OD21E8 ORA EB21

185A 8D21E8 STA EB21

185D A9SF LDA 457 UNT

185F 8501 STA O1

1861 208018 JSR 1880 handshake to bus

1864 A9064 LDA §04 set ATN high

1866 OD4OE8 ORA EB4LO0

1869 BD4OE8 STA E84L0

186C CE0C19 DEC 1900 decrease counter

1867 D091 BNE 1802 jump if not zero

1871 60 XIS return to BASIC progras

Subroutine to Handle

Handshake Into Bus

1880 AD4LOES LDA EB840 KRFD ?

1883 2940 AND #40

1885 FOF9 BEQ 1880 jump back if oot ready
1887 A501 LDA Ol ready: get data byte
1889 49FF EOR 4FF complement it

1888 BD22E8 STA EB22 send to bus

18SE A9F7 LDA #F7 set DAV low

1890 2D23E8 AND E823

1893 BD23E8 STA E82)

1896 ADLOES LDA E840 NDAC ?

1899 2901 AND w01

1898 FOF9 BEQ 1896 jump back if not accepted
189D A908 LDA w08 accepted; set DAV high
189F OD23E8 ORA E823

1842 8D23E8 STA E823

1845 A9FF LDA AFF 2”10 into bus

1BA7 8D22E8 STA EB22

18AA 60 RTS Teturn to main

Subroutine to Handle
Handshake From Bus

18BO A902 LDA #02
1882 OD4OES ORA ES840
1885 BDLOE8 STA E84O
18B8 AD4OES LDA E840 DAV 1
16BB 2980 AND 480
188D DOF3 BNE 18B8
1887 AD20ES LDA EB20
18C2 49FF EOR sFF
18C4 8502 STA 02
18C6 A9FD LDA AFD
18C8 2D4OE8 AND EBLO
18CB BD4OES STA E840
18CE A908 LDA 408
18D0 OD21E8 ORA E821
18D3 BD21EB STA E821
18D6 AD4LOES LDA E840
18D9 2980 AND &80
18DB FOF9 BEQ 18D6
18DD A9F7 LDA ¢F7
18DF 2D21EB AND EB21
18E2 8D21EB STA EB21
18ES A9FF LDA #FF 255
18E7 8D22EB STA E822
18EA 60 RIS

set NRFD high

jump back if oot valid
get data byte from bus
complement

store in § 0002

set NRFD low

set NDAC high

DAV high ?

jump back if not
set NDAC low

10 into bus

return to main

tEEE Bus Handshake Routine
Object Listing

1800 A2 00 A9 FB 2D 40 E8 8D
1808 40 E8 A9 28 85 01 20 80
1810 18 A9 08 85 01 20 80 18
1818 A9 48 85 01 20 80 18 A9
1820 FD 2D 40 E8 8D 40 E8 A9
1828 F7 2D 21 E8 8D 21 EB A9
1830 04 OD 40 EB 8D 40 E8 AD
1838 08 20 BO 18 A5 02 9D O}
1840 19 E8 88 DO F4 A9 FB 2D
1848 4O EB 8D 40 E8 A9 02 OD
1850 40 E& 8D 40 EB A9 08 0D
1858 21 E8 8D 21 EB A9 5P 85
1860 01 20 80 18 A9 04 OD &0
1868 E§ 8D 40 E8 CE 00 19 DO
1870 91 60 EA EA EA EA EA EA
1878 EA EA EA EA EA EA EA EA
1880 AD 40 E8 29 40 FO F9 AS
1888 O1 49 ¥F 8D 22 8 A9 F?
1890 2D 23 EB 8D 23 EB AD 40
1898 E8 29 01 YO F9 A9 08 OD
18A0 23 £8 6D 23 EB A9 FF 6D
18A8 22 E8 60 EA EA EA EA EA
18B0 A9 02 OD 40 EB 8D 40 EB
18B8 AD 40 E8 29 80 DO F9 AD
18CO 20 E8 &9 FF 85 02 A9 FD
18C8 2D 40 E8 8D 40 EB A9 08
18D0 OD 21 E8 8D 21 E8 AD 40
18D8 E8 29 80 PO F9 A9 F7 2D
18E0 21 E8 8D 21 EB A9 FF 8D
18E8 22 E8 60

0001 data to go into bus
0002 data from bus

1900 counter for sumber of data transfers

1901 stert of results srea

Listing 3. IEEE bus handshake routine in machine language. MLA is My Listen Address; MTA is
My Talk Address; UNT is Untalk Command.

Gregory Yob
Box 354
Palo Alto, CA 94301

Get Your PET on the IEEE 488 Bus

Part 2 of this “opus computerus” examines the file characteristics of the IEEE 488 bus.

Your PET has a “built-in” way
of communicating through
the IEEE 488 bus. In BASIC, the
IEEE 488 looks like a file—just
as the cassettes are files. The
OPEN statement is used to
specify a physical device num-
ber of 4 to 30, and the open logi-
cal file now talks via the IEEE
488 bus.

A complete understanding of
PET tape files is a prerequisite
for working with the IEEE 488 as
a BASIC file. An article in the
January 1979 Kilobaud Micro-
computing (“PET Techniques
Explained”) covers many “inno-
cent” errors that will result in
mysterious malfunctions.

IEEE 488 Information Transfers

Talking to a Device.

1. OPEN a BASIC file to the
device’s address. For example,
OPEN 1,4 will open the IEEE bus
todevice 4. Your BASIC program
will see this as file #1.

2. PRINT# to your OPENed
file. PRINT#1,“HELLO, DEVICE”
will address the device to listen,
send the string HELLO, DEVICE,
add a carriage return with EOl
true and then issue the UNT (Un-
talk) command.

3. Repeat step 2 as needed.
Note that after each PRINT#, the
IEEE bus is free, since the UNT
has been sent.

PRINT# will send the same
characters, inciuding the skip
character after numbers, as
PRINT does to the screen. If you
want to send several items, be
sure that any needed delimiters,
such as “,”, are included.

Listening to a Device.

1. OPEN a BASIC file to the
device’'s address:

2. Use INPUT# or GET# to
fetch a line or a character from
the IEEE bus.

3. Check the status word, ST,
for an error, such as time-out. If
the device is slow, the PET will
complete the INPUT# or GET#
and put a nonzero value into ST,
which must be checked immedi-
ately after the VO operation. If
ST indicates a time-out, jump
back to step 2.

4. Convert the data from the
INPUT# or GET# as needed, and
if more is needed, go to step 2.

Note that after each INPUT#
or GET#, the UNT command is
sent to the IEEE bus. This will
truncate long messages from
the device, especially with
GET#. Also note that INPUT#
(string) and GET# (string) work
the best. The BASIC string func-
tions (MID$, RIGHTS, LEFT$ and
VAL) will help you get the data
into a usable form.

Talking to More than One De-
vice.

PRINT"***"
OPEN 1
GET#1, AS
PRINT A$;

GOTO 40
REM Z

83888883

REM CMD EXAMPLE

IF A$ = CHR$(90)THEN PRINT****":END

Example 1.

1. OPEN a file for each device.

2. Using CMD, send a dummy
message to each device. For ex-
ample, CMD 1:CMD 2:CMD 3 wili
set up each device (as specified
in the OPENSs for files 1,2 and 3)
by sending carriage returns to
the devices and leaving them as
listeners on the bus.

3. PRINT# to the IEEE bus.
Any of the OPENed files may be
used.

4. Repeat steps 2 and 3 as
needed. Since PRINT# ends with
the UNT, step 2 must be re-
peated after each PRINT#.

Transfer from One Device to
Another.

1. OPEN a file for each device.

2. CMD to the device that is to
be the listener.

3. INPUT# from the device
that is to be the talker.

4. Repeat step 3 as needed.

INPUT# does not send a UNL,
so the device that was CMDed
remains on the bus as a listener.
All information sent by the
talker to the PET is also received
by the listener. To turn off the
listener, use a PRINT# to the
listener's file. If the talker is
stow, check ST and repeat step 3
as required.

LISTing a BASIC Program to a
Device

1. OPEN a file to the device.

2. CMD to the device.

3. Enter the LIST command.

4. When the LIST is finished,
do a CLR.

The PET’s graphics and cur-
sor characters will not print cor-
rectly on a standard ASCII
printer. (I have a BASIC listing
program availabie.)

The best way to learn the PET
files and |EEE 488 is by specific

Copyright 1980 by Kilobaud Microcomputing. All rights reserved. Used by permission.

examples. After a detour
through CMD, we will continue
with two examples. These
should provide you with enough
information to get started. if you
have no success, refer to the
section on Common Errors
(found later in this instaliment).

tmD

CMD is an unusuat PET com-
mand. Consider its functions:

1. Anything that BASIC wants
to say is now routed to the
device that CMD’s file number
refers to. If this isn’t the screen,
nothing that BASIC says will ap-
pear on the screen.

2. It a list of variables and
literals is provided after the
CMD, they will be sent to the
device in the same way as
PRINT# will.

3. However, if the device is on
the IEEE bus, no UNL will be
sent, so the device will remain in
the listening state and receive
any following data sent on the
IEEE bus.

To see how CMD operates,
get two scratch tapes and enter
the program in Example 1. Now
SAVE and VERIFY this program
on one of your tapes. Put the
other tape in the tape unit and
execute the following:

OPEN 1,1,1
PRESS PLAY & RECORD ON TAPE#

Perform this and wait until the
tape stops.
OK
READY.

Now enter CMD 1. Note that
READY. didn’'t appear; it was
provided by BASIC and is now
residing in the tape buffer. The
cursor is blinking below the C in
CMD. Continue with:

LIST
CLOSE Y
GLR
READY

Note that the CLOSE 1 didn't
get the READY. back. 1t took the
CLR to return BASIC's mes-
sages to the screen. If you enter
LIST, the program will appear on
the screen. Rewind the tape and
RUN. Three asterisks now ap-
pear after the RUN. These were
printed by the program. This is
one reason | don't trust my PET
after a CMD. The text between
the OK and the ending READY
was found as a data file.

When the PET was under the
influence of CMD, the letters
you typed in were put onto the
screen. This echoing is done by
the PET's operating system, so
CMD won't put these out to the
device.

Though CMD looks iike a
good way to LIST program to
tapes as data files, there is a
snag. My example is shorter
than 191 characters, and a LIST
via CMD isn’t smart enough to
“jiffy” the data tape (this has
been fixed on the new PETSs).
You run the risk of losing tape
records when you try to read an
“unjiffied” tape.

Try to verify that CMD
1,*HELLO OUT THERE” will
print HELLO OUY THERE onto
the tape. Remember that if you
CMD a device on the IEFE 488
bus, any PRINT# to the bus will
require a repetition of the CMDiif
you want the device to remain in
the listening state.

Talking to the Clock Again

(For a description of the HP
clock see part 1 of this article.)

First, you must check the de-
vice address on the DIP switch
(which will be near the 488 fe-.
male connector) and make sure
the address is in the range 4 to
15. The enter a short program
(Example 2) into the PET. This
program consists of three sub-

10 OPEN17

20 RETURN
100 INPUT“SAY TO CLOCK:"S$
110 PRINT#1,S$
120 RETURN
200 INPUT#1.C$
210 PRINT“CLOCK SAYS: ",C$
220 RETURN

Example 2.

routines to facilitate communi-
cating with the clock. Remem-
ber that the PET will not accept
an INPUT statement as a direct
command.

First, enter GOSUB 10 as a di-
rect command. This opens file 1
to device 7, which is our clockon
the |IEEE bus. OPEN merely sets
things up; nothing is sent to the
bus yet.

To read the time, enter GO-
SUB 200:

GOSUB 200

CLOCK SAYS: 0103020204 {Jan. 3. 2:02:04
AM)

Your PET might give ? SYN-
TAX ERROR after this opera-
tion. This is a harmiess feature
of the PET.

To set the clock, using Jan.
29, 9:17 pm, as our example,
enter:

GOSUB 100
SAY TO CLOCK? RDDDDDDDDDDDDDOD
DDDODDDDDODDD28 Ds)

The clock starts at day 1. To
settoday n, use n—1Ds. To set
the hour, enter the following.

GOSUB 100
SAY TO CLOCK? HHHHHHHHHHHHHHH
HHHHHH(21Hs)

Minutes and seconds are set
similarly.
GOSUB 100
SAY TO CLOCK? MMMMMMMMMMMMM
MMMMSSS (17Ms, 3Ss)
We are now set t09:17:03. When
| did this by hand, the clock
moved forward about a minute,
so the number ofi M's used
should be changed to accom-
modate for this.

Talking to the HP 8165A Pro-
grammable Signal Source

(For a description of the HP
8165A, see part 1 of this article.)

The 8165A is a fine instrument
with many switches, knobs, but-
tons and options and a cor-
respondingly wide array of IEEE
488 commands (see Fig. 12, part
1.

The precise contents of each
example concern the 8165A,
which is an instrument you will
probably never meet! My inten-
tion is to show you how direct
mode commands—that is, BA-
SIC statements without line
numbers—can be used to con-
trol an instrument and help in
debugging.

First, | hooked the 8165 to the
488 cable, and the PET turned
on. The 8165 was addressed to

8. When the PET came on, IFC
was true for about one second.
This put the 8165 in local mode,
where the front panel works as
usual. Many instruments will ig-
nore their front panels when the
488 bus addresses them. Once
the PET addresses the 8165, you
cannot control it from the front
panei anymore. (An LED indi-
cates this on the 8165)

The following short program
takes care of input from the in-
strument:

10 INPUT#1. AS
20 PRINT AS

This substitutes for the iliegal
direct command (INPUT#1,AS:
PRINTAS), which | would like to
use, but the PET forbids (try it
and see!;.

Since | wanted the 8165 to
output a 1 kHz sine wave at an
amplitude of 1.5 voits, | used the
foliowing IEEE commands:
F1—Set to sine wave
FRQ 1 kHz—Set frequency
AMP 1.5 V—Set amplitude
11—Set to normal operation
(continuous signal output)

First, open the IEEE file:

OPEN 18
READY.

Then send the settings:

PRINT #1,°F1" (At this point, the
“Remote” LED went on, and | can no longer
work the front panel.)

PRINT #1.“FRQ1KHZ"

PRINT #1,"AMP1.5V"

PRINT #1,°11"

Nothing happened! My scope
showed only a flat trace! Upon
reviewing my steps, | noticed
that | overlooked the Disable
Output (OD) and Enable Output
(OE) commands. | entered
PRINT #1,OE”, and a sine wave
appeared on the scope.

You could also send this set-
ting as one string. For example,
PRINT #1,“F2FRQ1.2KHZAMP
1.2VHOE” sets up a 1.2 kHz
triangle wave at 1.2V amplitude.

The 8165 can also report
some of its switch settings. Now
we can use the tiny program in
the PET:

GOTO 10
F1 D2 12 FMO AMO

Since the PET has difficulty
with GOSUB in direct mode and
the IEEE bus, we must make a
program change:

10 INPUTH1, A$

20 PRINT AS
30 RETURN

We will quickly be reminded

that any time we change a pro-
gram, all the variables, including
opened files, will be lost:
GOSUB 10
7FILE NOT OPEN ERROR IN 10

So we try again:

OPEN 18

GOSUB 10

F1 D2 12 FMO AMO
2SYNTAX ERROR IN 22066

The PET will provide the
2SYNTAX ERROR about 90 per-
cent of the time when the IEEE
is accessed via the INPUT#
statement and the PET is exe-
cuting a directly called subrou-
tine. However, this doesn’t ap-
pear to affect anything. | avoid-
ed this by not making the little
program a subroutine the first
time.

So, if you are in a pinch, re-
member that the PET's direct
command capability can rescue
you with IEEE 488 devices and
provides an inexpensive way to
explore a new instrument.

Talking to More than
One Device

Now that each of the instru-
ments has been in the bus in-
dividually, the next step is to try
the 488 with both of them on at
the same time. | connected the
HP clock and the 8165 to the 488
bus and gave the clock address
#7. and the 8165 address #8.
Then | entered the short pro-
gram for INPUTSs:

10 INPUT #1, AS
20 PRINT A%

30 END

100 INPUT #2, BS
110 PRINT B$
120 END

First, OPEN the files:

OPEN 1,7
OPEN 2.8

if you get a ?FILE OPEN ERROR,
just enter CLR and start over.

Taking a peek at the clock re-
sulted in:

GOTO 10

0130051957 (30 Jan., 5:19:57)

And peeking at the 8165 gets
me:
GOTO 100
F1 D2 12 FMO AMO
which is the usual mystery mes-
sage that the 8165 says to me.
There isn’t any point in explain-
ing this message, for your in-
strument will say something dif-
ferent and meaningful only to
you.

PRINT #1 and PRINT #2 will

X$ = “":FORJ = 1TO14:GOSUBB000:X$ = X$ + CHRS$(FNF(D1):NEXT:PRINTXS
0101000520 :

Example 4. Putting the clock’s message into X$, and the con-
tents of X$.

DV =7.GOSUB7500
SEND MESSAGE

MESSAGE:? R R for reset

GET MESSAGE

PRESS KEY TO START

(..... ‘A lot of Listen Handshakes}
MESSAGE IS: 0101000158

Example 5. Resetting the clock.

Program Listing Conventions

The PET’s graphics and cursor control characters aren’t easily
duplicated for program listings, so the conventions described
here will be used instead.

If a letter or numeral (or any character) is underlined, it means
the corresponding graphics character is to be used. (A is the
spade symbol on the PET.)

Lowercase letters indicate PET special functions:

cir CiearScreen hm Home Cursor

rt Cursor Right ift Cursor Left

up Cursor Up dn Cursor Down

rvs RVSfieldon off RVS field off

cr RETURN key sp SPACE key

Sp in a line indicates leading or more-than-one blank. For ex-
ample, dn/sp/sp/HELLO THERE means Cursor Down space
HELLO space THERE.

Two |EEE 488 Instruments

The two instruments described here are typical in the way they
are controlled via the IEEE 488 bus. Most instruments are con-
trolled by sending and receiving ASCIHI characters, which are
mnemonics of the function being controlled. For example, the
HP clock uses the letter D to increment its days’ counter. Num-
bers are usually sent as ASCI! strings—in the same way that
PRINT provides an ASCII string of digits to a terminal. CRand LF
usually indicate a message's end. ’

Some instruments will use more difficult formats. Two popular
forms are BCD, in which two digits per byte are sent, and pure bi-
nary, where the value 0-255 is sent. Be sure you know the exact
formats used by your instruments! Most instruments are unfor-
giving of bad data; and the responses range from ignoring mean-
ingless characters to the instrument’s unaddressing and leaving
the bus. Check your instrument’s manual!

The HP 59309A Digital Clock

The HP clock is aimost the simplest instrument that uses the
|EEE 488 bus. Your options are to either set the time or read the
time.

When the clock is addressed to talk, it will provide a string of
characters with the time in the following format:

{sp or 7) sp NNDDHHMMSS cr if
The first character is a space or a question mark. if the clock
hasn’t been set since the iast power-off, the question mark will
indicate this. The next two digits indicate the month, from 01 to
12. Then comes the day of the month, 01 to 31. (The clock keeps
track of the days in each month correctly and has a leap-year
switch). Then the hours (00 to 23), minutes and seconds are sent.
The carriage return and line feed indicate the end of the message.
- Inside the clock are switches that provide variations of the for-
mat—colons or commas can either separate the fields, i.e.,
NN:DD:HM:MM:SS, or simply send the 24-hour time.

When the clock is addressed to listen, eight ASCII characters
are used for control:
P—Stop the clock
T—Start the clock

R—Reset the 01:01:00:00:00

S—Each S will increment the Seconds counter
M—Increment Minutes counter

H—Increment Hours counter

D—increment Days counter

C—Note time, send it when addressed to talk.

For example, the following string will reset the clock to Jan 5,
8:07:12 AM.)
PRDDDDHHHHHHHHMMMMMMMSSSSSSSSSSSST
The T at the end restarts the clock.

The HP 8165A Programmable Signal Source

This is a “cadillac” 488 instrument—the front panel of this ma-
chine has 41 buttons for selection of modes and a 12-button num-
ber pad for entering times, and frequencies. This works out to 35
different command formats for setting up parameters and switch
settings and nine commands for telling the controiler the ma-
chine’s setting or starting a sequence of actions. Some of the for-
mats include:

F1—Select Sine Wave

F2—Select Triangle Wave

F3—Select Square Wave

FRQ f MZ—Select frequency in MHz. f is a number from 1 t09999.

FRQ f MZ—Same for Hz

FRQ f KHZ—Same for kHz

SET:—Report all parameters currently operating when add‘rgssed
to talk.

SET: n—Report setting in memory # n (0-9)

The 8165 can store up to ten complete settings in its mem-
ories, so the SET commands permit the controller to find out
what’s in the 8165.

An instrument of this complexity is usually programmed with a
set of special-purpose programs as needed. Writing a general-
purpose BASIC program would be both tedious and wasteful. My
experience is that the hardest part is to get the PET and the in-
strument to communicate. Once that is accomplished, the rest is
easy.

work just fine, and so two instru-
ments and the PET can live in
harmony together.

A Gotcha

| decided to turn off the 8165
with the PET set up for two in-
struments as described above.
Sure enough, strange things
happened.

The clock worked fine:

GOTO 10
0130052525

And just for fun, iook what
happens with the 8165 (which
isn’t on):

GOTO 100
F1 D2 12 FMO AMO

The 8165 has some internal
batteries to store and memorize
settings until it is turned on
again. It also will respond to the
|EEE 488 bus.

Now to try things in reverse—
the clock doesn’t have any bat-
teries. (Clock is off; 8165 is on.)
GOTO 100
F1 D2 12 FMO AMC

GOTO 10
F1 D212 FMO AMO

The 8165 is fine

What's this?

The 8165 will reply to any ad-
dress if it is the only device on
the bus. The clock acts in the
same-way. {| don't know if this is
a PET fault or an HP design deci-
sion. Check your device.)

if your program is intended
for more than one device, this
can be a disaster. Make sure ali
required devices are operating
when using multiple devices on
the bus.

| ran into ancther goicha: the
8165 wouldn’t accept every ire-
quency change. | tracked this
problem down to the presence
of the HP clock on the bus.
When | turned the clock off,
everything worked fine. When
debugging, remember to have
2nly one device on your bus.

Common Errors

in theory, if you have under-
stood everything to this point,
you can now get an IEEE 488 in-
strument and make it play with
your PET. In practice, this won't
happen.

Finding errors is the hardest
part of programming, and when
you work with the |EEE bus, you
can make many mistakes that
don't iook like errors. When you
are able to see errors easily and
immediately, you won't need
this article.

Here i3 an incomplete list of
the common errors in wait for
the unwary |EEE/PET program-
mer.

The misplaced address. The
PET's IEEE addresses are from 4
through 30. The addresses 0to 3
are reserved for the PET's other
/O devices:

0—Keyboard
1—Tape unit #1
2—Tape unit #2
3—Video screen

If you OPEN a file to the re-
served addresses, you won't be
speaking to the IEEE bus!

If a device isn’t running when
the PET wants to talk to it, you
will usuaily get a ?DEVICE NOT
PRESENT ERROR. However, if
some other device is operating
on the bus, you might get the
other device’s response instead.
This happened to me with the
HP ciock and the 8165. if one
was turned off, the other would
respond, even though the OPEN
statement was referring to the
inactive device. This can badly
confuse your program.

Time-outs. The PET will only
wait for 64 milliseconds before
giving up on a device that is
slow to respond to the iEEE 488
handshake. Though the |EEE
488 is supposed to work at any
speed, you may wonder what to
do if a device on the bus has
failed. I1f the PET were to wait for
a response, there would be no
way to return to the user. The 64
ms interval was chosen from the
timers available on the 6522 VIiA
chip, which can count up to
65535 at the 1 MHz clock rate of
the PET.

Most instruments will re-
spond within the 64 ms interval,
and the PET will read and write
the data correctly. This was true
of the HP instruments at my dis-
posal. To exercise the PET time-
outs, | attached both the clock
and the 8165 to the bus, and
then OPENed a file to a non-
existent address:

NEW

10 INPUT#3AS
20 IF ST THEN PRINT"ST IS” ST
30 PRINT AS

40 A$="

OPEN 1,7 {Open the clock to fite 1)
OPEN 2,8 (Open the 8165 to file 2)
OPEN 3,10 (The nonexistent device)

The little program attempts to
input from the nonexisting de-
vice. The ST value is a reserved
BASIC variable used by the PET
for indicating /O conditions. If
ST isn’'t zero, something went
awry.

Now to talk a bit to the de-
vices to wake them up:

PRINT #1°R" (And the clock resets)
PRINT #2,"E0" {And the 8165 puts out
a signal}

If a look at ST is made, ail's
well:
PRINT ST

o

This may take a few tries to work
right.

Now to try that nonexistent
device:
PRINT #3. “HELLO"

Looks OK, right? Well, let's
see...

PRINT ST
- 128
This is the PET's ST code for
“device not present.”
Now to try the little program:

GOTO 10
STi52

READY.
The ST code is 2, which is the
time-out for reading data; the
nonexistent device didn't say
anything. Recal! that line 30 said
to print A$. The PET did print A$,
which was an empty string.
The solution to this dilemma
is to keep on trying! Write a loop
that redoes the INPUT# or
PRINT#. In most cases, a slow
device will send its characters
rapidly enough—once it has its
message ready.
Consider these two sample
loops:
100 PRINT #5,“ some message or other”
110 IF ST=1THEN 100
200 INPUT #6,8%
210 IF ST =2 THEN 200
If you want to mask for certain
bits, you can use the AND
operator, but parentheses are
needed. The above examples
would read:

110 IF(STYAND 1 THEN 100 and
210 IF (ST) AND 2 THEN 200

The removal of the parentheses
makes the PET see the expres-
sion as:
IF ST AND 1

looks like IFSTAND1

which will result in a 2SYNTAX
ERROR. Use parentheses or re-
arrange the order of operations
in these cases.

The literal principle. PET out-
puts to a tile the same charac-
ters that it sends to the screen.
This is also true for the JEEE 488.
The PET's format for PRINTing a

number is:
(space or ~ sign) (digits) (optional ex-
ponent) (cursor fright)

This can raise havoc with an
|EEE device that is expecting a
character after the number.

Consider the following exam-
ple:

10 PRINT “clr”;

20 FORJ=1TO10
30 PRINT #eseeesessssrcescansan
40 NEXT J

50 PRINT “hm";

60 FORJ=1TO10
70 PRINT J"1S A NUMBER™
80 NEXTJ

{clear screen)

{home cursor)

RUN

1*1S A NUMBER™"***
2°ISANUMBER™"**"
3*IS A NUMBER""***

etc

The asterisk after the number
comes from the cursor right
character that was sent to the
screen. The cursor right follows
any numbers sent to the IEEE
488 bus.

The following program sets
the frequency of the 8165.

10 OPEN 18 (The 8165 is at address 8)
20 FORJ=1000 TO 2000 STEP 10
30 PRINT #1,"FRQ"J"HZ"
40 FORK=1TO 1000
50 NEXTK (This is a 3 second delay
loop)

60 NEXTJ
When this is RUN, the 8165 gives
all signs of distress. The fre-
quency appears on the front
panel, but the LED that indi-
cates correct entry stays blink-
ing (not completed). Also, the
scope shows no change. The
PET screen blinks at intervals,
indicating that EOI is made true
now and then. (| suspect the in-
strument is making this hap-
pen.)

The following modification
will fix this:
30 PRINTH#I,"FRQ'STR$U)'HZ"

The STR$ function converts a
number to the string that would
be PRINTed, without the cursor
right at the end! The general fix
for numbers is simple: convert
all numbers to strings before
putting on the IEEE 488 bus.

Fractions. Now that the fre-
quency example is working
right, how about trying some
other STEP sizes. Here is a sim-
ple change:

20 FORJ=1TO2STEP 01
30 PRINT #1."FRQ"STR$(J)"KHZ"

The J loop was changed to do
the same thing, but in kilohertz.
Line 30 was changed to reflect
this. When RUN, it all works fine
until about 1.25 kHz—the 8165
now shows 1.259 kHz instead of
1.260. A look at J gives us the
clue we need:

PRINT J
1.25999999

The PET slips up when com-
puting with fractions ... and
this eventually shows up. The
fraction .01 becomes a repeat-
ing binary decimal, and after
repeated addition, the round-off
appears as a slight reduction of
the number being added to. In
this case, 1.260 turns into

Catching this is easy ... if J
were put onto the screen first!
35 PRINT STR$(J)

If you do this, the first “blow up”
comes at 1.22999999. Now you
are faced with a programming
problem: how to get around
nasty numbers. One way is to
take the iNT function, such as:

STR$(INT(J- 100 + .5y100)

hundredths place. More com:-

plex tricks will be needed if the

PET insists on scientific nota-

tion, such as

2.35€ - 03

PRINT your IEEE output onto

the screen while debugging.
Next month, we will wrap up

our three-part series with a fur-

ther look at the programming

BREAK IN 40

(Press STOP key) 1.25999999.

which rounds the number in the style with the |EEE 488, []

The PET IEEE 488 File I/0 Statements

The PET sees the IEEE 488 bus as a file, and the file /O statements apply to IEEE 488
transfers. Be sure you know the cassette file /O before tackling the IEEE 488 bus.
The PET file /0 statements are:

@ OPEN (file numberj, (device number), (secondary address), (filename)

OPEN instructs the PET to associate the file number with the desired /O device. BA-
SIC uses the file number in its PRINTs, INPUT# and GET# statements to determine
where the /O is 1o take place. The file number may be from 1 to 255,

The device numbers are assigned as follows:

0— Keyboard

1—Cassette unit #1

2—Cassette unit 42

3~ Screen

430 IEEE 488 bus

This implies that your IEEE device must be addressed in the range of 4 to 30. Most IEEE
devices have a switch or jumpers that permit the changing of their addresses.

The secondary address and filename are optional. However, if you want to use the
filename, the secondary address must also be inciuded. The secondary address has
the range of 0 to 31.

If the filename is not specified, the OPEN statement sends nothing to the IEEE 488
bus. When BASIC sees the PRINT¢, INPUT# and GET# statements, the device number
(and secondary address, if specified) are put on the IEEE bus as part of the usual trans-
fer sequences.

If a filename is specified, (i.e., A$ or “SOME NAME™), the OPEN statement activates
the IEEE bus making ATN true and sends:

LISTEN (to the appropriate device)

SECONDARY ADDRESS (ORed with 11110000)

FILENAME (all characters)

This permits suitably complex command sequences that require ATN to be true to be
sent. If the command sequence has to be repeated later, CLOSE the file and OPEN it
again. | haven't been able to check if the above assertions about the filename are true. If
you have a bus analyzer, check this out!

@ PRINTy (file number), (values to be sent)

First, don't use the abbreviation 74 ; it won't work (when executed, you will see 2SYN-
TAX ERROR) and will list as PRINT#. Speil out PRINT completely!

The PRINTy sets ATN true and sends the device number as a LISTEN address. If a
secondary address as specified, it will be sent also. The device number and secondary
address age taken from the appropriate OPEN statement.

ATN is then made false, and the values 1o be sent are transmitted as ASCI charac-

" tersin exactly the same way as they would be sent 1o the screen. For example, if a num-
ber is sent, a cursor right character follows the last digit. If you use " to separate col-
umns, lots of cursor rights are sent. If the PET feels a number should be in scientific for-
mat (i.e., 1.53E - 07), that’s what is sent! EOI is made true with the last character of data
sent.

After the values are sent, an UNLISTEN is sent (with ATN true), and all listening de-
vices are set free.

®INPUT# (file number), (values to be input)

INPUT# sets ATN true and sends the device number as a TALK address. If a second-
ary address was specified, it will be sent too. The pertinent OPEN statement is used for
these values,

ATN is then made false, and the PET accepts characters from the device 1o the PET's
input buffer. If the talker activates EOI, a carriage return is added to the end of the buf-
fer.

After the characters are accepted and carriage return or EOI is recognized, the PET
sets ATN true and sends an UNTALK, which releases the device.

BASIC then scans the input bufter in the same way that an ordinary INPUT statement
looks at what is typed in. This means that commas and quotes will have the same ef-
tects as with normal INPUT. It is best to use an INPUT (string) form and hope your de-
vice doesn't send any commas!

As with cassette INPUTy, an B0-character buffer is used. if more than 79 characters
arrive without a carriage return, the PET will go into “limbo,” and all is tost. (New PETs
have this fixed. Over 80 characters are ignored {or worse, the butfer is initialized. and
the first 80 characters are lost!). If you have a new PET, try it with cassettes and fing out
what happens.

INPUT# is susceptible to “time out,” and ST should be checked for a time out. Repeat
the INPUT# it a time out is detected.

®GETy (file number), (value for entry)

GET# sets ATN true and sends the device number as a TALK address and the second-
ary address, if specified. ATN is made false, and a single character is accepted.

Then, the UNTALK with ATN true is sent, and the character given to BASIC. For the
reasons that make GET X unusable, be sure to only use the GET4 (string) form.

The assertion of the UNTALK after GET# makes transmission of multicharacter
messages from devices impractical, as most devices will try to repeat their message on
repeated application of GET¢.

As with INPUT# ST should be checked for a time out, and if timed out, the GET§
should be repeated.

@ CLOSE (file number)

CLOSE releases the /0 assignments. The PET will aliow a maximum of ten files
OPEN at one time, and CLOSE will let you reuse an l/0 assignment. If you OPEN more
than ten files, old PETs will go into limbo and all will be lost. New PETs presumably
have this fixed.

If the corresponding OPEN statement had a filename specified, CLOSE sets ATN
true and sends the device number and secondary address (ORed 11100000). This fea-
ture is intended for PET peripherals.

® CMD (file number), (values to be sent)

CMD initiates the same sequence as PRINTy# and sends the values, if any, in the
same way that PRINT§# does. When finished, CMD does not send the UNLISTEN, so any
devices addresses with CMD will listen to further CMDs or PRINT to the IEEE bus.

All of BASIC's output will be routed to the device defined in the OPEN statement for
the file number. if the PET is in command mode, this includes the READY., error
messages and LIST. if in run mode, any BASIC printouts, from PRINT to the screen, will
go to the IEEE bus instead. A PRINT# will recover from the effects of CMD.

If you are using CMD in command mode, the cursor may not echo the RETURNS you
press. The PET will “echo” your keystrokes, but any outputs from BASIC will vanish to
the 1EEE device. The PRINT# to your IEEE device is the safest recovery from CMD. Re-
member that any editing of a BASIC program will destroy all variables. This includes
open files and CMDs.

® ST (status word)

After each O operation, the PET sets the value of a special variable named ST, which
will hoid its value until the next I/0 operation. So the best policy is to check it immedi-
ately! The values of ST for the IEEE bus are:

1 Timeout on write
2 Timeout on read (This one should aiways be checked)
64 EOt true

— 128 Device not present

The PET waits for 64 milliseconds to see if a device will respond to the IEEE hand-
shake. If the device doesn't, the /O operation is quietly aborted, and ST is set. If you are
INPUT#ing, you will get “nothing” or zeroes back. If you are PRINTing, everything
seems to be alt right. If your device is slow to respond, checking ST is mandatory.

PRINT#, INPUT# and GET# will return the ?DEVICE NOT PRESENT error if the bus is
in an illegal state (which is true if the bus has no devices or the LISTEN or TALK isn't re-
sponded to). ST will also be set.

@ LOAD, SAVE and VERIFY

The old PETs have a severe error in their IEEE software which prevents the function-
ing of LOAD, SAVE or VERIFY. The ATN line was ieft true during the data part of the
transter. This is why owners of old PETs who purchase the PET disk get the new ROMS;
the disk won't function with the old ROMs.

The format is the same as with tapes:
LOAD (filename), (device number)
SAVE N ' "
VERIFY

Once the IEEE bus is set to listen or talk, the first four bytes must contain the begin-
ning and ending address + 1 of the block to be transferred. The transfer is then done as
pure binary until finished. The bus is then rejeased with an UNT or UNL as needed.

VERIFY will say ?VER!IFY ERROR and set ST to 16 if any mismatches were found be-
tween the incoming data and the core image in the PET's memory. Since my PET is an
old mode! with the original ROMs, | haven't been able to check LOAD, SAVE and VERI-
FY for the {EEE 488 bus.

Get Your PET
On the IEEE 488 Bus

The final stop on this three-part tour.

Gregory Yob
Box 354
Palo Alto, CA 94302

Commodore‘s printer and
disk use the secondary ad-
dresses to control special func-
tions within each device. The
secondary address extends the
range of allowable addresses
on the IEEE 488 bus and is in-
cluded after the LISTEN or
TALK address with ATN made
true. Most |IEEE devices do not
use secondary addresses.

The secondary address per-
mits the device to distinguish
between data transfers (for ex-
ample, file /O via the disk) and
command sequences (for ex-
ample, to initialize a new disk).
The following is a brief sum-
mary of the secondary address-
es used by Commodore’s
devices.

PET Printer.
0-— Normal printing. The printer
accepts characters and prints
them as received.
1— Formatted printing. The
characters are accepted andre-
arranged according to an inter-
nally stored format specifica-
tion.
2—Format specification. The
characters specifying the for-
mat to be used are accepted by
the printer.

3 - Pagination control. Accepts
a number indicating the num-
ber of lines per page.
4 — Control of diagnostic mes-
sages. If desired, diagnostic
messages will be printed when
errors are found. For example,
if a number overflows its for-
mat, a message indicating this
will be printed. This secondary
address controls the options to
use this feature.
5—Load programmable char-
acter. The printer accepts bytes
that specity the dot matrix for
one programmable character.
PET Disk.
2 to 14--Disk “channels” data
transfers. The PET disk can
have from zero to five files open
at once. Each file is defined
with an OPEN statement of the
form:
OPEN (Log Addr), (Device Addr), (Channel
Number), (Command String)
The channel number is a sec-
ondary address in the range of
2 to 14. The command string
specifies the file type and drive.
For example, “0,FILEONE,
SEQ, WRITE” means open the
file named FILEONE on drive 0
as a sequential file for write on-
ly access.
15— Disk command channel. A
variety of commands to the
disk is sent via PRINT# to a file
opened to the secondary ad-
dress of 15. The disk can aiso

send error and diagnostic mes-
sages to the PET through this
channel.

Though it is possible to con-
trol complex devices in this
manner, these methods can be-
come awkward and clumsy if
many data transfers are need-
ed, as is the case for disks and
printers. Commodore chose
this method to avoid having to
modify or extend the PET's
BASIC.

fronically, Commodore now
offers a machine-language pro-
gram, WEDGE, which functions
as an extension to BASIC for
control of the PET Disk.

Two Examples

In most applications of IEEE
instruments, your task will ex-
tend beyond communicating
with the device. Once commu-
nications with the device are
established, there remains the
conversion of the datato a form
usable by people of some other
instrument that uses a ditferent
form of data. Also, care should
be taken to make human com-
munications as pleasant as
possible. If your application is
in a production (that is, for daily
use, and not as an occasional
experiment), clarity and refia-
bility are important.

Two BASIC programs, which
illustrate how the HP Clock and

Copyright 1980 by Kilobaud Microcomputing. All rights reserved. Used by permission.

the HP Signal Source might be
used in real-life situations,
follow. They are presented here
as examples of programming
style with the IEEE 488.

Example 1: The HP Clock

Part 1 (Microcomputing, July
1980) describes the codes used
for the HP Clock with the IEEE
488 bus. Listing 1 interacts with
the HP clock in a “human-work-
able” form. Let's first take a
iook at how the program is seen
from the outside (often called
“human engineering” or “the
user interface”).

When the program is RUN,
the following message appears
on the screen:

HP CLOCK PROGRAM
PRESS ANY KEY WHEN YOU HAVE THE
CLOCK CONNECTED VIA THE IEEE 488
AND THE POWER ON.

This reminds the user to con-
nect the clock on the bus and
turn on the ciock’s power. if the
PET tries to address a device
that isn't connected or turned
on, the ?DEVICE NOT PRES-
ENT error message wili appear
and stop the program. Unfor-
tunately, there is no graceful
way to prevent this and keep
the program running (some ver-
sions of BASIC have error
traps; i.e., ON ERROR 5
GOTO...).

After you press a key, the re-
quest appears:

100
110
120
130
140
150
160
170
180
190

200

Listing 1. HP Clock program.

10 REM NICE HP CLOCK PROGRAM

20 PRINT"clr HP CLOCK PROGRAM"

-30 PRINT"dn dn PRESS ANY KEY WHEN YOU HAVE THE
40 PRINT"CLOCK CONNECTED VIA THE IEEE 488

50 PRINT"AND THE POWER ON.

60 GET AS:IFA$="" THEN 60

70 REM INITIALIZE

80 DIM M$(12),M(12)

90 FOR J=1 TO 12:READ M$(J),M(J):NEXT

DATA JAN,31,FEB,28,MAR, 31
DATA APR,30,MAY, 31, JUN,30

DATA JUL,31,AUG, 31,SEP,30

DATA OCT,3!,NOV,20,DEC, 31

INPUT"dn dn CLOCK'S DEVICE ADDRESS:" ,AD

IF ADC 3 AND AD D16 THEN 170

PRINT"SORRY, LEGAL ADDRESSES ARE 4 - 15":GOTO 140
OPEN 1,AD

INPUT"dn dn iS THIS A LEAPYEAR";L$

IF LEFTS(LS,1)="Y" THEN M(2)=29:PRINT"BE SURE TO SET
THE CLOCK TO 366 DAYS"

REM TIME SETTING REQUEST

1050 INPUT"dn" ;MD$

1110 MI$=LEFT$(MDS,3)
1120 FOR MN=1 TO 12

1180 GOTO 1010
1200 FOR J=1 TO LEN(MDS)

1220 NEXT J

1240 GOTO 1160
1300 DY=VAL (MID$(MD$,J)))

1340 GOTO 1160

1130 IF MI§=M$(MN) THEN 1200

1140 NEXT MN: PRINT"dn dn) DON'T RECOGN!ZE THE MONTH.
1150 PRINT"PLEASE SPELL THE MONTH COMPLETELY.

1160 PRINT"dn dn’ PRESS ANY KEY TO TRY AGAIN

1170 GETAS:1FAS="" THEﬁ nio

1210 IF MID$(MDS,J,1)=" sp

210 INPUT"dn dn SET THE TIME";L$

220 IF LEFT$(LS,1)="Y" THEN GOSUB 1000
230 REM DISPLAY TIME

240 GOsUB 2000

250 GOTO 210

1000 REM TIME SETTING ROUTINE

1010 PRINT"cir sp SET THE DATE"

1020 PRINT"dn dn ENTER MONTH AND DAY IN THE FORM:
1030 PRINT"dn sp sp sp sp sp MONTH (SPACE) DAY
1040 PRINT"dn FOR EXAMPLE: sp sp MARCH 25

1100 REM PARSE OUT MONTH & DAY *

" THEN 1300

1230 PRINT"dn dn YOU FORGOT THE DAY

1310 IF DYD@ AND DY(M(W)H THEN 1400

1320 PRINT"dn dn YOUR DAY 1S INCORRECT. iT MUST BE
1330 PRINT"FROM 1 TO"M(MN)"."

1400 REM COMPUTE NUMBER OF DAY TICKS

CLOCK'S DEVICE ADDRESS;?
Now enter the address on the
DIP switches for the device. If
an unacceptable value, such as
16, is entered, the PET will re-
spond with:
SORRY, LEGAL ADDRESSES ARE 4-15
and ask again. The best way to
avoid problems is to forbid il-
legal values for inputs, tell the
user that he has goofed and
mention the correct range of
values.
Once the device address is
in, the PET asks:
1S THIS A LEAP YEAR?
If “YES” is entered, a reminder
appears to set the clock ac-
cordingly.
BE SURE TO SET THE CLOCK TO 366
DAYS

The iast request asks:

SET THE TIME?

If the user doesn’t want to set
the time, the screen clears and

the date and time are shown:
THE CURRENT TIME IS

DATE: JAN 29

TIME: 7:02:54 PM

PRESS ANY KEY TO SET TIME

The time ticks away with the
seconds changing the most
rapidly. A different set of values
will appear on the clock:

0129 1902 54

The program has transiated
from 24-hour time to normal
AmiPM time and changed the
month from a number to the
month’s name.

The HP clock will send a ? as
the first time character if the
clock has not been set since a
loss of power. If you pull the
plug on the clock and plug it in
again, the program will stop
with a ?DEVICE NOT PRESENT
ERROR. When the program is
RUN, the time will be displayed
with the following in the space

1410
1420
1430
1450

1500
1505
1510
1520
1530
1600
1610
1620
1630
1640
1650
1660
1670
1680
1700
1710
1720
1730
1740
1750
1760
1800
1810

1820
1830

1840
1850
1860
1870
1880
1900
1910
1920
1930
1940
1950
1960
1970

2000
2010
2020
2030
2040

2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2250

2500

3000
3010
3020
3030
3040
4000
4010
4015
4020
4030
4040
4050
4060
4100
4110
4120

5000

5010
5020

DT=@: IF MN=1 THEN 31430

FOR J=1 TO MN-1: DT=DT+M(J):NEXT J
DT=DT+DY-1

REM DT IS # OF DAYS TO ADVANCE

PRINT"cIr sp SET THE TiMg"

PRINT"dn dn ENTER THE TIME IN THE FORM:
PRINT"dn sp HOUR : MINUTE : SECOND : AM QR PM
PRINT"dn FOR EXAMPLE: sp sp 2:25:36:PM"
PRINT"dn"; :COSUB 4000

PEM PARSE OUT HOURS,MINS,SECS,AM?PM
TE=T$+"XX" : TH=VAL(T$)

GOSUB 3000: IF PT>@ THEN 1700

PRINT"dn YOU DIDN'T INCLUDE EVERYTHING
PRINT"PLEASE ENTER ALL FOUR ITEMS WiTH
PRINT"COLONS BETWEEN EACH OF THEM

PRINT"dn PRESS ANY KEY TO TRY AGAIN

GETAS: 1FAS="" THEN 1670

GOTO 1500

T$=MIDS(TS,PT+1)

TM=VAL (T$)

GOSUB 3000: IF PT=@ THEN 1630
T$=MID$(T$,PT+1)

TS=VAL(TS)

GOSUB 3000: IF PT = @ THEN 1630
T$=MID§(T$,PT+1,2)

REM ERROR MESSAGES

IF THC1 OR TH)12 THEN PRINT"dn dn YOUR HOURS MUST
BE FROM 1 TO 12":G0TO 1660

IF TM @ OR TM>59 THEN PRINT"dn dn YOUR MINUTES
MUST BE FROM @ TO 59":GOTO 1660

IF TSC @ OR TS)>59 THEN PRINT"dn dn YOUR SECONDS
MUST BE FROM @ TO 59":G0TO 1660

IF T$="AM" OR T$="PM" THEN 1860

PRINT"dn dn PLEASE USE AM OR PM ONLY":GOTO 1660
REM AM/PM LOGIC

IF T$="AM' AND TH=12 THEN TH=0

IF T$="PM" AND THL 12 THEN TH=TH+12

REM SET CLOCK AT LAST

PRINT#1,"RP";

IF DT 2@ THEN FOR J=1 TO DT:PRINT#1,"D"; :NEXT
IF TH > @ THEN FOR J=1 TO TH:PRINT#1,"H"; :NEXT
IF TM>@ THEN FOR J=1 TO TM:PRINT#1,"M"; :NEXT
IF TS>@ THEN FOR J=1 TO TS:PRINT#1,"S"; :NEXT
PRINT#1,"T"

RETURN

REM DISPLAY TIME

PRINT"clIr sp sp sp sp sp. THE CURRENT TIME 1S

PRINT"dn dn sp sp DATE:"

PRINT"dn dn sp sp TIME:"

PRINT"dn dn dn dn dn dn dn dn dn dn dn dn dn dn
sp sp PRESS ANY KEY TO SET TIME

GETAS: IFAK D ™" THEN RETURN

REM FETCH TIME

INPUT #1,T$

IF LEFT$(TS,1)="27" THEN GOSUB 5000

REM PARSE OUT PARTS

T1=VAL(MID$(T$,1,2))

T2=VAL(MID$(T$,3,2))

T3=VAL(MID$(T$,5,2))

T3$=MID$(7$,5,2)

T48=M1D$(15,7,2)

T53$=M1D$(T$,9,2)

PRINT"hm dn dn dn rt rt rt rt rt rt rt rt rt"™M$(T1);72

REM AM/PM CALCS

T6$="AM"

IF T3>11 THEN T6$="PM"

IF T3 >12 THEN T3=T3-12

IF T3=9 THEN T3=12

T3$=RIGHT$(STR$(T3),2)

PRINT"dn dn rt rt rt rt rt rt rt rt"

T}sll :"T4$" :"Tss" :"T6s

GOTO 2050

(14 dn's)

REM SCAN T$ FOR COLONS
FCR PT=1 TO LEN(TS$)
IF MiD$(T$,PT,1)=":" THEN RETURN

NEXT PT
PT=¢: RETURN

REM FETCH STRING VIA GET DUE TO

REM FLAKEY PET INPUT STATEMENT

Tgers

GET AS$: IF ASCO " THEN 4100

PRINT"rvs sp [f1";:FOR J=1 TO 300: NEXT
GET A$: IF A3 ™" THEN 4100

PRINT"off sp Ift";:FOR J=1 TO 300: NEXT
GOTO 4020

PRINT"oft sp 1f1";

IF A$=CHR$(13) THEN PRINT: RETURN
PRINT A$;: T$=T$+A$: GOTO 4020

PRINT"hm dn dn dn dn dn dn dn dn dn dn dn dn
> > sp TIME NEEDS TO BE SET sp<<<<<<<
PRINT"dn D> >>>> sp DUE TO POWER FAILURE sp L™
T$=MID$(T$,3) :RETURN

petween the time and the
PRESS ANY KEY line:

wosnsTIME NEEDS TO BE SET< e
cswesDUE TO POWER FAILURECCCCC

Now if you press a key, the SET
THE TIME? request will reap-
pear:
SET THE TIME? YES
The screen clears and will
display:
SET THE DATE
ENTER MONTH AND DAY IN THE FORM:
MONTH (SPACE) DAY

FOR EXAMPLE: MARCH 25
2 JANUARY 29

if the first three letters in the
month are incorrect, the pro-
gram will make you start over:

{ DON'T RECOGNIZE THE MONTH.
PLEASE SPELL THE MONIH COM-
PLETELY.

PRESS ANY KEY TO TRY AGAIN.

if you missed the date, the PET
says:

YOU FORGOT THE DAY
PRESS ANY KEY TO TRY AGAIN

If you enter an inappropriate
date, such as JAN 45, the PET,
will say:
YOUR DAY IS INCORPEGT. IT MUST BE
FROM 1 TO 31
The program has the number of
days for each month stored in-
side. If the month were Febru-
ary, the range 1 1o 28 would
have been shown instead.
Now that the date is entered
correctly, the screen clears to
iet the time be entered.

SET THE TIME

ENTER TIME IN THE FORM:

HOUR : MINUTE : SECOND : AM OR PM
FOR EXAMPLE: 2:25:36:PM

7:19:25:PM (you enter this line)

The screen will flicker a bit, and
then the time display will ap-
pear.

The PET won’t correctly input
a string with colons in it, so the
entry here is “faked” to iook like
a normal INPUT line. Unfortu-
nately, if you must INST or DEL
to correct your line, the cor-
rection won't really be entered.
This can be programmed
around, but 1 didn't feel like do-
ing it with an instrument on
loan to me for a week. The sub-
ject of faking INPUT is an arti-
cle in itself.

Again, there are some error
messages to help and assist
the user:

YOU DIDN'T INCLUDE EVERYTHING
PLEASE ENTER ALL FOUR ITEMS WITH
COLONS BETWEEN EACH OF THEM
PRESS ANY KEY TO TRY AGAIN

YOUR HOURS MUST BE FROM 1 TO 12
YOUR MINUTES MUST BE FROM 0 TO 59
YOUR SECONDS MUST BE FROM0TO 59
PLEASE USE AM OR PM ONLY

Here, a bad entry oniy forces

you to reenter the time. The
date is OK, so why redo it?

Perhaps this example is ex-
treme. In many situations it
isn't worth the programming
time to make a program com-
pletely convenient to use. Asan
idealist, | wrote it up to show
what can be done if ease of use
is required.

HP Clock BASIC Program
Review (Listing 1)

Lines 10 to 60 announce the
program and force the user to
wait until he has made sure the
HP Clock is attached to the
PET's IEEE 488 and the power is
turned on. DATA in lines 100 to
130 are placed in the months’
names' array M$ and the
months’ lengths’ array M.

Lines 140 to 170 request the
HP Clock's address and check
to see if the address is legal.
Line 160 telis the user to try
again and mentions the iegal
range as a hint. Lines 180 and
190 take care of the leap-year
problem by changing the
month length for February to 29
days and reminds the user to
check the leap-year switch on
the HP Ciock.

In lines 200-220, the user is
asked if the time is to be set
(which must be done when the
clock is first used), and aloop is
entered in lines 240 and 250.
Subroutine 1000 sets the time,
and subroutine 2000 displays
the time. The program will not
leave subroutine 2000 until a
key is pressed. Line 250 jumps
to the time-change request as
needed.

Setting the time in subrou-
tine 1000 is a complicated job,
requiring correctly entering the
data. First, you must enter the
month and day as explained in
lines 1010 to 1040, which give
an example of the expected for-
mat.

Line 1050 picks up the user’s
entry, and lines 1000 to 1180
take a look at the first three
characters to see if they fit a
month's name. Lines 1140 to
1180 take care of any mistake in
the entry of a month’s name.

Lines 1200 to 1220 scan the
input string, MD$, until a space
is found. This removes the rem-
nants of the month's name and
brings us up to the date digits.

Failure to find a space means
the day was forgotten, and the
user is told to start all over.

Lines 1300 to 1340 check the
day number with the number ot
days in the month M(MN). if
everything is OK, fines 1400 to
1450 will figure out the value
DT, which is used to send the
correct number of Ds to the
clock for date setting.

Now that we have the num-
ber of days from Jan. 1 (in the
number DT), lines 1500 to 1530
will tell the user to enter the
time in a tamiliar format—
HH:MM:SS:AM or PM. Subrou-
tine 4000 is used to enter the
string T$ via the GET state-
ment. In lines 1620 to 1850, the
string T$ is snipped apart at the
colons, and each part is ex-
amined for the correct range of
values; subroutine 3000 looks
for the colons, and lines 1680 to
1760 do the scissor-work. We
eventually end up with the
values TH, TM, TS and T§$, for
hours, minutes. seconds and
AMIPM values.

Lines 1860 to 1880 adjust the
hours, TH. according to the am
or pu value. Lines 1900 to 1970
set the HP Clock —first the
clock is reset via "RP," and then
the correct numbers of “D," “H,”
“M" and ~S" are sent to set the
time. Then “T" is sent to start
the clock.

Subroutine 2000 sets up the
screen in lines 2010 to 2060.
Note that the GET in line 2050
only checks if a character was
entered. If not, it will continue
to line 2070. The HP Clock is ac-
cessed in tine 2070, and line
2080 checks for “?.” The “?”
means the clock saw a power
tailure, and subroutine 5000
will warn of this event.

Lines 2100 to 2150 get the
various parts of the HP Clock’s
message. 11 is the month
number; T2 is the day number.
Line 2160 displays the month
and day values. -

Lines 2170 to 2220 adjust the
hours value, T3%, to reflect
whether an am or PM time is be-
ing shown. Then line 2250
prints the hours, minutes,
seconds and amiPm marker.

In subroutine 3000, PT is the
position of the tirst colon found
in the string T$.

Subroutine 4000 simulates a

cursor and constructs T$ from
the characters entered through
GET A$. No editing is provided,
so if you make an error, the en-
try must be repeated. A little
more code could catch A$ =20
(code for DEL) and give some
limited editing (equivalent to
back space or rubout on a ter-
minal).

Subroutine 5000 puts the
power failure message on the
screen and strips the “?” from
T$. This permits the display of
time code to work correctly.

The astute programmer will
note that no provision is made
for bad messages from the HP
clock (which might make the
program fail in some cases).
You shouid check the values
T1, T2, T3, T3$, T4$ and T5% for
their legal values and make
another attempt to read the
time made in case of anerror. in
the event of several consecu-
tive errors, the program should
mention this to the user.

There are limits to how “fail-
safe” a program must be made.
in many cases, malifunctions
will not be critical, and it isn't
worth the effort required to
make the program survive the
errors. | do not recommend the
PET for any real-time control
applications that may result in
injury or loss of property in the
event of the PET's failure!

Exampile 2: The HP 8165A
Signal Source

Part 1 introduced the 8165A.
Naturally, your interest will be
with the devices that you have
available, and the example
shown here is a “laboratory ap-
plication”; that is, a program
similar to one you might want
to build for your instrument.

Let's pretend that the re-
sponse of a stereo amplifier
needs to be tested in a produc-
tion line. The frequencies and
voltages to be tested are:

10 Hz, Sine Wave, 1.000 voits
10 Hz, Square Wave, 1.000 volts
20Hz,

204z, ...

50 Hz,

Test sine wave and square
wave responses at 1.000 volts
for 10, 20, 50, 100...up to 20
kHz.

The plan for a program is as
{ollows:
1) Initialize. For example, open

60 GOSUB 1000
70 OPEN 1,8
80 REM SET UP 8165

100 REM HOOK UP STEREO

130 PRINT"TEST STATION."
140 GOSUB 1000
200 REM PERFORM TEST

220 FOR L1=1 TO 4

270 IF L2
275 IF FR D25 THEN 430

280 FORW = 1 T0 2

290 IF W=1 THEN W$ = "SINE"
300 IF W=2 THEN W$ = "SQUARE"
310 REM SET 8165 UP

320 PRINT#1,"FRQ"STRS (FR)"KHZ"
330 IF W=1 THEN PRINT#1,"FI10E"
340 IF W=2 THEN PRINT#1,"F30E"
350 REM SET TIMER & REPORT

360 T1 = TI

390 IF TI - T1< 600 THEN 390
400 REM TURN 8165 OFF

410 PRINT#1,"0D"

420 NEXT W

430 NEXT L2

440 NEXT L1 .

450 REM TEST COMPLETE .

460 PRINT"qlr *#uuxx TEgT

480 GOSUB 1000
430 GOTO 110

1010 GETAS: IF A$="" THEN 1010
1020 RETURN

10 PRINT"clr STEREO TEST PROGRAM

20 PRINT"dn dn BE SURE: THE 8165 IS ON AND THAT
30 PRINT" THE IEEE 488 IS CONNECTED.

40 PRINT"dn REMEMBER THE ADDRESS FOR THE 8165
50 PRINT"MUST BE 8. PLEASE CHECK THIS.

90 PRINT#1,"FRQIGHZAMP 1. @@AVF 1020D"

110 PRINT"cir STEREO AMPLIFIER TEST"
120 PRINT"dn ATTACH THE NEW UNIT TO THE

210 PRINT"clr S>> TEST IN PROGRESS <K< *

230 FA=184 L1

240 FORL2 = 170 3

250 IF L2 = 1 THEN FR=FA/100@
260 IF L2 = 2 THEN FR=FA*2/1000

3 THEN FR=FA*5/1000

370 PRINT"hm dn dn dn TEST AT:";
380 PRINT"sp sp FREQ:"FR*18P0"sp sp"w$"sp sp sp"

LETED L2 222211
470 PRINT"dn dn REMOVE AMPL IFIER FROM TEST STATION"

1000 PRINT"dn dn PRESS ANY KEY WHEN READY"

Listing 2. Stereo Test program.

(jetter F, numerat 1,
letters OE)

(tee one = tee eye)”

N

(fetters OD)

the |EEE 488 file.
2) Tell the operator to hook up
an amplifier
3) Start the test
4) Loop through the frequen-
cies for each frequency
5) Loop through sine and
square
6) Wait for 10 seconds before
continuing
7) Report where the test is on
the screen
8) End of both loops
8) Tell the operator the test is
finished
10) Go to step 2

Listing 2 shows these steps
in a BASIC program. From the
user’s point of view, when the
program is RUN, the message
below appears:
STEREO TEST PROGRAM

BE SURE THE 8165 IS ON AND THAT THE
IEEE 488 IS CONNECTED.

REMEMBER THE ADDRESS FOR THE
8165 MUST BE 8. PLEASE CHECK THIS.
PRESS ANY KEY WHEN READY

This reminder ensures that the

8165 is properly connected,

powered and addressed. The

PET program won't work if

these conditions aren’t met.
Now it is time to test a unit.

The screen clears (after a key is

pressed) and displays:

STEREO AMPLIFIER TEST

ATTACH THE NEW UNIT TO THE TEST
STATION.

PRESS ANY KEY WHEN READY

Now the test commences, with
areport on the current frequen-
cy and waveform being used:
>>>>>TEST IN PROGRESS<<<<<

TEST AT: FREQ: 200 SQUARE (current
freq & waveform)

After about two minutes
(each frequency and waveform
takes ten seconds), the screen
clears and tells the user:
veeeeTEST COMPLETED s«

REMOVE AMPLIFIER FROM TEST STA-
TION
PRESS ANY KEY WHEN READY

Now we are ready to perform
another test. Look at the scope
and notice that the output of
the 8165 is turned off between
tests and between mounting
the new. amplifiers. Though un-

important in this example,
more serious equipment
should always be set to a “safe”
state when the operator has to
handle the equipment.

Lines 10 to 60 in the BASIC
code state the program’s name
and remind the user to check
the address setting on the HP
8165. Subroutine 1000 waits for
you to press a key.

Three nested loops are used
to scan through the frequen-
cies and waveforms. The L1
loop sets the frequency decade
from the range 10-99 Hz to
10000-99999 Hz. The L2 loop is
used to select between 1, 2 and
5 times the frequency selected
by L1. W chooses between sine
and square waves.

Lines 200 to 300 compute the
frequency FR in two steps (FA
is set to 10L1, and FR is set to
1,2 or 5 times FA), and W$§ is set
to report sine or square. In line
275 the top value to be tested is
20000 Hz, so to terminate the
loops requires a test of the fre-
quency larger than 20000 Hz.

Instead of using 20000 for
the test, | am using 25000. (If
you look at the code, FA is in
kilohertz, so the test is for 25.)
Due to the PET's way of com-
puting numbers, when L1 is 3
andL2is 2, FAturnsouttobea
tiny amount over 20, which ter-
minates the test too soon.

When testing for equality or
differences, make sure the
number in the PET is what you
think it is. Most floating point
numbers will be slightly (and
unprintably) different than the
value you want, so fudge ac-
cordingly.

Line 320 sends the correct
command to the 8165 for fre-

quency. Note that FR is sent as
the string STR$(FR). This
avoids the Cursor Right after
the number, which could totally
confuse the 8165. Lines 330 and
340 specify the waveshape by
directly sending the correct set
of characters to the 8165. “OE”
turns the 8165 on.

Lines 350 to 390 print the test
values and wait for 600 jiffies,
or ten seconds. When they are
finished, line 410 turns the 8165
oft (this is a “safe” state; e.g.,
during hook-up, the test leads
could be shorted).

Lines 450. to 490 announce
the end of the test and tell the
user to remove the stereo am-
plifier. Note that the 8165 is in
the “off” state. .

I will leave it to you to figure
out how to use the HP clock to
control the timing of the stereo
test program (Listing 2, part 2)
instead of the PET’s internal
clock. Another variation is to
put up the time each test is run
for logging purposes.

More “Gotchas”

Program bugs.. When | was
debugging the HP Clock pro-
gram (see Listing 1), the days’
count wouldn't come out right.
Some months tended to have
two or three too many days,
while others ran short. For ex-
ample, May 5 put May 11 on the
clock, and February 10 showed
February 7.

| first thought that the IEEE
488 device was miscounting
characters. | checked by print-
ing the number sent onto the
screen. The error wasn't here.

The eventual source of the
problem was that the routine
that counted the total days in

Function Oid Pet New PET

(Mex) (dec) (hex) (dec)
Send TALK (MTA) FOB8 61622 FOB6 61622
Send LISTEN (MLA) FOBA 61626 FOBA 61626
Send UNTALK F17A 61818 F17F 61823
Send UNLISTEN F17E 61822 F183 61827
Set ATN true and send FOBC 61628 FOBC 61628
character in accumulator
Send data character in FOF1 61681 FOEE 61678
accumuiator.«
Get data character in F187 61831 F18C 61836
accumulator
Flag byte 0222 545 00AS 165

«+5et flag byte to FF (255) before calling this routine.

Table 1. PET IEEE ROM and RAM locations.

the previous months just added
the same number each time. For
May, it added 31 four times, and
for February, it added 28 once!
Another bug came from the
“hidden bits” in PET numbers. In
the Stereo Test program (Listing
2), there was the following line:

IF FR>20 THEN. . ..

The testing program stopped at
10 kHz instead of 20 kHz. When |
printed FR, | got 20. FR was
formed from the two computa-
tions:

FA =101
FR=FA=2/1000

The PET's exponentiation op-
erator isn't totally exact, so a
few bits siipped through. The
division didn't help, and FR end-
ed up a slight amount over 20,
which is enough to make the
condition true. The cure was to
test for more than 25 instead.

These errors are subtle. If you
aren’t a total expert on your PET,
these are nearly impossible to
find.

20 REM GREGORY Y0B
30 PT = 826

10 REM PET SERIAL OUTPUT

40 READ BT: {F BT 0 THEN 60

GOTO 40

50 POKE PT,BT: PT=PT+i:

1260 DATA
1270 DATA
1280 DATA
1300 DATA -1!

1999 REM PARAMETERS FOR BAUD RATES
2000 DATA 960C,5,4800,11,2400,23
2010 DATA 1200,48,600,97,300,195

60 DiM BD(6),RT(6)

70 FOR J=1 TO 6

80 READ BD(J},RT())

90 NEXT J

100 PRINT"cir SER{AL QUTPUT”

110 PRINT"'dn PARITY"

120 PRINT"O=EVEN, 1=00D, 2=MARK"
130 INPUT P

140 IF P=0 THEN 180

150 IF P=1 THEN 180

160 IF P=2 THEN P=255: GOTO 180
170 GOTO 110

180 POKE 994,P

190 PRINT"dn BAUD RATE"

200 INPUT BT

210 FOR J=1 TO 6

220 IF BT=BD{J) THEN 380

230 NEXT J

240 PRINT'RATES ARE:"

250 FOR J=1 TO 6. mRINT BD(J): NEXT
260 GOTO 190

380 POKE 995, RT(J)

390 PRINT"# TIMES TO REPEAT CHAR"
406 INPUT N

410 N={NT(N): {F N< @ OR ND>255 THEN 390
420 PRINT"PRESS ANY KEY TO SEND CHARS"
430 GET A$: IF A$+"" THEN 430

440 PRINT AS

450 POKE 997,N: POKE 992, ASC(A$)
460 SYS(826)

470 GOTO 420

1000 DATA 172,4,2,234,234,240,1
1010 DATA 96,173,64,232,41,64,240
1020 DATA 241,120,21,192,3,144,2
1030 DATA 88,96,32,98,3,32,153
1040 DATA 3,88,76,58,3,234,24
1050 DATA 173,224,3,96,234,169,0
1060 DATA 141,225,3,173,224,3,162
1070 DATA 1,160,0,24,74,144,5
1080 DATA 160,225,238,225,3,72,152
1090 DATA 157,240,3,104,232,224,8
1100 DATA 208,234,273,226,3,48,12
1110 DATA 240,3,238,225,3,173,225
1120 DATA 3,41,1,240,2,169,255
1130 DATA 157,240,3,96,162,255,232
1140 DATA 189,240,3,141,34,232,172
1150 DATA 227,3,173,0,64,173,0
1160
1170 DATA 234,2%,228,3,208,228,96
1180 DATA 96,0,0,0,0,0,0
1190 DATA 0,24,173,229,3,208,2
1200 DATA 56,96,173,224,3,206,229
1210 DATA 3,96,0,0,0,0,0
1220 DATA O
1230 DATA 0
1240 DATA O
1250 DATA G
o
2
0

DATA 64,173,0,64,136,208,244

Listing 3. Serial output via the IEEE 488 bus port.

Using the PET ROM

Since the PET knows the
IEEE bus, there have to be
routines in the PET ROM that
know how to work the bus. A
year ago, some of my clients’
requirements forced me to ac-
cess the PET's ROM for the
IEEE. (One had a machine that
didn't like the PET's state be-
tween IEEE messages; the
other wanted to know the PET's
maximum |EEE transfer rate.)

Table 1 indicates the perti-
nent RAM and ROM locations
tor the PET IEEE routines. Use
caution when working with
these, as | have oniy been able
to check the ones mentioned
below. In one case, a routine
sent a character at an apparent
rate of 5000 characters/sec-
ond! (The listener didn't see
anything at all.) The routine in
question took a look at the bus,
decided the bus wasn’t in a
legal state and returned, in-
stead of sending the character!
if you have an accurate PET dis-
assembly, here is a good place
to use it.

input from the IEEE Bus. This
can be approached either from
machine language or as a mix
of machine language and
BASIC. in all cases, the first
step is to open a file to the bus
via BASIC. (This must be done,
make sure that only one file is
open.)

The next step is to send a
TALK to the device. From
BASIC, this is a SYS(61622),
and in machine languageitis a
JSR F0B6 (or 20 B6 FO).

To handshake a character in
requires calling the machine
language in ROM. Here's a
catch: the character arrives in
the A register. From BASIC, you
must SYS to a short routine
that performs JSR F187 and an
STA (somewhere) (and RTS to
get back). Then PEEK (some-
where) gets your character. The
machine code in hexadecimal is
20 87 F1 8D xx xx 60. The xx
xx is your “somewhere.” The
value from the IEEE bus is the
complement of your character;
that is, the 1’s and O’'s are ex-
changed.

Send to the IEEE Bus. Again,
the first step is to open a file to
the bus and be sure that oniy

one file is open. Then, send the
ATN LISTEN via SYS(61626). (In
machine language, JSR FOBA,
or 20 BA F0.) Now, put the com-
plemented value into location
$0222 with a POKE 546, CHAR-
ACTER.

The last step is to SYS
{61681), which sends the char-
acter. In some cases, you will
have to set a flag first by set-
ting location $021D to $FF by
POKE 541,255. | have used both
methods with success.

The machine-language se-
quence is A9 FF 8D 1D 02 20 xx
xx 8D 22 02 20 F1 FO 60. The 20
xx xx is a JSR to your routine at
xx xx, which gets a character in
the A register.

Both the input and the output
will leave the device active on
the bus. Make ATN true and
send the UNL and UNT value to
release the device.

The IEEE lines in the PET
don't have to be used for the
IEEE 488 bus. There are 12 easi-
ly used bits of parallel I/O that
can be controlled with suitable
PEEKs and POKEs, and two
PET Hard Copy Easy,” Kilobaud
Microcomputing, September
1979, p. 100.

Printing Hazards

The difference between the
PET's display and character
codes and the ASCIi character
set causes some difficulties
when you use the IEEE 488 bus
for printed output.

1. ASCHl printers use the
most significant bit (MSB) as a
parity bit. if the PET is sending
a graphics character (or lower-
case, as provided by the POKE
59468,14 for old PETs), the
printer will either ignore this
and print the corresponding
ASCII for the seven less signifi-
cant bits or print a “parity error”
character. If you get a parity er-
ror character, set your printer
to the “no parity,” or “mark”
parity, option.

2. The PET cursor control
characters result in the ASCII
values in the range 0 to 31,
which are control characters in
ASCH. {f you are lucky, these
will be ignored; if you aren’t,
some of these may result in set-
ting your printer to unwanted
modes. (The Comprint printer is

Listing 4. Serial output, machine-language assembly listing.

This code was hand assembled and then patched - so the flow
fsn't continuious and there are occasional NOPs that aren't needed.

033A AD 04 02 SENSE

EA
FO
60

0342 AD
29
FO

0349 78
034A 20

90
58

0351 20

035C 18

0362 A9
8D
AD
A2

036C A0
18
4A
90
EE
48
98
90

68
E8
EO

0382 AD

FO
EE
AD
29
FO
A9
9D
60

0399 A2
BD

03A2 AC
03A5 AD

03AB AD

EA
01

40

F1

62
49

3A

EO

00
El
EQ
a1

00

05
g1

FO

08
EA

E2

03
E1
Et
01
02
FF
FO

FO
22

E3
00
00
00

E8

03

03
03

03

03/

03
03

03

03

03

03
03

03

03
E8

03
40
40
40

GO1

FFETCH

SETUP

SLOAD

EVEN

MARK
ZILCH

MIT
CONT

AGAIN

! Check SHIFT key

LDA SHIFT (0203) read shift key location

NOP, NOP (tis a patch)

BEQ GO (0342)

RTS back *to'BASIC if SHIFT
pressed

! See if device is ready

LDA $EB4O Get all PB2 lines from VIA

AND #40 Mask NRFD bit

BEQ SENSE (033A) Wait if not ready

! Set up PET for transmission of characters
! Turn off interrupts

! Get character e

! Set carry if no more characters
! Set up Xmission table
! Send character

SEI Interrupts of#
JSR FETCH (03C0) Fetch Character
- (Set up as a subroutine
to let you "roll your own"

routine)
BCC GO1 (0351)
CL! interrupts on. If Carry is
RTS set, no more chars to send.

if you make your own FETCH,
use this convention.

JSR SETUP

JSR XMIT Send char

CLi restore interrupts

JMP SENSE , Look at SHIFT key again
~ NOP (patch)

cLC Dummy version of FETCH

LDA CHAR (03E0) Test Char location

RTS)

NOP (guess)

! Set up Xmission Table
LDA #00

STA PARITY (03E1)
LDA CHAR (03E0) Get char

LDX #01 X reg counts/7 bits of char.
Shift char & 1f carry set, foad FF Into

Xmit table. tf carry not set, load 00

(NOTE: Start & Stop bits are assumed presdt

in Xmit table. Be sure this is so in your
program too.)

Initialize parity counter

LDY #00 Y holds 00 or FF for bit
cLe in char.

LSR A Shift LSB into Carry

BCC HOPPITY Bit is zero

INC PARITY (03E1) '1' bit adds to parity count
PHA Stuff A on stack

TYA Y to A

STA START,X Put into Xmit table. | just
love non-symmetrical
instruction sets! (6502

has no Y indexed addressing)

PLA Restore A from stack
INX On to next bit
CPX #08 7 bits yet?

BNE SLOAD (036C) no, repeat

! According to option, set the parity
! bit in the Xmit table

LDA POPTION (03E2) Get option value

BMI MARK MSB means MARK parity
BEQ EVEN zero is EVEN

INC PARITY Add 1 for odd parity
LDA PARITY

AND #01 LSB has parity in it
BEQ ZILCH Save LDA #00 if A is 00
LOA #FF

STA START,X Put in Xmit table. X happens
RTS to be right vatlue!

! Send Character

LDX #FF The next instruction

INX makes X zero.

LDA START,X Get byte to send

STA $E822 Put on {EEE DiO Lines (out)

! Delay ioop for baud rate

LDY RATE (Q3E3) Get countdown value
LDA $0400 4 cycles of delay
LDA $0400 ditto

LDA $0400 ditto

Set up Xmit table for char in A

a “lucky” one.)

3. As a result of these first
two steps, if you use CMD and
LIST, the listings you get will
have missing or misleading
characters. | have a program
(drop me a card) that will list a
BASIC program in a legible
form.

4. The PET does not transmit
a line feed. You must provide
CHRS$(10) after every carriage
return.

5. If your printer needs a car-
riage return delay, either print
the required number of CHR$(0)
or insert a small waiting ioop;
i.e, FORJ = 1TO20:NEXT.

6. Most printers have no for-

matting capabilities. If you
keep careful count of the num-
ber of characters sent, format-
ting is clumsy, but possible. Pit-
falls include: .
*A printed number has a
CHR$(29) sent after the last
digit, which is not a space and
is usually ignored by printers.
*TAB and SPC provide
CHR$(29), and not spaces.
(New PETs have this fixed.)
*LEN(STR$(number)) will not
count a CHR$(29), since STR$
produces a string without a
blank or skip after the last digit.
*If the number is small or large,

ware of scientific format; i.e.,

.23E +23. .

7. If you are attempting a
word-processing program, the
PET's codes for the lowercase
characters and the ASCl! codes
are different. The PET thinks
the lowercase letters lie in the
range 192 to 223, and ASCII
likes the range 96 to 127.

A turther complication is that
the ASCIli character set and the
PET character sets don't
match. Backarrow onthe PET is
ASCIl underline; the curly
brackets, vertical bar and tilde
in ASCli don't exist on the PET.
The ASCIt accent mark (looks
like a reverse apostrophe) is
seen by the PET as a space.
Your printer might have other
character options to puzzle
you.

Wrapping It Up

Working with the IEEE 488
bus is nearly an entire engineer-
ing discipline in itself. | hope
my efforts enable you to get

88
DO E4
EA

03Co

EC E4 03

DO E4
60

18

AD ES 03
Do 02

38

60

AD EO C3

CE E5 03
60

00

00 00 00 00 00 00 00

00
FF FF

FETCH

OK

(some room here)

CHAR

PARITY
POPT ION
RATE

BITCOWNT
CHCOUNT

again) ..

START

DEY reduce countdown
BNE AGAIN (03A5) keep going till count is zero
NOP Successful branch takes 3

so this compensates to
make a 17 cycle per loop

delay
CPX BiTCOUNT Check number of bits 1o
be sent.
BNE CONT Do next bit
RTS

! Fetch Character for real. Feel free to

! make your own routine. Set carry bit when
! out of characters.

cLc Be sure to do this!

LDA CHCOUNT (03ES) # chars to send

BNE OK

SEC Set carry, out of chars
RTS
LDA CHAR Get char - you might use

TAX & LDA CHAR,X here.

DEC CHCOUNT decmt chars counter

RTS

! Data Area

Character to send. (Move elsewhere if you
want to send more than one)
Parity Counter
pafity Option. O-even,l-odd,FF-mark
Initial countdown for baud rate. POKEd
by the BASIC program.
! Number of bits to send (10 or 11 decimal)
t Number of chars to send

! Start of Xmit table

! Character, Isb first
! Parity bit
Stop bit(s)

aboard the IEEE 488 bus of your
PET and turn it to some profit-
able use.®

References

1. “|EEE Standard Digital in-
terface for Programmable In-
strumentation,” IEEE Std 488-
1975, ANSI MC 1.1-1975.

2. Hewlett-Packard, 1502
Page Mill Road, Palo Alto, CA
or PO Box 301, Loveland, CO
80537. Several publications are
available on request.

3. “PET 2001-8 User's Man-
ual” and “PET Communication
with the Outside World,” Com-
modore Business Machines.

4. “Getting Aboard the
488-1975 Bus,” Motorola.

5. “PET User Notes,” PO Box
371, Montgomeryville, PA
18936.

6. MOS Technology, Inc., 950
Rittenhouse Road, Norristown,
PA 19401.

